
Km4City Ontology, 
Tools, Data Ingestion,

and Applications
Km4City Ontology, Protégé, WLODE, Virtuoso,

Open Street Map, Osmosis, PostgreSQL+PostGIS, Sparqlify,
Real-Time Traffic Estimation of Unmonitored Roads



We are going to…

• Introduce some useful tools
• Draw an outline of the Km4City Ontology in its entirety
• See the Street Guide section of the Km4City Ontology in great detail
• Inspect the correspondences between the resources in the Km4City KB that 

represent the street graph, and the Open Street Map
• Discover how information about the Km4City Ontology can be found in the 

source XML/RDF document, in Protégé, and in the Km4City KB
• Outline the process for the ingestion of the Open Street Map data
• Introduce a notable application based on the street graph stored in the 

Km4City KB: the Real-Time Traffic Estimation of Unmonitored Roads
• Present the Datameter, a DISIT Lab research (and set of tools) for measuring 

relevant features and performing an automatic characterization of triplestores



Tools

• Protégé v5.2.0+
• “A free, open-source ontology editor and framework for building intelligent systems” 

(https://protege.stanford.edu/)

• WLODE
• “Automated OWL ontology documentation generator with graphics and diagrams, Web Linked 

Open Data engine and graphics” (https://github.com/disit/WLODE)

• Linked Open Graph
• “A visual tool for browsing on Linked Data and Linked Open Data” (https://github.com/disit/linked-

open-graph)

• Virtuoso
• “Conceptually, Virtuoso provides a Data Junction Box that drives enterprise and individual agility 

by deriving a Semantic Web of Linked Data from existing data silos.” 
(https://virtuoso.openlinksw.com/)

• Open Street Map
• “OpenStreetMap is a map of the world, created by people like you and free to use under an open 

license.” (https://www.openstreetmap.org/)

• …

https://protege.stanford.edu/
https://github.com/disit/WLODE
https://github.com/disit/linked-open-graph
https://virtuoso.openlinksw.com/
https://www.openstreetmap.org/


Protégé

• "A free, open-source ontology editor and framework for building 
intelligent systems" (https://protege.stanford.edu/)

• The Km4City Ontology is developed with Protégé. 

• Download the ZIP file at
http://www.disit.org/drupal/?q=home&axoid=urn%3Aaxmedis%3A0
0000%3Aobj%3Aa863cca5-6dcc-492d-9afa-0c852aa34ae2

• Open the extracted RDF file with Protégé, and.. Enjoy! ☺

https://protege.stanford.edu/
http://www.disit.org/drupal/?q=home&axoid=urn:axmedis:00000:obj:a863cca5-6dcc-492d-9afa-0c852aa34ae2


Protégé: Active Ontology



XML/RDF: Ontology Metadata



Protégé: Classes



Protégé: Object Properties



Protégé: Data Properties



Protégé: Reasoning



WLODE

• WLODE is an "Automated OWL ontology documentation generator with 
graphics and diagrams, Web Linked Open Data engine and graphics"

• It generates (XML/SVG/PNG) diagrams of concepts and entire ontologies
on-the-fly, based on the XML (RDF/OWL) representation of the ontology.

• It generates a complete Web (HTML) documentation of an ontology on the 
fly, including diagrams also generated on-the-fly, based on the XML 
(RDF/OWL) representation of the ontology.

• It is open source software developed by the DISIT Lab and it is available for 
download at https://github.com/disit/WLODE. Feel free to get it, and... 
Enjoy! ☺ A lot of work still has to be done.

• Diagrams that you can see in these slides, all are generated by WLODE.

https://github.com/disit/WLODE


Linked Open Graph

• Select a dataset, and browse 
resources within it in a visual manner.

• The Linked Open Graph (LOG) is a 
Web tool developed at DISIT Lab.

• It can be reached at:

https://log.disit.org/

https://log.disit.org/


Virtuoso: Quick 
Introduction
• Virtuoso is a open-source software 

• It is a No-SQL database (triplestore) 
management system, and much more

• It is the DISIT Lab choice for the Km4City 
Knowledge Base

• Get it and learn more at:
https://virtuoso.openlinksw.com/

• It can be queried through a dedicated 
Web interface (the SPARQL query editor), 
through REST API calls, …

https://virtuoso.openlinksw.com/


Virtuoso SPARQL 
Query Editor
• For each Virtuoso server instance a Web 

interface is available for submitting 
SPARQL queries

• Different result formats are available



Open Street Map www.openstreetmap.org

http://www.openstreetmap.org/


Open Street Map: Ways, Nodes, Tags

• Ways
• “A way is an ordered list of nodes which normally also has at least one tag or is 

included within a Relation. A way can have between 2 and 2,000 nodes, although it's 
possible that faulty ways with zero or a single node exist.” 
(https://wiki.openstreetmap.org/wiki/Way) 

• Nodes
• “A node is one of the core elements in the OpenStreetMap data model. It consists of 

a single point in space defined by its latitude, longitude and node id.” 
(https://wiki.openstreetmap.org/wiki/Node) 

• Tags
• “A tag consists of two items, a key and a value. Tags describe specific features of 

map elements (nodes, ways, or relations) or changesets. Both items are free format 
text fields, but often represent numeric or other structured items. Conventions are 
agreed on the meaning and use of tags, which are captured on this wiki.” 
(https://wiki.openstreetmap.org/wiki/Tags)

https://wiki.openstreetmap.org/wiki/Way
https://wiki.openstreetmap.org/wiki/Node
https://wiki.openstreetmap.org/wiki/Tags


Open Street Map: Relations



Ontologies: Quick Review

• Aimed at modelling (a part of) the World

• Made up of:
• Classes (Concepts, Categories of objects/resources)

• Relations among classes (generalizations, specializations)

• Data Properties (Features of objects/resources)

• Object Properties (Relations among objects/resources)

• Constraints (Cardinalities, data types, …)

• …



Ontologies: Quick Review

• Represented as XML documents

• Developed through dedicated tools (Protégé, …)

• (Possibly) loaded to triplestores and queried through SPARQL

• Documentation is a key aspect. Tools exist that attempt to produce 
human-readable documentation automatically (WLODE, …)



Km4City Ontology

• Administration

• Street Guide

• Points of Interest

• Local Public Transport

• Sensors

• Temporal Aspects

• Metadata



Km4City Ontology: 
Public Administration
• Organization

• PA

• Region

• Province

• Municipality

• Hamlet / District

• Resolution

• StatisticalData

• Geometry



Km4City Ontology: Public Administration



Protégé: Browsing 
Properties (1)

• Properties that relate concepts each
other (object properties) can be found in 
Protégé in the Object Properties tab:

• Browse to the Object Properties tab

• Identify the property of interest (use the 
Search... on the top left corner of the 
Protégé window if needed)

• Look at the top-right panel (Annotations) 
to learn more about the semantic of the 
property (metadata such as the label, 
description, and other, can be found
there)

• Look at the bottom-right panel 
(Description) to discover that resources 
of type Hamlet, or Road, can have the 
inMunicipalityOf property, whose value is
a resource of type Pa



Protégé: Browsing 
Properties (2)
Also, you can use the Protégé Search to 
identify all properties that are defined for a 
class, and all properties that are filled by 
resources of a given class:

• Search for the class name

• Scroll the list of results

• If you look for Pa, you will found out, as
an example, that among the search result 
category named ObjectPropertyRange, 
the property inMunicipalityOf appears -> 
values of the property inMunicipalityOf
are resources of type Pa



Protégé: Browsing 
Properties (3)

• The same way, searching for Pa and 
browsing to the ObjectPropertyDomain
category of results, you will discover that
resources of type Pa can have the 
hasResolution property.



