
Security & Knowledge Management – a.a. 2019/20

1

 Information security has relied upon the
following pillars:

 Confidentiality – only allow access to data for
which the user is permitted

 Integrity – ensure data is not tampered or altered
by unauthorized users

 Availability – ensure systems and data are
available to authorized users when they need it

https://www.owasp.org/index.php?title=Category:Confidentiality&action=edit&redlink=1
https://www.owasp.org/index.php?title=Category:Integrity&action=edit&redlink=1
https://www.owasp.org/index.php?title=Category:Availability&action=edit&redlink=1

Security & Knowledge Management – a.a. 2019/20

2

 Information systems are subject to
"security vulnerabilities"

 A vulnerability allows to break one of the
pillars.

 Generally a vulnerability is a bug or a
misconfiguration that could be used by a
malicious user (hacker) to break the system

 a security attack is the action performed by a
hacker to exploit a vulnerability

 most security attack are performed using:

 direct network protocols (e.g. ssh, http)

 emails

 usb memory sticks

 In many cases the "human" plays a major role
in the activation of a security problem (e.g.

opening an email attachment)

Security & Knowledge Management – a.a. 2019/20

3

 What to attack?

OS

Application Application

Network

User

Application Application

Application Application

 Many ways are available to compromise a
system

 via network

▪ Buffer Overflow

▪ Sniffing traffic

▪ Man in the middle

▪ ...

 via malware installation

Security & Knowledge Management – a.a. 2019/20

4

 aka Buffer Overrun
 a parameter has a larger size than the size of

the destination buffer
 if the buffer is stored on the stack, part of the

stack can be overwritten with arbitrary data
 it can lead to a segmentation fault or to the

execution of malicious code
 it can happen only with low level languages

as C or C++

 example:

void f(char* b) {

 char buffer[12];

 strcpy(buffer, b);

}

...

f("012345678901xxxxyyyy");

addr Word (4 byte)

buffer[0..3]

buffer[4..7]

buffer[8..11]

FP

IP

Security & Knowledge Management – a.a. 2019/20

5

 Is it possible to inject assembler code to
perform arbitrary actions, for example make
a system call to execute /bin/sh

 The code is executed at the same security
level as the running process

 For this reason it is better to run a server
process at the lowest possible security level
(depending on the needs of the process)

 Buffer overflows can be avoided using high
level languages (Java, go, python, php, ...) or
properly checking the access within array
bounds.

 gcc makes a check of the stack integrity
before returning from a function

 Buffer Overflow may affect also heap based
buffers, in this case the function pointers if
overwritten can lead to seg. fault or
execution of arbitrary code.

Security & Knowledge Management – a.a. 2019/20

6

 The attacker sniffs the packets travelling over
the network, particularly for wifi connections

 In this way any unprotected connection can
be analyzed and any personal information
can be acquired (passwords, credit cards
numbers, ...)

 An intermediary intercepts and modify the
communication between two party

 at network level
 the "Man" is on the local network or outside

 e.g. DNS hijacking, the attacker changes the default DNS
server with a DNS under control of the attacker, in this
way every request can be controlled and possibly changed
to another IP where a fake version of the same site is
running and can acquire personal information

 at system level
 the "Man" is a process running on the same computer (e.g.

a malware)

Security & Knowledge Management – a.a. 2019/20

7

 Using https (TLS/SSL) with trusted
certificates guarantee the identity of the
server and client

 However a compromized web browser can
still have access to any personal information

 Malicious software
 Virus – a program that copies itself on other programs
 Trojan – a "good" program that hides the installation of a

malicious program
 Worm – a program that transmit itself over the network
 Rootkit – used to hide the presence of a malware on a system
 Spyware – programs used to find personal information on the

computer
 Backdoor – a program allowing remote access to the computer
 Keylogger – listen for the key pressed to identify passwords or

credit card numbers
 Ransomware – encrypts files on the computer and asks for a

ransom
 ...

