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Abstract

In the area of music information retrieval (MIR), automatic music transcription is considered one of the

most challenging tasks, to solve which many different techniques have been proposed. This paper presents a

new method for polyphonic music transcription: a system that aims at estimating pitch, onset times, durations

and intensity of concurrent sounds in audio recordings, played by one or more instruments. Pitch estimation

is carried out by means of a front-end that jointly uses a constant-Q and a bispectral analysis of the input

audio signal; subsequently, the processed signal is correlated with a fixed 2-D harmonic pattern. Onsets

and durations detection procedures are based on the combination of the constant-Q bispectral analysis with

information from the signal spectrogram. The detection process is agnostic and it does not need to take into

account musicological and instrumental models or other a priori knowledge. The system has been validated

against the standard RWC (Real World Computing) - Classical Audio Database. The proposed method

has demonstrated good performances in the multiple F0 tracking task, especially for piano-only automatic

transcription at MIREX 2009.

Index Terms

Music information retrieval, polyphonic music transcription, audio signals processing, constant-Q analysis,

higher-order spectra, bispectrum.

I. INTRODUCTION

Automatic music transcription is the process of converting a musical audio recording into a symbolic notation (a

musical score or sheet) or any equivalent representation, usually concerning event information associated with pitch,

note onset times, durations (or equivalently, offset times) and intensity. This task can be accomplished by a well

ear-trained person, although it could be quite challenging for experienced musicians as well; besides, it is difficult to

be realized in a completely automated way. This is due to the fact that human knowledge of musicological models
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and harmonic rules are useful to solve the problem, although such skills are not easy to be coded and wrapped into

an algorithmic procedure.

An audio signal is composed of a single or a mixture of approximately periodic, locally stationary acoustic

waves. According to the Fourier representation, any finite energy signal is represented as the sum of an infinite

number of sinusoidal components weighted by appropriate amplitude coefficients. An acoustic wave is a particular

case in which, ideally, frequency values of single harmonic components are integer multiples of the first one,

called fundamental frequency (which is the perceived pitch). Harmonic components are called partials or simply

harmonics. Since the fundamental frequency of a sound, denoted as F0, is defined to be the greatest common divisor

of its own harmonic set (actually, in some cases, the spectral component corresponding to F0 can be missing), the

task of music transcription, i.e., the tracking of the partials of all concurrent sounds, is practically reduced to a time

periodicities search, which is equivalent to looking for energy maxima in the frequency domain. Thus, every single

note can be associated with a fixed and distinct comb-pattern of local maxima in the amplitude spectrum, which

appears like the one shown in Figure 1. The distances between energy maxima are expressed as integer multiples

of F0 (top) as well as in semitones (bottom): the latter are an approximation of the natural harmonic frequencies

in the well-tempered system.

 F0 2F0     3F0 4F0    5F0    6F0    7F0

 0           12    19 24     28     31     34

Figure 1. Fixed comb-pattern representing the harmonics set associated with every single note. Seven partials (fundamental frequency
included) with the same amplitude have been considered. The distances are also expressed (bottom) as semitones.

A. Previous Work

For the monophonic transcription task, some time-domain methods were proposed based on zero-crossing detec-

tion [1], or on temporal autocorrelation [2]. Frequency-domain based approaches are better suited for multi-pitch

detection of a mixture of sounds. In fact, the overlap of different period waves makes the task hard to be solved

exclusively in the time-domain.

First attempts of performing polyphonic music transcription started in the late 1970s, with the pioneering work

of Moorer [3] and Piszczalski and Galler [4]. During the years, the commonly-used frequency representation

of audio signals as a front-end for transcription systems has been developed in many different ways, and several

techniques have been proposed. Klapuri [5], [6] performed an iterative predominant F0 estimation and a subsequent
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cancelation of each harmonic pattern from the spectrum; Nawab [7] used an iterative pattern matching algorithm

upon a constant-Q spectral representation.

In the early 1990s, other approaches, based on applied psycho-acoustic models and also known as Computational

Auditory Scene Analysis (CASA), from the work by Bregman [8], started to be developed. This framework was

focused on the idea of formulating a computational model of the human inner ear system, which is known to work

as a frequency-selective bank of passband filters; techniques based on this model, formalized by Slaney and Lion

[9], were proposed by Ellis [10], Meddis and O’Mard [11], Tolonen and Karjalainen [12] and Klapuri [13]. Marolt

[14] used the output of adaptive oscillators as a training set for a bank of neural networks to track partials of piano

recordings. A systematic and collaborative organization of different approaches to the music transcription problem

is at the basis of the idea of the Blackboard Architecture proposed by Martin [15]. More recently, physical [16] and

musicological models, like average harmonic structure (AHS) extraction in [17], as well as other a priori knowledge

[18], and eventually temporal information [19] have been joined to the audio signal analysis in the frequency-domain

to improve transcription systems performances. Other frameworks rely on statistical inference, like hidden Markov

models [20], [21], [22], Bayesian networks [23], [24] or Bayesian models [25], [26]. Others, aiming at estimating the

bass line [27] or the melody and bass lines [28], [29], were proposed. Currently, the approach based on non-negative

matrix approximation [30] (in its different versions like non-negative matrix factorization of spectral features [31],

[32], [33]) has received much attention within the music transcription community.