Km4City Ontology: Region



Protégé: Class Meta & 
Relations
• Let’s see how labels, comments, and 

other metadata about a class, are 
represented in:

• Protegé

• Source XML/RDF of the Ontology

• Km4City KB (triplestore) 

• We also see how generalizations and 
specializations are represented adopting 
the three different perspectives



XML/RDF: Class Meta & Relations



SPARQL Query: Class Meta & Relations

select * { km4c:Region ?p ?v  }

select * { <http://www.disit.org/km4city/schema#Region> ?p ?v  } 



Region Resource: Km4City KB vs OSM

Km4City KB
• select * { 

?s a km4c:Region; 

foaf:name "Toscana"; 

?p ?v 

}

• http://192.168.0.208:8890/sparql?default-graph-
uri=&query=select+*+%7B+%3Fs+a+km4c%3ARegi
on%3B+foaf%3Aname+%22Toscana%22%3B+%3Fp
+%3Fv+%7D+&format=text%2Fhtml&timeout=0&d
ebug=on

• http://www.disit.org/km4city/resource/OS000000
41977RG

Open Street Map

• https://www.openstreetmap.org/
relation/41977

http://192.168.0.208:8890/sparql?default-graph-uri=&query=select+*+%7b+?s+a+km4c:Region;+foaf:name+%22Toscana%22;+?p+?v+%7d+&format=text/html&timeout=0&debug=on
http://www.disit.org/km4city/resource/OS00000041977RG
https://www.openstreetmap.org/relation/41977


Km4City Ontology: Province



Protégé: Object 
Properties
• The property hasResolution is defined for 

resources of type Pa

• The Province is defined to be a 
specialization (a specific type of) Pa

• Therefore, the hasResolution property 
can also be found on resources of type 
Province



XML/RDF: Object Properties



SPARQL Query: Object Properties

select * { km4c:hasResolution ?p ?v  } 

select * { <http://www.disit.org/km4city/schema#hasResolution> ?p ?v  }  



Province Resource: Km4City KB vs OSM

Km4City KB
• select * { 

?s a km4c:Province; 

foaf:name "Firenze"; 

?p ?v 

}

• http://192.168.0.208:8890/sparql?default-graph-
uri=&query=select+*+%7B+%3Fs+a+km4c%3AProv
ince%3B+foaf%3Aname+%22Firenze%22%3B+%3F
p+%3Fv+%7D+&format=text%2Fhtml&timeout=0&
debug=on

• http://www.disit.org/km4city/resource/OS000000
42472PR

Open Street Map

• https://www.openstreetmap.org
/relation/42472

http://192.168.0.208:8890/sparql?default-graph-uri=&query=select+*+%7b+?s+a+km4c:Province;+foaf:name+%22Firenze%22;+?p+?v+%7d+&format=text/html&timeout=0&debug=on
http://www.disit.org/km4city/resource/OS00000042472PR
https://www.openstreetmap.org/relation/42472


Km4City Ontology: Municipality



Municipality Resource: Km4City KB vs OSM

Km4City KB
• select * { 

?s a km4c:Municipality; 

foaf:name "Montelupo Fiorentino"; 

?p ?v 

}

• http://192.168.0.208:8890/sparql?default-graph-
uri=&query=select+*+%7B+%3Fs+a+km4c%3AMun
icipality%3B+foaf%3Aname+%22Montelupo+Fiore
ntino%22%3B+%3Fp+%3Fv+%7D+&format=text%2
Fhtml&timeout=0&debug=on

• http://www.disit.org/km4city/resource/OS000000
42586CO

Open Street Map

• https://www.openstreetmap.org
/relation/42586

http://www.disit.org/km4city/resource/OS00000042586CO
http://www.disit.org/km4city/resource/OS00000042586CO
https://www.openstreetmap.org/relation/42586


Km4City Ontology: District



Protégé: Data 
Properties
• Full details about data properties can be 

found in Protégé:

• Open the Data Properties tab

• Find the data property of your interest

• Look at the top-right (Annotations) panel 
to learn about the semantic of the data 
property (label, description, and other)

• Look at the bottom-right (Description) 
panel to discover that, as an example, 
the areaName property is a data 
property that can be found in Service
resources, and to discover that values of 
the areaName property are text strings

• Since the District is a Service, the 
areaName property can be found in 
District resources



XML/RDF: Data Properties



SPARQL Query: Data Properties

select * { km4c:areaName ?p ?v  } 

select * { <http://www.disit.org/km4city/schema#areaName> ?p ?v  }  



Reusing vocabularies: 
the Service example
• District is a Service

• The http://www.disit.org/km4city/schema#Service is a 
http://www.pms.ifi.uni-muenchen.de/OTN#Service

• http://www.pms.ifi.uni-muenchen.de/OTN#Service is a 
class that is not defined in the Km4City Ontology (indeed, 
you can see that its URI does not starts with 
http://www.disit.org/km4city/schema#)

• http://www.pms.ifi.uni-muenchen.de/OTN#Service is a 
class that is defined in the OTN vocabulary, that is reused
in the Km4City Ontology

• Reusing well-known vocabularies is a recommended 
practice that helps the interoperability and the building of 
applications that spread across multiple triplestores

http://www.disit.org/km4city/schema#Service
http://www.pms.ifi.uni-muenchen.de/OTN#Service
http://www.pms.ifi.uni-muenchen.de/OTN#Service
http://www.disit.org/km4city/schema
http://www.pms.ifi.uni-muenchen.de/OTN#Service


Protégé: Vocabularies, 
and Prefixes
• Open the Active Ontology tab

• Open the Ontology Prefixes tab in the bottom panel



RDF/XML: Vocabularies, and Prefixes



Virtuoso: Vocabs, and 
Prefixes
• For that you could make use of 

namespaces (abbreviated URIs) in 
SPARQL queries that you submit to 
Virtuoso, you have to add them in 
Virtuoso Conductor, the Web interface of 
Virtuoso server instances dedicated to 
administrators