Security & Knowledge Management – a.a. 2019/20

8

 We will focus on the development of web
applications without security vulnerabilities
that can be used to:

 access to unauthorized information or

 get complete access to a system.

 a web server or application server responds to
web requests performed by external users
using the HTTP/HTTPS protocol

WebServer

Web Browser

javascript
executor

http/https

Security & Knowledge Management – a.a. 2019/20

9

 One of the easiest way to compromise a web
application is the DenyOfService (DoS)
attack, flood the server with requests in order
to not allow legitimate requests

 Breaks the Availability pillar

 If all attack traffic is from a single source it
can be easily blocked, if requests are coming
from many different machines it is more
difficult to identify that an attack is running

 The attacker gets "access" to thousands of
machines and coordinate the attack to a
server

Security & Knowledge Management – a.a. 2019/20

10

 a network of compromized computers (e.g.
via trojans) that can be used for DDoS or
spam sending

 all controlled by a botmaster
 can have size of millions of computers

 Another possibility is to make POST requests
that provide a very big payload very slowly
thus keeping active the socket connection for
a long time, in this way the server can quickly
exaust the available sockets and block the
access to the system.

Security & Knowledge Management – a.a. 2019/20

11

 SQL injection
 Session hijack
 javascript injection

 Based on a vulnerability of SQL query code
 Example PHP
$user = $_GET['user'];
$pwd = $_GET['pwd'];
$query= "SELECT * FROM users WHERE user='$user' AND passw='$pwd' "

 if the request is

http://.../login.php?user=me&pwd=x'OR'1

 the query becomes:
SELECT * FROM users WHERE user='me' AND passw='x'OR'1'

that selects all users

http://.../login.php?user=me&pwd=me'OR'1

Security & Knowledge Management – a.a. 2019/20

12

 is very dangerous
 in 2002 a hacker found that Guess.com was vulnerable

to SQL injection attack, allowing to get 200 000 credit
cards numbers.

 How to avoid?
 use escaping functions that escape special characters

as ' or " or use prepared statements that replace
placeholders with parameters value

 example:
$user=mysql_real_escape($_GET['user']);

$pwd=mysql_real_escape($_GET['passw']);

 never, Never, NEVER! store plain password on a
database, store the HASH (MD5, SHA1) of the
password

 if an hacker is able to access to the users table
he will not have access to the plain password...
that is typically used in many other sites...

 send the password in a POST request and never
in a GET request (and send it on an https
connection)

 GET requests may be logged in web server log
files where the password will be visible...

Security & Knowledge Management – a.a. 2019/20

13

 A web request is stateless
 cookies are used to store on the client a

session identificator that is resent in the
following requests

 This identifier is used to identify the session
information of the specific user (stored on a
file or DB)

 Session is normally used when login is
performed to store the user information and
is used to perform all the following requests
that normally fail if the user is not logged in.

 The session is kept until user logout or the
session expires after a predefined period.

Security & Knowledge Management – a.a. 2019/20

14

Login request (user=jdoe, password=secret)
reply with cookie SESSID=abd564s5

Cookie SESSID=abd564s5 is stored on the web browser

request transaction list (SESSID=abd564s5)

check if the session refers to a logged user and
 sends the transaction list

Client Server

 If a maliciuos user is able to find the session id
he will be able to perform any request the
user is able to do...

 How?
 Sniffing the network he will be able to find any

session running on an unprotected network

 using javascript injection (see after)

 or using brute force attack to find a valid session
identifier (can be feasible if the id length is
limited)

Security & Knowledge Management – a.a. 2019/20

15

 if a site allows to write comments and allows
to write full HTML it will be subject to html &
javascript injection

 if you write a comment like:

hi!<script>alert('Injected!')</script>

 and a dialog displaying "Injected!" appears...
the site is subject to javascript and html
injections

 If the script is stored on a comment ANYONE
that see the comment is vulnerable to
javascript injection that for example can:

 access to the session id and send to a server

 run a javascript keylogger that sends all keys
pressed to a server

 modify the web page

 change a form to be submitted (e.g. reduce the
price of an order)

Security & Knowledge Management – a.a. 2019/20

16

 The same can happen if a url query parameter is
written back on the result page

 Example:
 http://.../search?query=puppy

 and the query value is written back on the page
without modifications

 then using something like:
▪ ...query=puppy<script src='http://.../bad.js'></script>

 the script will be executed in the web page

 This link could be sent via email to a potential victim

 also html can be injected, for example an
iframe can be used to substitute the login
form.