Higher-order spectral analysis (which includes the bispectrum as a special case) has been applied to music audio

signals for source separation and instrumental modeling [34], to enhance the characterization of relevant acoustical

features [35], and for polyphonic pitch detection [36].

More detailed overviews of automatic music transcription methods and related topics are contained in [37], [38].

B. Proposed Method

This paper proposes a new method for automatic transcription of real polyphonic and multi-instrumental music.

Pitch estimation is here performed through a joint constant-Q and bispectral analysis of the input audio signal. The

bispectrum is a bidimensional frequency representation capable of detecting nonlinear harmonic interactions.

A musical signal produces a typical 1-D pattern of local maxima in the spectrum domain and, similarly, a 2-D

pattern in the bispectrum domain, as illustrated in Section III-C1. Objective of a multiple F0 estimation algorithm

is retrieving the information relative to each single note from the polyphonic mixture. A method to perform this

task, in the spectrum domain, consists in iteratively computing the cross-correlation between the audio signal and a

harmonic template, and subsequently canceling/subtracting the pattern relative to the detected note. The proposed

method applies this concept, opportunely adapted, in the bispectral domain.
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Experimental results show that using the bispectrum analysis yields superior performances than using the spectrum

domain: actually, as described in section III-C4, the local maxima distribution of the harmonic 2-D pattern generated

in the bispectrum domain is more useful in gathering multiple-F0 information in iterative pitch estimation and

harmonics extraction / cancelation methods.

A computationally efficient and relatively fast method to implement the bispectrum has been realized by using

the constant-Q transform, which produces a multi-band frequency representation with variable resolution. Note

duration estimation is based on a profile analysis of the audio signal spectrogram.

The goal of this research is showing the capabilities and potentialities of a constant-Q bispectrum (CQB) front-end

applied to the automatic music transcription task. The assessment of the proposed transcription system performances

has been conducted in the following way:the proposed method, based on the bispectrum front-end, and a similar

system, based on a simple spectrum front-end, were compared by using audio excerpts taken from the standard

RWC (Real World Computing) - Classical Audio Database [39], which is widely used in the recent literature for

information music retrieval tasks; the proposed algorithm has demonstrated good performances in the multiple F0

tracking task, especially for piano automatic transcription at MIREX 2009 evaluation framework. The results of

the comparison with the other participants are reported.

C. Paper Organization

In Section II, the bispectral analysis and the constant-Q transform are reviewed. Section III contains a detailed

description of the whole architecture and the rules for pitch, onset and note duration detection. Subsequently, in

section IV, experimental results, validation methods and parameters are presented. Finally, Section V is left to

conclusions.

II. THEORETICAL PRELIMINARIES

In this section, the theoretical concepts at the basis of the proposed method are recalled.

A. Musical concepts and notation

In music, the seven notes are expressed with alphabetical letters from A to G. The octave number is indicated

as a subscript. In this paper, the lowest piano octave is associated with number 0; thus, middle C, at 261 Hz, is

denoted with C4, and A4 (which is commonly used as a reference tone for instruments tuning) univocally identifies

the note at 440 Hz.

In the well-tempered system, if f1 and f2 are the frequencies of two notes separated by one semitone interval,

then f2 = f1 · 21/12. Under these conditions (which approximates the natural tuning, or just tuning), an interval

of one octave, (characterized by f2 = 2f1) it is composed of 12 semitones. Other examples of intervals between
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notes are the perfect fifth (f2 = 3/2 f1, corresponding to a distance of 7 semitones in the well-tempered scale),

the perfect fourth (f2 = 4/3 f1 or 5 semitones in the well-tempered scale), and the major third (f2 = 5/4 f1 or 4

semitones in the well-tempered scale).

B. The Bispectrum

The bispectrum belongs to the class of Higher-Order Spectra (HOS, or polyspectra), used to represent the

frequency content of a signal. An overview of the theory on HOS can be found in [40], [41] and [42]. The

bispectrum is defined as the third-order spectrum, being the amplitude spectrum and the power spectral density the

first and second-order ones, respectively.

Let x(k), k = 0, 1, . . . ,K−1, be a digital audio signal, modeled as a real, discrete and locally stationary process.