Vocabularies: How to 
Learn More
• Linked Open Vocabularies is a good place to 

start when you need some further 
information about a vocabulary, or a 
vocabulary term:

https://lov.linkeddata.es/dataset/lov

• A SPARQL Endpoint is also available from 
where you can query the Linked Open 
Vocabularies:

https://lov.linkeddata.es/dataset/lov/sparql

https://lov.linkeddata.es/dataset/lov
https://lov.linkeddata.es/dataset/lov/sparql


Km4City Ontology: 
Street Graph (Basics)
• Road

• AdministrativeRoad

• RoadElement

• Node

• StreetNumber

• Entry

• …



Km4City Ontology: Road



DISIT LOG: Object 
Properties of a 
Resource

https://log.disit.org/service/index.php?uri=h
ttp://www.disit.org/km4city/resource/OS0
0569029679SR&sparql=http://192.168.0.208
:8890/sparql

https://log.disit.org/service/index.php?uri=http://www.disit.org/km4city/resource/OS00569029679SR&sparql=http://192.168.0.208:8890/sparql


SPARQL Query: Object Properties (of a given 
Resource)

select distinct ?p { 

<http://www.disit.org/km4city/resource/OS00569029679SR> ?p ?v .  

?v a ?vClass

}



Road Resource: Km4City KB vs OSM

Km4City KB
• select * { 

<http://www.disit.org/km4city/reso

urce/OS00143263944SR> ?p ?v }

• http://192.168.0.208:8890/sparql?default-graph-
uri=&query=select+*+%7B+%3Chttp%3A%2F%2Fw
ww.disit.org%2Fkm4city%2Fresource%2FOS00143
263944SR%3E+%3Fp+%3Fv+%7D%0D%0A

Open Street Map

• https://www.openstreetmap.org
/way/143263944

http://www.disit.org/km4city/resource/OS00000042586CO
https://www.openstreetmap.org/way/143263944


Km4City Ontology: AdministrativeRoad



DISIT LOG: Values of 
Object Properties of a 
Resource
https://log.disit.org/service/index.php?uri=h
ttp://www.disit.org/km4city/resource/OS0
0000017556LR/OS00008317521AR&sparql=
http://192.168.0.208:8890/sparql

1. Right Click on:

2. And hit + Details 

https://log.disit.org/service/index.php?uri=http://www.disit.org/km4city/resource/OS00000017556LR/OS00008317521AR&sparql=http://192.168.0.208:8890/sparql


SPARQL Query: Values of Object Properties (of 
a given Resource)

select distinct ?p ?v { 

<http://www.disit.org/km4city/resource/OS00000017556LR/OS00008317521AR> ?p ?v .  
?v a ?vClass

}



AdministrativeRoad Resource: KM4C KB vs OSM

Km4City KB
• select * { 

<http://www.disit.org/km4city/reso

urce/OS00000017556LR/OS00008317521

AR> ?p ?v }

• http://192.168.0.208:8890/sparql?default-graph-

uri=&query=select+*+%7B+%3Chttp%3A%2F%2Fwww.disit.o

rg%2Fkm4city%2Fresource%2FOS00000017556LR%2FOS00008

317521AR%3E+%3Fp+%3Fv+%7D&format=text%2Fhtml&timeou

t=0&debug=on

Open Street Map



Km4City Ontology: RoadElement



DISIT LOG: Data 
Properties & Values of 
a Resource 
https://log.disit.org/service/index.php?uri=h
ttp://www.disit.org/km4city/resource/OS0
0023122303RE/34&sparql=http://192.168.0.
208:8890/sparql

1. Right-click on

2. And hit Info 

https://log.disit.org/service/index.php?uri=http://www.disit.org/km4city/resource/OS00023122303RE/34&sparql=http://192.168.0.208:8890/sparql


SPARQL Query: Values of Data Properties (of a 
given Resource)
select ?p ?v { 

<http://www.disit.org/km4city/resource/OS00023122303RE/34> ?p ?v .  
filter(isLiteral(?v))

}



Km4City Ontology: Node



DISIT LOG: Exploit Linked Data

https://log.disit.org/service/index.php?uri=http://www.disit.org/km4city/resource/RT04800100386GZ&sparql=http://192.168.
0.206:8890/sparql

1. Right-click on

2. And hit Open

https://log.disit.org/service/index.php?uri=http://www.disit.org/km4city/resource/RT04800100386GZ&sparql=http://192.168.0.206:8890/sparql


Node Resource: Km4City KB vs OSM

Km4City KB
• select * { 

<http://www.disit.org/km4city/reso

urce/OS05818428276NO> ?p ?v }

• http://192.168.0.208:8890/sparql?default-graph-
uri=&query=select+*+%7B+%3Chttp%3A%2F%2Fw
ww.disit.org%2Fkm4city%2Fresource%2FOS05818
428276NO%3E+%3Fp+%3Fv+%7D&format=text%2
Fhtml&timeout=0&debug=on

Open Street Map

http://www.disit.org/km4city/resource/OS00000042586CO


Node Resource: Km4City KB vs OSM

Km4City KB
• select * { 

?re a km4c:RoadElement; 

km4c:startsAtNode 

<http://www.disit.org/km4city/reso

urce/OS05818428276NO> }

• select * { ?r a km4c:Road; 

km4c:containsElement 

<http://www.disit.org/km4city/reso

urce/OS00615299467RE/0> }

Open Street Map



Km4City Ontology: StreetNumber



DISIT LOG: Explore 
Relations among 
Classes

https://log.disit.org/service/index.php?uri=h
ttp://www.disit.org/km4city/schema%23Str
eetNumber&sparql=http://192.168.0.206:88
90/sparql

• If you submit the URI of a Class instead of 
the URI of a Resource, the LOD will 
display you (and will allow you to browse 
through) the set of the incoming and 
outgoing relations of the given Class with 
other Classes and Resources.

https://log.disit.org/service/index.php?uri=http://www.disit.org/km4city/schema#StreetNumber&sparql=http://192.168.0.206:8890/sparql


SPARQL Query: Explore Relations Among 
Classes

select distinct ?class ?property { 

?class ?property <http://www.disit.org/km4city/schema#StreetNumber> . 

?class a owl:Class .  

}



Street Number Resource: Km4City KB vs OSM

Km4City KB
• select distinct ?rn ?n { 

<http://www.disit.org/km4city/reso

urce/OS04207232783NN> 

km4c:extendNumber ?n ; 

km4c:belongToRoad ?r . 