 Is also called XSS cross-site scripting
 can be solved my escaping or removing some

tags as <script>, <iframe>

Security & Knowledge Management – a.a. 2019/20

17

 never trust any validation done on the web
browser (e.g. via javascript)

 redo all validations on the server
 the request may be done from a fake client

that can send malicious requests to bypass
the checks

 Example
 http://.../documents/add.php - adds a new document

 http://..../documents/count.php - returns the count of
documents

 The button to add a new document is disabled if
the count is 5

 however the check on document count needs to
be performed also on the server in add.php

http://.../documents/add.php
http://..../documents/count.php

Security & Knowledge Management – a.a. 2019/20

18

 allow access to file system files
 Example (PHP but not only):

...

include($_GET['page']);

...

 used:

 http://.../service.php?page=p1.php

 but it can be used like:

 http://.../service.php?page=../../../../../../etc/passd

 Used to perform unintended action on a third
party site (with an open session)

 Easily exploited when a GET request is used to
modify state

 Example
 Site A allows to change password with:

▪ http://siteA/change-pwd?new=safepassword

 SiteB (malicious)
▪

 if an user with an active session on siteA visits siteB or
receives an html email

http://.../service.php?page=p1.php
http://.../service.php?page=p1.php
http://.../service.php?page=p1.php
http://sitea/change-pwd?new=safepassword
http://sitea/change-pwd?new=safepassword
http://sitea/change-pwd?new=safepassword

Security & Knowledge Management – a.a. 2019/20

19

 How to avoid:
 use POST requests to modify state, its more difficult

to exploit
 check the referer header
 use a random token to identify that the call is coming

from the legitimate site (the token is written in the
page generating the call), when receiving the call the
token is checked, can be a
▪ per call token (problem with app open in more tabs)
▪ per session token
▪ example:

▪ POST http://.../change-pwd?new=xyz&token=ads5a43t6ddgs53

http://www.dvwa.co.uk/
http://www.dvwa.co.uk/

Security & Knowledge Management – a.a. 2019/20

20

 Application for WebApplication security
testing

 A linux distribution with MANY security
analysis tools

Security & Knowledge Management – a.a. 2019/20

21

 There are a lot of vulnerabilities
 Which are the most exploited?
 OWASP (open web application security

project) classified in 2017 (and in 2013) the
most frequently exploited vulnerabilities

 When designing (web) applications follow the following
principles :
1. Minimize attack surface area
2. Establish secure defaults
3. Principle of Least privilege
4. Principle of Defense in depth
5. Fail securely
6. Don’t trust services
7. Separation of duties
8. Avoid security by obscurity
9. Keep security simple
10. Fix security issues correctly

source: OWASP (open web application security project)
https://www.owasp.org

Security & Knowledge Management – a.a. 2019/20

22

 Every feature that is added to an application adds a certain
amount of risk to the overall application. The aim for secure
development is to reduce the overall risk by reducing the attack
surface area.

 For example, a web application implements online help with a
search function. The search function may be vulnerable to SQL
injection attacks.
 If the help feature was limited to authorized users, the attack

likelihood is reduced.
 If the help feature’s search function was gated through centralized

data validation routines, the ability to perform SQL injection is
dramatically reduced.

 However, if the help feature was re-written to eliminate the search
function (through better user interface, for example), this almost
eliminates the attack surface area, even if the help feature was
available to the Internet at large.

 There are many ways to deliver an “out of the
box” experience for users. However, by default,
the experience should be secure, and it should
be up to the user to reduce their security – if they
are allowed.

 For example, by default, password aging and
complexity should be enabled. Users might be
allowed to turn these two features off to simplify
their use of the application and increase their
risk.

Security & Knowledge Management – a.a. 2019/20

23

 The principle of least privilege recommends that
accounts have the least amount of privilege
required to perform their business processes. This
encompasses user rights, resource permissions such
as CPU limits, memory, network, and file system
permissions.

 For example, if a middleware server only requires
access to the network, read access to a database
table, and the ability to write to a log, this describes
all the permissions that should be granted. Under no
circumstances should the middleware be granted
administrative privileges.

 The principle of defense in depth suggests that where one
control would be reasonable, more controls that
approach risks in different fashions are better. Controls,
when used in depth, can make severe vulnerabilities
extraordinarily difficult to exploit and thus unlikely to
occur.

 With secure coding, this may take the form of tier-based
validation, centralized auditing controls, and requiring
users to be logged on all pages.

 For example, a flawed administrative interface is unlikely
to be vulnerable to anonymous attack if it correctly gates
access to production management networks, checks for
administrative user authorization, and logs all access.