The nth order moment, mx
n, is defined [41] as:

mx
n(τ1, . . . , τn−1) = E{x(k)x(k + τ1) . . . x(k + τn−1)},

where E{·} is the statistical mean. The nth order cumulant, cx
n, is defined [41] as:

cx
n(τ1, . . . , τn−1) = mx

n(τ1, . . . , τn−1)−mG
n (τ1, . . . , τn−1),

where mG
n (τ1, . . . , τn−1) are the nth-order moments of an equivalent Gaussian sequence having the same mean and

autocorrelation sequence as x(k). Under the hypothesis of a zero mean sequence x(k), the relationships between

cumulants and statistical moments up to the third order are:

cx
1 = E{x(k)} = 0,

cx
2(τ1) = mx

2(τ1) = E
{
x(k)x(k + τ1)

}
,

cx
3(τ1, τ2) = mx

3(τ1, τ2) = E
{
x(k)x(k + τ1)x(k + τ2)

}
. (1)

The nth-order polyspectrum, denoted as Sx
n(f1, f2, . . . , fn−1), is defined as the (n − 1)-dimensional Fourier

transform of the corresponding order cumulant, that is:

Sx
n(f1, f2, . . . , fn−1) =

+∞∑
τ1=−∞

· · ·
+∞∑

τn−1=−∞
cx
n(τ1, τ2, . . . , τn−1) exp

(
− j2π(f1τ1 + f2τ2 + . . . + fn−1τn−1)

)
.

The polyspectrum for n = 3 is also called bispectrum. It is also denoted as:

Bx(f1, f2) = Sx
3 (f1, f2) =

+∞∑
τ1=−∞

+∞∑
τ2=−∞

cx
3(τ1, τ2)e−j2πf1τ1e−j2πf2τ2 . (2)

The bispectrum is a bivariate function representing some kind of signal-energy related information, as more deeply
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analyzed in the next section. In Figure 2, a contour-plot of the bispectrum of an audio signal is shown. As can be

noticed, the bispectrum presents twelve mirror symmetry regions:

Bx(f1, f2) = Bx(f2, f1) = B∗
x(−f2,−f1) = Bx(−f1 − f2, f2) =

= Bx(f1,−f1 − f2) = Bx(−f1 − f2, f1) = Bx(f2,−f1 − f2).

Hence, the analysis can take into consideration only a single non redundant bispectral region [43]. Hereafter,

Bx(f1, f2) will denote the bispectrum in the triangular region T with vertices (0,0), (fs/2,0) and (fs/3,fs/3),

i.e., T =
{

(f1, f2) : 0 ≤ f2 ≤ f1 ≤ fs

2 , f2 ≤ −2f1 + fs

}
, which is depicted in Figure 2, where fs is the sampling

frequency.
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Figure 2. Contour plot of the magnitude bispectrum, according to Equation (3), of the trichord F]3(185 Hz), D4(293 Hz), B4(493 Hz)
played on an acoustic upright piano and sampled at fs = 4 kHz. The twelve symmetry regions are in evidence (clockwise enumerated), and
the one chosen for analysis is highlighted.

It can be shown [41] that the bispectrum of a finite-energy signal can be expressed as:

Bx(f1, f2) = X(f1)X(f2)X∗(f1 + f2), (3)

where X(f) is the Fourier Transform of x(k), and X∗(f) is the complex conjugate of X(f).

As in the case of power spectrum estimation, the estimations of the bispectrum of a finite random process are

not consistent, i.e., their variance does not decrease with the observation length. Consistent estimations are obtained

by averaging either in the time or in the frequency domain. Two approaches are usually considered, as described

in [41].

The indirect method consists of: 1) the estimation of the third-order moments sequence, computed as temporal

average on disjoint or partially overlapping segments of the signal; 2) estimation of the cumulants, computed as
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the average of the third-order moments over the segments; 3) computation of the estimated bispectrum as the

bidimensional Fourier tansform of the windowed cumulants sequence.

The direct method consists of: 1) computation of the Fourier transform over disjoint or partially overlapping

segments of the signal; 2) estimation of the bispectrum in each segment according to (3) (eventually, frequency

averaging can be applied); 3) computation of the estimated bispectrum as the average of the bispectrum estimates

in each segment.

In this paper, in order to minimize the computational cost, the direct method has been used to estimate the

bispectrum of an audio signal.

C. Constant-Q Analysis

The estimation of the bispectrum according to (3), involves computing the spectrum X(f) on each segment

of the signal. In each octave, twelve semitones need to be discriminated: since the octave spacing doubles with

the octave number, the requested frequency resolution decreases when the frequency increases. For this reason, a

spectral analysis with a variable frequency resolution is suitable for audio applications.