?r km4c:extendName ?rn

}  

Open Street Map



Km4City Ontology: Entry



DISIT LOG: Explore 
Class Metadata

https://log.disit.org/service/index.php?uri=ht
tp://www.disit.org/km4city/schema%23Entr
y&sparql=http://192.168.0.206:8890/sparql

• If you submit the URI of a Class instead of 
the URI of a Resource, you right-click the 
Class icon and you hit Info, you will get the 
full listing of the metadata that are 
available for the given Class.

https://log.disit.org/service/index.php?uri=http://www.disit.org/km4city/schema#Entry&sparql=http://192.168.0.206:8890/sparql


SPARQL Query: Explore Class Metadata
SELECT ?subject ?property ?object WHERE {{ 

<http://www.disit.org/km4city/schema#Entry> ?property ?object } UNION { 

?subject ?property <http://www.disit.org/km4city/schema#Entry> } }



Entry Resource: Km4City KB vs OSM

Km4City KB

• select distinct * { 

<http://www.disit.org/km4city/reso

urce/OS04207232783NN> 

km4c:hasExternalAccess ?entry . 

?entry ?p ?v

}

Open Street Map



Km4City Ontology: 
Street Graph (v1.6.5)

• Lanes

• LanesCount

• Lane

• Restriction

• AccessRestrictions

• TurnRestrictions

• MaxMinRestrictions

• A Lane can have a Bag of Restriction

• A Lanes res. Can have a Seq of Lane 



Km4City Ontology: Lanes



World is not perfect: 
Where are Lanes?
• The WLODE needs to be improved for this

aspect, since it appears not to be able to 
render properly domains and ranges that
result from union/intersection

• The km4c:where object property can be 
found in resources of type Lane, but it
also can be found on resources of type
Lanes, …

• World is not perfect: the where property 
has a different semantic in resources of 
type Lane (where it has to be interpreted
as «it is a part of»)  with respect to 
resources of type Lanes, and Restriction



SPARQL Query: Lanes

select * { ?ls a km4c:Lanes; ?lsp ?lsv } order by ?ls ?lsp



Km4City Ontology: LanesCount



SPARQL Query: LanesCount (the simple case)
select * { <http://www.disit.org/km4city/resource/OS00000031192LR> km4c:lanes ?v }

select * { <http://www.disit.org/km4city/resource/OS00000031192LR/lanes/alldirections> ?p ?v }

select * { <http://www.disit.org/km4city/resource/OS00000031192LR/lanes/alldirections/count> 

?p ?v  }



SPARQL Query: LanesCount (the “complex” case)
select * { <http://www.disit.org/km4city/resource/OS00007997331SR> km4c:lanes ?v }

select * { <http://www.disit.org/km4city/resource/OS00007997331SR/lanes/forward> ?p ?v }

select * { <http://www.disit.org/km4city/resource/OS00007997331SR/lanes/forward/count> ?p ?v }



Lanes Count: Km4City KB vs OSM

Km4City KB

• select ?lanescount ?v { 

<http://www.disit.org/km4city/resour

ce/OS00016953077SR> a km4c:Road; 

km4c:lanes ?lanes .  

?lanes km4c:lanesCount ?lanescount . 

?lanescount km4c:undesignated ?v } 

Open Street Map



Km4City Ontology: Lane



SPARQL Query: Details about a given lane
select * {   <http://www.disit.org/km4city/resource/OS00036055473RE/0> ?p ?v }

select * { 

<http://www.disit.org/km4city/resource/OS00036055473RE/0/lanes/backward> ?p ?v 

}

select * { 

<http://www.disit.org/km4city/resource/OS00036055473RE/0/lanes/backward/details> ?p ?v 

}

select * {  

<http://www.disit.org/km4city/resource/OS00036055473RE/0/lanes/backward/2> ?p ?v 

} 



Details about lanes: Km4City KB vs OSM
Km4City KB
• select * { 

<http://www.disit.org/km4city/resource/O

S00036055473RE/0> km4c:lanes ?lanes }

• select ?p ?v { 

<http://www.disit.org/km4city/resource/O

S00036055473RE/0/lanes/backward> 

km4c:lanesDetails ?list . ?list ?p ?v }

• select * { 

<http://www.disit.org/km4city/resource/O

S00036055473RE/0/lanes/backward/2> ?p ?v 

}

Open Street Map



Km4City Ontology: Restriction



SPARQL Query: Discover restrictions on a road

select * { 

?r a km4c:Restriction; 

km4c:where <http://www.disit.org/km4city/resource/OS00023116033SR> 

}



Km4City Ontology: AccessRestriction



SPARQL Query: Access restriction (get details)
select * { 

<http://www.disit.org/km4city/resource/OS00023116033SR/restriction/access/hgv/alldirections/unconditioned> ?p ?v 

}



Open Street Map: Access Restriction



Km4City Ontology: TurnRestriction



SPARQL Query: Turn restriction (get details)
select * { <http://www.disit.org/km4city/resource/OS00004059369RE/4/restriction/turn/OS00004059328RE/0> ?p ?v }



Open Street Map: Turn Restriction



Km4City Ontology: MaxMinRestriction



SPARQL Query: Size/Weight/… restriction (details)
select * { 

<http://www.disit.org/km4city/resource/OS00004788596SR/restriction/maxmin/maxspeed/alldirections/unconditioned> ?p ?v 

}



Open Street Map: Speed limit



Km4City Ontology: 
Points Of Interest

• Service

• RegularService
• WineAndFood

• Path

• HealthCare

• GovernmentOffice

• Entertainment

• Accommodation

• ...

• TransverseService



Km4City Ontology: 
Points of Interest
• Accomodation:

• Holiday_village

• Hotel

• Summer_residence

• Rest_home

• Hostel

• Farm_house

• Beach_resort

• Agritourism

• Vacation_resort

• Day_care_centre

• Camping

• Boarding_house

• Mountain_shelter

• Religiuos_guest_house

• Bed_and_breakfast

• Historic_residence

• Summer_camp

• Other_Accommodation

• ...