Security & Knowledge Management – a.a. 2019/20

24

 Applications regularly fail to process transactions for
many reasons. How they fail can determine if an
application is secure or not.

 For example:
isAdmin = true;
try {
 codeWhichMayFail();
 isAdmin = isUserInRole(“Administrator”);
} catch (Exception ex) {
 log.write(ex.toString());
}

 If either codeWhichMayFail() or isUserInRole fails or
throws an exception, the user is an admin by default.
This is obviously a security risk.

 Many organizations utilize the processing capabilities of
third party partners, who more than likely have differing
security policies and posture than you. It is unlikely that
you can influence or control any external third party,
whether they are home users or major suppliers or
partners.

 Therefore, implicit trust of externally run systems is not
warranted. All external systems should be treated in a
similar fashion.

 For example, a loyalty program provider provides data
that is used by Internet Banking, providing the number of
reward points and a small list of potential redemption
items. However, the data should be checked to ensure
that it is safe to display to end users, and that the reward
points are a positive number, and not improbably large.

Security & Knowledge Management – a.a. 2019/20

25

 A key fraud control is separation of duties. For example,
someone who requests a computer cannot also sign for it,
nor should they directly receive the computer. This
prevents the user from requesting many computers, and
claiming they never arrived.

 Certain roles have different levels of trust than normal
users. In particular, administrators are different to normal
users. In general, administrators should not be users of the
application.

 For example, an administrator should be able to turn the
system on or off, set password policy but shouldn’t be able
to log on to the storefront as a super privileged user, such
as being able to “buy” goods on behalf of other users.

 Security through obscurity is a weak security control, and
nearly always fails when it is the only control. This is not to
say that keeping secrets is a bad idea, it simply means that
the security of key systems should not be reliant upon
keeping details hidden.

 For example, the security of an application should not rely
upon knowledge of the source code being kept secret. The
security should rely upon many other factors, including
reasonable password policies, defense in depth, business
transaction limits, solid network architecture, and fraud
and audit controls.

 A practical example is Linux. Linux’s source code is widely
available, and yet when properly secured, Linux is a hardy,
secure and robust operating system.

Security & Knowledge Management – a.a. 2019/20

26

 Attack surface area and simplicity go hand in hand.
Certain software engineering fads prefer overly
complex approaches to what would otherwise be
relatively straightforward and simple code.

 Developers should avoid the use of double negatives
and complex architectures when a simpler approach
would be faster and simpler.

 For example, although it might be fashionable to have
a slew of singleton entity beans running on a separate
middleware server, it is more secure and faster to
simply use global variables with an appropriate mutex
mechanism to protect against race conditions.

 Once a security issue has been identified, it is
important to develop a test for it, and to understand
the root cause of the issue. When design patterns are
used, it is likely that the security issue is widespread
amongst all code bases, so developing the right fix
without introducing regressions is essential.

 For example, a user has found that they can see
another user’s balance by adjusting their cookie. The
fix seems to be relatively straightforward, but as the
cookie handling code is shared among all applications,
a change to just one application will trickle through to
all other applications. The fix must therefore be tested
on all affected applications.

Security & Knowledge Management – a.a. 2019/20

27

 Symmetric key

 the same key used by the sender and receiver

 the parties need to share the same secret

 Problem:

 how to share the key???

Security & Knowledge Management – a.a. 2019/20

28

 Asymmetric key

 public key

 private key

 message encrypted with the public key can be
decrypted only with the private key

 message encrypted with the private key can be
decrypted with the corresponding public key

 Bob wants to write a secure message for Alice
 Alice sends her public key pkA to Bob

 Bob encrypts the message with pkA

 Alice decrypts the message using her private key
 Problems:

 Bob can trust that pkA is really the public key of Alice?

 Alice can trust that the message is really coming from
Bob?

 Solution uses Digital Signature

Security & Knowledge Management – a.a. 2019/20

29

 how can we certify that a message is produced by X?
 X has private key privKeyX and public key pubKeyX
 signatureX(msg) = enc(H(msg),privKeyX)

 H() hash function
 we send msg and signatureX(msg)
 how can the receiver verify that the message is really

from X?
 receive msg, signX

 check if dec(signX, pubKeyX) = H(msg)

 if it is true the message is really coming from X (unless the
private key was compromized...)