Category Subcategories

Accommodation 18

FinancialService 10

Environment 12

MiningAndQuarrying 5

Advertising 2

Wholesale 10

CivilAndEdilEngineering 9

UtilitiesAndSupply 30

AgricultureAndLivestock 7

IndustryAndManufacturing 54

EducationAndResearch 33

Entertainment 27

Emergency 14

TourismService 15

HealthCare 25

WineAndFood 21

CulturalActivity 26

ShoppingAndService 140

GovernmentOffice 15

TransferServiceAndRenting 39



Km4City Ontology:
Public Transport
• Lot

• PublicTransportLine

• Route

• RouteSection

• RouteLink

• RouteJunction

• Ride

• BusStop

• AVMRecord

• BusStopForecast

• Geometry



Km4City Ontology: 
Railways
• RailwayLine

• RailwaySection

• RailwayElement

• RailwayJunction

• TrainStation

• GoodsYard

Km4City Ontology:
Car Parks
• TransferServiceAndRenting

• CarParkSensor

• SituationRecord



Km4City Ontology:
Weather Forecasts
• Municipality

• WeatherReport

• WeatherPrediction

Km4City Ontology:
Traffic Sensors
• SensorSiteTable

• SensorSite

• Road

• TrafficObservation

• TrafficSpeed

• TrafficFlow

• TrafficHeadway

• TrafficConcentration



Km4City Ontology:
Temporal domain 
(When Time Matters)

• It is the section of the 
Km4City Ontology where 
the most of the modelling 
of the real-time 
events/statuses can be 
found:
• Weather

• Parkings

• Public Transport

• Beacons



Km4City Ontology: 
Internet of Things

• IoTDevice
• IoTSensor

• IoTActuator

• DeviceAttribute

• IoTBroker
• MQTTBroker

• NGSIBroker

• AMQPBroker

• STOMPBroker



Km4City Ontology: 
Contexts (Graphs)
• Triples in the Knowledge Base are 

partitioned in graphs.

• Graphs are something like folders in file 
systems.

• Each graph is identified through a URI.

• Such URI can be the subject of a triple.

Therefore:

• It makes sense to model predicates that
describe graphs.

• The Km4City Ontology includes a set of 
predicates, each having its own semantic, 
that are aimed at describing graphs. 

Context

automaticity

accessType

dct:description

dct:right

processType

dct:format

dct:created

dct:source
period

overTime

param

lastUpdate

lastTriples



Ingesting the Open Street Map: outline

We are going to:

• Introduce some useful tools

• Learn how to setup the environment

• Learn how to keep our local copy of the Open Street Map up-to-date

• Outline the RDB data preparing for triplification

• See how PostGIS helps us preparing RDB data for triplification

• Learn how to configure the triplification through a Sparqlify Mapping 
Language (SML) script

• See how to exploit the Sparqlify for triplifying RDB data



Tools

• …
• PostgreSQL

• https://www.postgresql.org/

• PostGIS
• PostGIS is a spatial database extender for PostgreSQL object-relational database. It 

adds support for geographic objects allowing location queries to be run in SQL. 
(https://postgis.net/)

• Osmosis
• “Osmosis is a command line Java application for processing OSM data.” 

(https://wiki.openstreetmap.org/wiki/Osmosis)

• Sparqlify
• “Sparql -> SQL Rewriter enabling virtual RDB -> RDF mappings” 

(https://github.com/SmartDataAnalytics/Sparqlify)

https://www.postgresql.org/
https://postgis.net/
https://wiki.openstreetmap.org/wiki/Osmosis
https://github.com/SmartDataAnalytics/Sparqlify


Ingesting the Open Street Map: Setup (1)

1. sudo apt install postgresql-9.4-postgis-2.1

openjdk-7-jre-headless

2. sudo apt install osmosis

3. sudo -u postgres createuser -s your_username

4. createdb pgsimple

5. psql -d pgsimple 'CREATE EXTENSION postgis;'

6. psql -d pgsimple -f 

osmosis_dir/script/pgsimple_schema_0.6.sql

(https://wiki.openstreetmap.org/wiki/Osmosis/PostGIS_Setup) 

https://wiki.openstreetmap.org/wiki/Osmosis/PostGIS_Setup


Ingesting the Open Street Map: Setup (2)

•pgsimple_schema
• nodes 

• node_tags

• ways
• way_nodes

• way_tags

• relations
• relation_members

• Relation_tags



Ingesting the Open Street Map: Populate RDB

• Get the extract of your interest from a repository of your choice. At 
DISIT, we rely on Geofabrick (http://download.geofabrik.de/). 

• osmosis 
--read-pbf extract.osm.pbf

--write-pgsql database=pgsimple

user=your_username

password=your_password

http://download.geofabrik.de/


Ingesting the Open Street Map: Update 

• osmosis 
--read-xml-change file=“update.osc" 
--write-pgsimp-change database="pgsimple“ 

https://wiki.openstreetmap.org/wiki/OsmChange

https://wiki.openstreetmap.org/wiki/OsmChange


Preparing Triplification: Outline (1)

• Once you have the Open Street Map loaded on your local RDB, you
have to create and populate one or more additional RDB tables
whose fields (ideally) are: subject, property, value

• This way, RDB queries that you have to execute at the triplification
step are the simplest possible
• Keeping RDB queries the simplest possible in the Sparqlify configuration

document is a must, since Sparqlify attempts to optmize SQL queries, and it
leads to unreasonably long computation times for non-trivial SQL queries

• Functions that are made available by the PostGIS extension have a 
key role for the effectiveness, and efficiency, of RDB preparing



Preparing Triplification: Outline (2)

• Queries that you perform for preparing the triplification, are expected
to reflect a mapping of OSM model to the Km4City Ontology (or your
own destination data model), that you have defined in first

• When defining the mapping, you have to reply, as an example, to 
questions such as: 
• How are roads represented in the Open Street Map once I have loaded it to a 

pg_simple RDB schema?

• How are roads represented in the Km4City data model?

• So, where do I have to put what?



Preparing Triplification: PostGIS (1)

• CREATE INDEX index ON table USING GIST ( field ); 
(https://postgis.net/docs/manual-1.3/ch03.html#id434676) 

• ST_AddPoint - Adds a point to a LineString
(https://postgis.net/docs/ST_AddPoint.html)

• ST_AsText - Returns the Well-Known Text representation of the 
geometry/geography (https://postgis.net/docs/ST_AsText.html) 

• ST_Centroid - Computes the geometric center of a geometry 
(https://postgis.net/docs/ST_Centroid.html)

• ST_Collect - Output type can be a MULTI* or a 
GEOMETRYCOLLECTION (https://postgis.net/docs/ST_Collect.html)

https://postgis.net/docs/manual-1.3/ch03.html#id434676
https://postgis.net/docs/ST_AddPoint.html
https://postgis.net/docs/ST_AsText.html
https://postgis.net/docs/ST_Centroid.html
https://postgis.net/docs/ST_Collect.html


Preparing Triplification: PostGIS (2)

• ST_ConvexHull - The convex hull of a geometry represents the 
minimum convex geometry that encloses all geometries within the 
set (https://postgis.net/docs/ST_ConvexHull.html) 

• ST_Covers(Geo_A, Geo_B) - Returns 1 (TRUE) if no point in 
Geometry/Geography B is outside Geometry/Geography A. 
(https://postgis.net/docs/ST_Covers.html)

• ST_Distance – Compute the distance between geometries or 
geographies. (https://postgis.net/docs/ST_Distance.html)

• ST_Envelope - Returns the minimum bounding box for the supplied 
geometry. (https://postgis.net/docs/ST_Envelope.html)

https://postgis.net/docs/ST_ConvexHull.html
https://postgis.net/docs/ST_Covers.html
https://postgis.net/docs/ST_Distance.html
https://postgis.net/docs/ST_Envelope.html


Preparing Triplification: PostGIS (3)

• ST_GeomFromText - Constructs a geometry object from a OGC WKT 
string. (https://postgis.net/docs/ST_GeomFromText.html)

• ST_LineMerge - Returns a (set of) LineString(s) formed by sewing 
together the constituent line work of a MULTILINESTRING. 
(https://postgis.net/docs/ST_LineMerge.html)

• ST_MakeLine – It makes a line from a set of points (different formats 
allowed). (https://postgis.net/docs/ST_MakeLine.html)

• ST_MakePolygon - Creates a Polygon formed by the given shell. 
(https://postgis.net/docs/ST_MakePolygon.html)

https://postgis.net/docs/ST_GeomFromText.html
https://postgis.net/docs/ST_LineMerge.html
https://postgis.net/docs/ST_MakeLine.html
https://postgis.net/docs/ST_MakePolygon.html


Preparing Triplification: PostGIS (4)

• ST_PointN - Return the Nth point in a single linestring or circular 
linestring in the geometry. (https://postgis.net/docs/ST_PointN.html)

• ST_X - Return the X coordinate (longitude) of the point, or NULL if not 
available. (https://postgis.net/docs/ST_X.html)

• ST_Y - Return the Y coordinate (latitude) of the point, or NULL if not 
available. (https://postgis.net/docs/ST_Y.html) 

https://postgis.net/docs/ST_PointN.html
https://postgis.net/docs/ST_X.html
https://postgis.net/docs/ST_Y.html


Triplifying: Sparqlify Mapping Language (1)
select * from Milestone

?graph_uri = uri(?graph_uri)

?ml = uri(concat("http://www.disit.org/km4city/resource/", ?ml_id))

?identifier = plainLiteral(?ml_id)

?distance = plainLiteral(?distance)

?long = typedLiteral(?long, "http://www.w3.org/2001/XMLSchema#float")

?lat = typedLiteral(?lat, "http://www.w3.org/2001/XMLSchema#float")

?re = uri(concat("http://www.disit.org/km4city/resource/", ?re_id))

Graph ?graph_uri {

?ml a km4c:Milestone .

?ml dct:identifier ?identifier .

?ml km4c:text ?distance.

?ml geo:long ?long .

?ml geo:lat ?lat .

?ml km4c:isInElement ?re

}}



Triplifying: Sparqlify Mapping Language (2)

./sparqlify.sh 

-m mapping.sml

-h rdb_host

-d pgsimple

-U pgsimple_user

-W pgsimple_pwd

-o ntriples

--dump

mapping.sml



Real-Time Traffic Estimation 
of Unmonitored Roads
Pierfrancesco Bellini, Stefano Bilotta, Paolo Nesi, Michela Paolucci, Mirco Soderi

DISIT Lab, Department of Information Engineering

University of Florence, Florence, Italy

DataCom 2018
The Fourth IEEE International 
Conference on Big Data 
Intelligence and Computing

1/23



Overview

We aim to improve the urban mobility through a general and self-
adaptive model for a low-cost traffic reconstruction at real-time in
every position of the city.

We propose to use a fluid-dynamic traffic model on road 
networks getting the road infrastructure and traffic 
restrictions from the Open Street Map and the traffic 
sensors specifications and detections from the publicly 
available Open Data.

2/23



Table of contents

• Features: What we have achieved/we aim to achieve

• Context: Km4City – A Knowledge Model for Smart Cities

• Data sources: Open Street Map, Traffic sensors and detections

• Modeling: A fluid-dynamic traffic model on road networks

• Weights: Initialization and Time-Based Stochastic Learning

• Validation: Method and Results of the Accuracy Assessment

• Displaying: How the results are made available to users

• Future Developments: Improvements & new threads of research

3/23



Features
4/23

Low-cost
It uses stationary 
sensors that were 
already deployed in 
the city. 

Unobtrusive
It does not require 
users to take any 
action (install app, 
submit data…). 

Visual
Traffic flows are 
displayed on a street 
map through colored 
lines.

Open
Methods and 
software are made 
available under an 
open license.

Real-Time
The reconstruction is 
updated after every 
new traffic sensor 
detection.  

General
No simplistic 
assumption is made 
about the street 
graph.

Dense
The reconstruction is 
made at every 
location in the area 
of interest.

Verified
The accuracy of the 
reconstruction has 
been rigorously 
verified.



Km4City – A 
Knowledge Model for 
Smart Cities

An Open Urban Platform for a Sentient 
Smart City, aimed at:
• Implementing the city vision;
• Monitoring the city evolution;
• Providing new services for improving the 

quality of life of the citizens;
• Supporting the economic grow of the 

city;
• Promoting virtuous behaviours.
Briefly, we aim to support cities that 
produce with happy and proud citizens
and with crowds of enthusiastic tourists
and investors.

5/23



The Open Street Map
• OpenStreetMap powers map data on thousands of web 

sites, mobile apps, and HW devices.

• It is built by a community of mappers that contribute 
and maintain data about roads, trails, cafés, railway 
stations, and much more, all over the world.

• It provides open data: you are free to use it for any 
purpose as long as you credit OpenStreetMap and its 
contributors. 

• OSM data is stored in a RDB, and then transformed
and stored in a triplestore, based on a mapping of the 
OSM data model to the Km4City Ontology street graph
modelling. 

6/23



Sensors and detections

• Traffic Sensors static information (identifier, geolocation, street 
address, technical specifications…) and the traffic flow detections 
(sensor, timestamp, detected traffic flow, estimated speed…) all come 
from publicly available Open Data.

• They are managed through ETL processes, and stored in a No-SQL 
database.

• The traffic reconstruction model implementation accesses those data 
through dedicated APIs. Traffic flows are read every 10 minutes, the 
refresh frequency of the traffic sensors.

7/23



Mathematical Model: A Fluid Dynamics Model

Roads are modelled as if they were water pipelines.
Crossroads are modelled as if they were pipeline junctions.
The flow of the vehicles is modelled as if it was a water flow.
The law of conservation of the vehicles applies:

where 𝜌 𝑡, 𝑥 is the vehicular density, 𝑓(𝜌(𝑡, 𝑥)) = 𝜌(𝑡, 𝑥)𝑣(𝑡, 𝑥) is
the vehicular flux, and 𝑣(𝑡, 𝑥) is the local speed of the vehicles.
Bibliography:

• M. J. Lightlill and G. B. Whitham, “On kinematic waves. II. A theory of traffic flow on long crowded roads”. In 
Proceedings of the Royal Society A 229, 317 – 345, 1955.