 A Certification Authority (CA) produces a
digital certificate of the public key of
someone, this certificate is signed with the
private key of the CA

 The CA produces the certificate after an user
identity verification made off-line

 There are some Root CAs public keys that are
pre-installed on the OS or in the browser are
ALWAYS TRUSTED

Security & Knowledge Management – a.a. 2019/20

30

 Mid level CAs:

 generate certificates that are trustable only if
using a Root CA public key we are able to verify
the public key of the Mid level CA

 Certificates are used in the SSL/TLS protocol
to trust a web server

 Certificates contains the public key but also
other information:

Security & Knowledge Management – a.a. 2019/20

31

 Some file formats are used for storing and
exchanging certificates e.g. der, cer, pem, p12

 X.509 is a standard for certificate
representation

 in some cases a certificate file can contain
also the private key, typically protected with
a password, however in this case is ONLY for
backup and should not be sent to anyone...

 The SSL/TSL allows to
require a certificate also for
the client

 It guarantees to the server
the identity of the client

 In this case the private key
can be stored on a smart
card but it needs a specific
reader.

 the private key is stored
inside the card and it is not
accessible from outside.

Security & Knowledge Management – a.a. 2019/20

32

 How to ask for a certificate to a CA?

 private and public key are generated on the client

 the CSR is built with the public key and other
details of the certificate, then the CSR is signed
using the private key and sent to the CA

 the CA can check the CSR and produce the
certificate when the identity check has been
performed

 What happen when a private key is stolen?

 the certificate is revoked thus certificate serial
number and revocation date is put on the CRL of
the CA (signed by the CA)

 the client should check if the certificate to be
validated is on the CRL of the CA

Security & Knowledge Management – a.a. 2019/20

33

 an opensource tool for certificate generation
 command line tool for windows and linux
 generate a self-signed certificate

 openssl req -newkey rsa:2048 -nodes -keyout
key.pem -x509 -days 365 -out certificate.pem

 review it
 openssl x509 -text -noout -in certificate.pem

 generate a pkcs12 certificate
 openssl pkcs12 -inkey key.pem -in certificate.pem

-export -out certificate.p12

 generate a CSR

 openssl req -newkey rsa:2048 -nodes -keyout
domain.key -out domain.csr

 verify a CSR

 openssl req -text -noout -verify -in domain.csr

Security & Knowledge Management – a.a. 2019/20

34

 create CA private key

 openssl genrsa -out ca.key 2048

 create CA certificate

 openssl req -new -x509 -key ca.key -out ca.crt

 produce a certificate from a CSR

 openssl x509 -req -in domain.csr -CA ca.crt
-CAkey ca.key -CAcreateserial -out domain.crt

Security & Knowledge Management – a.a. 2019/20

35

 Authentication
 allows a user to access a service

 based on:
▪ something you know (e.g. password)

▪ something you have (e.g. token generator)

▪ something you are (e.g. fingerprint)

 two factor authentication
 Authorization

 allows an authenticated user to access a
functionality or data (e.g. read only access)

 HTTP "Authorization" header
GET http://...

Authorization: Basic xyz

 where xyz is base64 encode of
"username:password"

 Pro: very simple and managed by the
browser

 Cons: credentials can be easily sniffed on the
network if connection is not encrypted

Security & Knowledge Management – a.a. 2019/20

36

 Use SSL/TLS protocol
 client certificate installed on the browser

used to identify the client
 the server receives the client certificate
 the certificate may be associated with a

private key stored on a smart card

 provide authentication using a common user identity source
(e.g. facebook, google, github)

 external services can use the user identities (and associated
data) from big social media (or corporate user directory)

 the user should authenticate providing username and
password to the identity provider and NOT to the service

 single sign-on, many services share the same IDP

Identity
provider

Service

User
Agent

• web browser
• mobile app
• one page app

Security & Knowledge Management – a.a. 2019/20

37

 OAuth2.0 one of the most used
authentication protocols for web applications

 standardized by IETF
 used by many big social networks (Facebook,

google, twitter, github, ...)