• P. I. Richards, “Shock waves on the highway”. Operation Research 4, 42 – 51, 1956.

8/23

𝜕𝜌 𝑡, 𝑥

𝜕𝑡
+
𝜕𝑓 𝜌 𝑡, 𝑥

𝜕𝑥
= 0



Discretization
The following discretization and simplification of the model is operated:

• Each road is partitioned in segments Δx long.

• The time is partitioned in intervals Δt long.

• Consecutive road segments that belong to the same road and do not start or end to a  
crossroad are joint for an improved efficiency without loss of accuracy.

Denote (ℎ,𝑚) a bounded time-space region (cell) of duration ℎ and length 𝑚. Let 𝑢𝑚
ℎ =

𝑢 𝑡ℎ, 𝑥𝑚 = 𝑢(h𝛥𝑡,𝑚𝛥𝑥) be a continuous function defined on (ℎ,𝑚). Denote F the numerical 
flux. Then, the vehicular density results from: 

𝑢𝑚
ℎ+1 = 𝑢𝑚

ℎ −
𝛥𝑡

𝛥𝑥
𝐹 𝑢𝑚

ℎ , 𝑢𝑚+1
ℎ − 𝐹 𝑢𝑚−1

ℎ , 𝑢𝑚
ℎ

Bibliography:

• S. K. Godunov, “A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics”. Mathematics 
Sbornik 47, 271 – 290, 1959. 

• G. Bretti, R. Natalini, and B. Piccoli, “A fluid-dynamic traffic model on road networks”. Archives of Computational Methods in Engineering 
14, 139 – 172, 2007 

9/23



Traffic Reconstruction: Application of the 
Mathematical Model

• For each time slot t, each traffic sensor detection is interpreted as a 
source of traffic that leads into the segments of road that origin from 
the node where the sensor is located that has produced the data.

• The distribution of the traffic at crossroads is governed by a Traffic 
Distribution Matrix whose coefficients are based on the weights of 
the segments of roads that make the crossroad.

10/23



Application of the Mathematical Model
11/23

The fork of via Mafalda di Savoia (East), in via Mafalda di Savoia (South), 
Viale Giovanni Milton (West) and Via del Ponte Rosso (North), in Florence.



Application of the 
Mathematical Model

Road Type: primary

Lanes: 2

Designated Lanes: 0

Restrictions: none

Learning Factor: 61

Elem. Type: T.O.C.

Length: 63

Direction: positive

…

Weight: 31.122%

12/23

Road Type: primary

Lanes: 2

Designated Lanes: 0

Restrictions: none

Learning Factor: 61

Elem. Type: T.O.C.

Length: 63

Direction: positive

…

Weight: 31.122%



Application of the 
Mathematical Model
Road Type: tertiary

Lanes: 1

Designated Lanes: 0

Restrictions: none

Learning Factor: 24

Elem. Type: T.O.C.

Length: 51

Direction: positive

…

Weight: 12.245%

13/23

Road Type: tertiary

Lanes: 1

Designated Lanes: 0

Restrictions: none

Learning Factor: 24

Elem. Type: T.O.C.

Length: 51

Direction: positive

…

Weight: 12.245%



Application of the 
Mathematical Model
Road Type: primary

Lanes: 2

Designated Lanes: 0

Restrictions: none

Learning Factor: 111

Elem. Type: T.O.C.

Length: 60

Direction: positive

…

Weight: 56.633%

14/23

Road Type: primary

Lanes: 2

Designated Lanes: 0

Restrictions: none

Learning Factor: 111

Elem. Type: T.O.C.

Length: 60

Direction: positive

…

Weight: 56.633%



Weights Initialization

Weights are initialized based on the following:

• Road type: motorway, trunk, primary, secondary, tertiary, 
unclassified, residential, service;

• Lanes: how many lanes are drawn on the asphalt, also considering 
possible restrictions (e.g. lanes reserved to public transport);

• Traffic restrictions: examples are mandatory/forbidden directions at 
crossroads, speed limits, limited traffic zones.

15/23



Stochastic Learning

It has been observed that:

• The way how vehicles distribute at crossroads varies depending of the 
day of the week, and of the time of the day;

• A random variation of some weights is very likely to lead to an 
improved accuracy;

• If no improvements are achieved after n attempts, it is reasonable to 
move anyway to the best of the last n configs.

An offline process is run, based on the above, that leads to time-
based weight adjustments, aimed at an improved accuracy.

16/23



Stochastic Learning
17/23

In the x axis, the number of the learning iterations. In the y axis, the (decreasing) 
system error. 



Validation & Results

• Let the error at a sensor at a given time t be the percentage error 
computed removing a given sensor from the inputs and comparing 
the traffic flow reconstructed at the sensor with the traffic flow 
detected by the sensor, at the given time.

• Let the system error over a time period T be the average of the 
system errors computed over all the traffic sensors and all the times t
∈ T.

The system error has been computed to be the 30% about.

18/23



Validation & Results
19/23

The diagram refers to one in particular of the sensors, and it displays the 
predicted vs actual values over the time in the 72 hrs validation.



Displaying of results

• Segments of road are categorized based on the road type and the number 
of lanes. 

• Segments of each category that have one at least of the extremities that 
coincide with a traffic sensor, are used for determining the range of the 
traffic flows that can be observed on the specific category of segments.

• For each segment category, the range is partitioned into four subranges, 
that correspond to the four colors that you can find on the map.

• The reconstruction is presented to users through colored lines traced over 
the road paths on the city map.

• The date and time when the most up-to-date values from the sensors have 
been acquired can also be seen at the top-right corner of the map.

20/23



Displaying of results
21/23

A screenshot from the live app at http://firenzetraffic.km4city.org
Note that a separate line is drawn for each of the traffic directions. 



Future Developments

• Enrichment of the model with the Points Of Interest (POI)

• Improvement of the efficiency of the reconstruction

• Online Time-Based Stochastic Learning

• Efficient zooming

• Multi-modal traffic reconstruction

• Integration in the Km4City Service Map

• Comparison with other emerging approaches

• Your very appreciated suggestions ☺

22/23



DATAMETER



We are going to…

• Introduce the purpose of this research activity

• Discuss the metrics that are computed at the endpoint level

• Discuss the (endpoint) metrics that are derived from the former, and 
that are useful for the automatic characterization of triplestores

• Discuss the High-Level metrics, i.e. those metrics that relate to the 
whole set of the monitored endpoints

• See how values computed for the endpoint-level metrics can be 
exploited for performing an automatic characterization of triplestores

• Present (partial) results



Purpose

• For each of the monitored triplestores, and for the universe of the 
Linked Open Data:
• Quantifying :

• Quality

• Cost

Through the measuring of:
• Cohesion

• Connection

• Describing (contents, structure, …)

• Characterizing (structurally)

• Monitoring (and analyzing) the evolution of the above over the time



Endpoint Directories

• Web Services exist that provide listings of SPARQL endpoints and 
triplestores, together with some metadata

• We exploit three of those, to retrieve the list of the SPARQL endpoints 
to be monitored:
• https://old.datahub.io

• http://data.gov.uk

• http://linkeddatacatalog.dws.informatik.uni-mannheim.de

https://old.datahub.io/
http://data.gov.uk/
http://linkeddatacatalog.dws.informatik.uni-mannheim.de/


Alive Endpoint Metric

• Aimed at verifying:

• the possibility of opening a connection to the database server instance

• the ability of the server to provide a valid response to the SPARQL query 
below here in 10 seconds at most:

SELECT * { ?s ?p ?o } LIMIT 1



Triples Count Metric 

• SELECT COUNT(*) { ?s ?p ?o }

https://www.disit.org/datameter/resource/measurement?id=15106

https://www.disit.org/datameter/resource/measurement?id=15106


Class Count Metric 

• SELECT COUNT(DISTINCT ?o) { ?s a ?o }

https://www.disit.org/datameter/resource/measurement?id=15116

https://www.disit.org/datameter/resource/measurement?id=15116


Instance Count Metric 

• SELECT COUNT(DISTINCT ?s) { ?s a ?o }

http://www.disit.org/datameter/resource/measurement?id=15129

http://www.disit.org/datameter/resource/measurement?id=15129


Same As Metric 

• SELECT count(*) { ?s owl:sameAs ?o }

http://www.disit.org/datameter/resource/measurement?id=15134

http://www.disit.org/datameter/resource/measurement?id=15134


Subclass Count Metric 

• SELECT count(*) { ?c rdfs:subClassOf ?sc }

http://www.disit.org/datameter/resource/measurement?id=15140

http://www.disit.org/datameter/resource/measurement?id=15140


Language Metric 
• When you insert a triple having 

a string literal as filler, you can
explicitly indicate the language 
in which the literal is written, 
through a query such as:

INSERT DATA { 
<http://foo.com#s> 
rdfs:label "str"@en }

• The lang function is native in 
the SPARQL language, and it 
allows to get the language of a 
literal variable, if available.

http://www.disit.org/datameter/resource/measurement?id=15607

http://www.disit.org/datameter/resource/measurement?id=15607


Middle-Level Metrics 

• Subclass Ratio Metric
• The share of the classes that are specializations of some other class(es)
• Subclass Count Metric / Class Count Metric

• Localized Triples Ratio
• The share of the literals that bear a language indication
• Based on: Language Metric, Triples Count Metric 

• Triples Per Resource
• The average size of a resource (the avg # of triples per subject)
• Triples Count Metric / Instance Count Metric 

• Languages Count Metric
• The count of the different languages that appear in the triplestore
• Based on: Language Metric



Alive Endpoints

https://www.disit.org/datameter/resource/measurement?id=16758

The metric provides the 
total number of the 
endpoints that can be 
reached and that provide a 
valid response to SPARQL 
queries among those that 
can be found listed in the 
directories that we access 
for our investigation. 

https://www.disit.org/datameter/resource/measurement?id=16758


Alive Endpoints Ratio

https://www.disit.org/datameter/resource/measurement?id=16759

The metric measures how 
many are reachable and 
able to provide a valid 
response to SPARQL 
queries among the 
endpoints that can be 
found listed in the 
triplestore directories. 

https://www.disit.org/datameter/resource/measurement?id=16759


Global Instance Count Metric

https://www.disit.org/datameter/resource/measurement?id=16765
The metric provides the 
total number of the 
resources that can be 
found inspecting all the 
monitored (and alive) 
endpoints. 

https://www.disit.org/datameter/resource/measurement?id=16765


Average Instance Count Metric

https://www.disit.org/datameter/resource/measurement?id=17371

The metric provides the 
average number of the 
resources that can be 
found in a triplestore, 
computed inspecting all 
the monitored (and alive) 
endpoints. 

https://www.disit.org/datameter/resource/measurement?id=17371


Class Ranking

https://www.disit.org/datameter/resource/measurement?id=16778

https://www.disit.org/datameter/resource/measurement?id=16778


Class Ratio

https://www.disit.org/datameter/resource/measurement?id=16779

https://www.disit.org/datameter/resource/measurement?id=16779


Vocabulary Ranking

https://www.disit.org/datameter/resource/measurement?id=11853

https://www.disit.org/datameter/resource/measurement?id=11853


Vocabulary Ratio

https://www.disit.org/datameter/resource/measurement?id=11854

https://www.disit.org/datameter/resource/measurement?id=11854


Vocabulary Terms Ranking

https://www.disit.org/datameter/resource/measurement?id=11855

https://www.disit.org/datameter/resource/measurement?id=11855


Vocabulary Terms Ratio

https://www.disit.org/datameter/resource/measurement?id=11856

https://www.disit.org/datameter/resource/measurement?id=11856


Triplestores Characterization

• Principal Component Analysis (PCA) is a statistical analysis that allows 
to identify a minimal set of metrics that are the most suitable for 
characterizing a triplestore.

• Learn more (and get it explained the formal way) here:
• Jolliffe, I. (2011). Principal component analysis. In International encyclopedia 

of statistical science (pp. 1094-1096). Springer, Berlin, Heidelberg.

• PCA is a preliminary step for clustering.

• Inspecting the clusters, one can assign each cluster a 

(structural/semantic?) label → Triplestore characterization



Clusters

• thesaurus: controlled and structured 
vocabulary in which concepts are 
represented by terms, organized so 
that relationships between concepts 
are made explicit, and preferred terms 
are accompanied by lead-in entries for 
synonyms or quasi-synonyms

• list: a limited set of terms arranged as 
a simple alphabetical list or in some 
other logically evident way; containing 
no relationships of any kind

• gazetteer: geospatial dictionary of 
named and typed places

• semantic network : set of terms 
representing concepts, modeled as 
the nodes in a network of variable 
relationship types

• classification scheme : schedule of 
concepts and pre-coordinated 
combinations of concepts, arranged 
by classification

• See also:
• KOS Types Vocabulary 

https://github.com/dcmi/repository/b
lob/master/wikis_pre2016/nkos/medi
awiki/NKOS_Vocabularies.md

https://github.com/dcmi/repository/blob/master/wikis_pre2016/nkos/mediawiki/NKOS_Vocabularies.md


Contacts

Mirco Soderi

DISIT-DINFO
Distributed Systems and Internet Technology Lab
Department of Information Engineering
University of Florence
Via S. Marta 3
50139 Florence
Italy

Mail: mirco.soderi@unifi.it
Tel: +39-327-7350418
Skype: msoderi
Room: 465/466