 Different cases:

 web server application

▪ browser client and application running on server side

 one page app

▪ application running on the browser, no specific server
side code

 mobile application

▪ application running on mobile, no specific server side
code

Security & Knowledge Management – a.a. 2019/20

38

 First step: register Client Application

 client_id

 client_secret

 valid redirect_uri

 web browser opens the url
http://mysite.com/login

 which generates a random state string (saved
in the session) and redirects to

http://auth.server.com/auth?
 response_type=code&
 client_id=....&
 redirect_uri=...&
 scope=...&
 state=....

http://mysite.com/login

Security & Knowledge Management – a.a. 2019/20

39

 the auth server checks client_id and
redirect_uri

 user can login (if not already done), user is
requested permission for the app and if
authentication succeeds and user give
permission the auth server redirects to

 redirect_uri?code=...&state=...
 code is used to get an access token
 state is used to check that the call was

performed by this site

 the web app receives the code and state
 checks the state is the same as the one originally

sent
 and uses the code to get an access token,

making a server side request to
POST http://api.auth.server/auth

 grant_type=authorization_code&

 code=...&

 redirect_uri=...&

 client_id=...&

 client_secret=...

Security & Knowledge Management – a.a. 2019/20

40

 the web server app receives the access token
{

 "access_token":"RsT5OjbzRn430zqMLgV3Ia",

 "expires_in":3600

}

 The app can now make a request to the api to
get information about the user

Identity
provider

Service

Web
browser

1. login

2. auth(state,client_id,
redirect_uri,scope)

3. redirect(state,code)
4.auth(code,redirect_uri,
client_id, client_secret)

5.return accessToken

Security & Knowledge Management – a.a. 2019/20

41

 In this case the app is running on the web
browser, the client secret cannot be used to
get the access token

POST http://api.auth.server/auth

 grant_type=authorization_code&

 code=...&

 redirect_uri=...&

 client_id=...

Identity
provider

Web
Browser

Single

page app

1. auth(state,client_id,
redirect_uri,scope)

2. redirect(state,code)

3.auth(code,redirect_uri,
client_id)

4.return accessToken

Security & Knowledge Management – a.a. 2019/20

42

 Authentication made via fb app or browser
 Not using client_secret
 When made via fb app, custom urls are used to

activate the app
 fbauth2://authorize?

 response_type=code&
 client_id=...&
 redirect_uri=...&
 scope=...&
 state=...

 the redirect_uri should activate the mobile app again

 the app will receive the code via redirect:

 myapp://authorize?code=...&state=....

 and then use the code to get the access token
POST http://api.auth.server/auth

 grant_type=authorization_code&

 code=...&

 redirect_uri=...&

 client_id=...

 however...

Security & Knowledge Management – a.a. 2019/20

43

Identity
provider

(Facebook)

MyApp

1. auth(state,client_id,
redirect_uri,scope)

2. redirect(state,code)

3.auth(code,redirect_uri,
client_id)

4.return accessToken

Facebook
App

 A malicious app can register to be called on
the same url scheme, in this way it gets the
code, and then get an access token using the
code.

 Proof Key for Code Exchange PKCE Extension

1. The app generates a key

2. the hash of the key is sent to the server

3. and the key is sent when requesting the access
token

Security & Knowledge Management – a.a. 2019/20

44

Identity
provider

(Facebook)

MyApp

1. auth(state,client_id,
redirect_uri,scope,
code_challenge,
code_challenge_method)

2. redirect(state,code)

3.auth(code,redirect_uri,
client_id,code_verifier)

4.return accessToken

Facebook
App

code_challenge,
code_challenge_method

 hash of key is sent with hash method
 fbauth2://authorize?
 response_type=code&
 client_id=...&
 redirect_uri=...&
 scope=...&
 state=...&
 code_challenge=...&
 code_challenge_method=S256

 the hash is sent to the authorization service

Security & Knowledge Management – a.a. 2019/20

45

 then when requesting token the original key
is sent:

▪ POST https://api.authorization-server.com/token
 grant_type=authorization_code&
 code=...&
 redirect_uri=...&
 client_id=...&
 code_verifier=...

 the key received is hashed and compared
with the previously sent hash

 implicit flow allows to get directly the access
token avoiding the intermediate code (faster
authorization)

 It was originally introduced for single page
apps

 But best practice suggests to use the code
authorization also in this context and avoid
implict flow.

Security & Knowledge Management – a.a. 2019/20

46

 Once the access token is expired, the access
token can be used to request another fresh
access token

 Access tokens are typically of short duration
(1-5 minutes)

 While refresh tokens have longer durations

 extension of OAuth2.0 that use JWT (JSON WebToken)
 JWT tokens store the claims of the connected user

 Example of JWT:
 eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODk
wIiwibmFtZSI6IkpvaG4gRG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ.SflKxwRJSMeKK
F2QT4fwpMeJf36POk6yJV_adQssw5c

Security & Knowledge Management – a.a. 2019/20

47

 header.payload.signature
 header:

base64({"alg":"HS256","typ":"JWT"})

 payload:
base64({"sub":"1234567890","name":"John
 Doe","iat":1516239022})

 signature:
▪ hashAlg(header+"."+payload,secret)

▪ or signed with a private key, verifiable with a public key

 see http://jwt.io

 The JSON payload contain some predefined
attributes:
 "iss": issuer

 "sub": subject

 "aud": audience

 "exp": expiration time

 "nbf": not before

 "iat": issued at

 "jti": JWT ID

Security & Knowledge Management – a.a. 2019/20

48

 Once the app has obtained an access token for a user
(using the authentication procedure) it can send the
AT to APIs to perform services for an user

 APIs must check the signature, the temporal valididity
and (if ok) get username and roles directly from the
token and perform the action requested

API1 API2 API3

Web App IDP

 Access token can be sent in GET, POST or in
the header:

 Authorization: Bearer <access token>

 and should be sent always over a protected
channel!

 If a malicious user is able to get an access
token he can use any API with this token on
behalf of the user... for this reason the token
does not have a long duration.

Security & Knowledge Management – a.a. 2019/20

49

 Security Assertion Markup Language
 Is another authentication protocol, similar to

OAuth2, it uses XML (much more verbose) to
represent assertions about a subject

 In business environments identities are
managed in a central repository

 Lightweight Directory Access Protocol
(LDAP) is an open, vendor-neutral, industry
standard application protocol for accessing
and maintaining distributed directory
information services.

 Active Directory implements the LDAP protocol
 Specified by IETF

Security & Knowledge Management – a.a. 2019/20

50

 An entry consists of a set of attributes.
 An attribute has a name (an attribute type or attribute

description) and one or more values. The attributes are
defined in a schema.

 Each entry has a unique identifier: its Distinguished
Name (DN). This consists of its Relative Distinguished
Name (RDN), constructed from some attribute(s) in
the entry, followed by the parent entry's DN.

 A DN may change over the lifetime of the entry, for
instance, when entries are moved within a tree.

 The DNs build a hierarchy

dn: cn=John Doe,dc=example,dc=com
cn: John Doe
givenName: John
sn: Doe
telephoneNumber: +1 888 555 6789
telephoneNumber: +1 888 555 1232
mail: john@example.com
manager: cn=Barbara Doe,dc=example,dc=com
objectClass: inetOrgPerson
objectClass: organizationalPerson
objectClass: person
objectClass: top

Security & Knowledge Management – a.a. 2019/20

51

 LDAP provides the following operations:

 BIND – to connect

 ADD – add a new entry

 DELETE – to remove an entry given its DN

 MODIFY – to replace/add/remove some attributes

 SEARCH – to search for entries

 arguments:
 baseObject the name of the base object entry (or possibly the root)

relative to which the search is to be performed.
 scope what elements below the baseObject to search. Can

be BaseObject (search just the named entry, typically used to read one
entry), singleLevel (entries immediately below the base DN),
or wholeSubtree (the entire subtree starting at the base DN).

 filter criteria to use in selecting elements within scope. For example,
the filter (&(objectClass=person)(|(givenName=John)(mail=john*)))
will select "persons" with givenName John or email starting with john

 derefAliases whether and how to follow alias entries (entries that
refer to other entries),

 attributes which attributes to return in result entries.
 sizeLimit, timeLimit maximum number of entries to return, and

maximum time to allow search to run.
 typesOnly return attribute types only, not attribute values.

Security & Knowledge Management – a.a. 2019/20

52

 is an open source project for authentication
management, providing:
 integration of user identities from LDAP and Active

Directory servers
 OpenID Connect and SAML2.0 protocols
 Social login
 Single-Sign-On (SSO)
 double factor authentication using One Time

Password (OTP) with google authenticator app or
Open OTP app

 multi tentant configuration

 application functionalities available to users
on the basis of authorization level

 typically associating users with roles and
roles with functionalities

 the application should enforce role checking
and ensure it cannot be bypassed...