The constant-Q analysis [44], [45] is a spectral representation that properly fits the exponential spacing of note

frequencies. In the constant-Q analysis, the spectral content of an audio signal is analyzed in several bands. Let N

be the number of bands and let

Qi =
fi

Bi
,

where fi is a representative frequency, e.g., the highest or the center frequency, of the ith band and Bi is its

bandwidth. In a constant-Q analysis, we have Qi = Q, i = 1, 2, . . . , N , where Q is a constant.

A scheme that implements a constant-Q analysis is illustrated in Figure 3. It consists of a tree structure, shown

in Figure 3-(a), whose building block, shown in Figure 3-(b), is composed of a spectrum analyzer block and by a

filtering/downsampling block (lowpass filter and downsampler by a factor two).

The spectrum analyzer consists in windowing the input signal (Hann window with length NH samples for each

band has been used) followed by a Fourier transform that computes the spectral content at specified frequencies

of interest. The lowpass filter is a zero-phase filter, implemented as a linear-phase filter followed by a temporal

shift. Using zero-phase filters allows us to extract segments from each band that are aligned in time. The nominal

filter cutoff frequency is at π/2. Due to the downsampling, the NH -samples long analysis window spans a duration

that doubles at each stage. Therefore, at low frequencies (i.e., at deeper stages of the decomposition tree), a higher

resolution in frequency is obtained at the price of a poorer resolution in time.
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Figure 3. Octave Filter Bank: (a) building block of the tree, composed by a spectrum analyzer and by a filtering/downsampling block; (b)
blocks combination to obtain a multi-octave analysis.

III. SYSTEM ARCHITECTURE

In this section, a detailed description of the proposed method for music transcription is presented. First a general

overview is given, then the main modules are discussed in detail.

A. General Architecture

A general view of the system architecture is presented in Figure 4. In the diagram, the main modules are depicted

(with dashed line) as well as the blocks composing each module.

The transcriptor accepts as input a PCM Wave audio file (mono or stereo) as well as user-defined parameters

related to the different procedures. The Pre-Processing module carries out the implementation of the constant-Q

analysis by means of the Octave Filter Bank block. Then, the processed signal enters both the Pitch Estimation and

Time Events Estimation modules. The Pitch Estimation module computes the bispectrum of its input, perform the

2-D correlation between the bispectrum and a harmonic-related pattern, and estimate candidate pitch values. The

Time Events Estimation module is devoted to the estimation of onsets and durations of notes. The Post-Processing

module discriminates notes from very short-duration events, seen as disturbances, and produces the output files: a

SMF0 MIDI file (which is the transcription of the audio source) and a list of pitches, onset times and durations of

all detected notes.

B. The Pre-Processing module

The Octave Filter Bank (OFB) block performs the constant-Q analysis over a set of octaves whose number Noct

is provided by the user. The block produces the spectrum samples - computed by using the Fourier transform -

relative to the nominal frequencies of the notes to be detected in each octave. In order to minimize detection errors

due to partial inharmonicity or instrument intonation inaccuracies, two additional frequencies aside each nominal

value have been considered as well. The distance between the additional and the fundamental frequencies is ±2%
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Figure 4. Music transcription system block architecture. The functional modules, inner blocks, input parameters and output variables and
functions are illustrated.

of each nominal pitch value, which is less than half a semitone spacing (assumed as approximately ±3%); the

maximum amplitude among the three spectral lines is associated with the nominal pitch frequency value. Hence,

the number of spectrum samples that is passed to the successive blocks for further processing is Np = 12 Noct,

where 12 is the number of pitches per octave.

As an example, consider that the OFB accepts an input signal sampled at fs=44100 Hz and consider that ideal

filters, with null transition bandwidth, are used. The outputs of the first three stages of the OFB tree cover the ranges

(0, 22050), (0, 11025), and (0, 5512.5). The spectrum analysis works only on the higher-half frequency interval of

each band, whereas the lower-half frequency interval is to be analyzed in the subsequent stages. Hence, with the

given sampling frequency, in the first three stages the octaves from F9 to E10, from F8 to E9, and from F7 to E8,

in that order, are analyzed. In general, in the ith stage, the interval from FNoct+1−i to ENoct+2−i, i = 1, 2, . . . , Noct,

is analyzed.

In the case of non-ideal filters, the presence of a non-null transition band must be taken into account. Consider the

branches of the building block of the OFB tree, shown in Figure 3-(b), the first leading to the spectral analysis sub-

block, the second to filtering and downsampling sub-block. Notes, whose nominal frequency falls into the transition

band of the filter, can not be resolved after downsampling and must be analyzed in the first (undecimated) branch.

Useful lowpass filters are designed by choosing, in normalized frequencies, the interval (0, γ π) as the passband,

the interval (γ π, π/2) as the transition band, and the interval (π/2, π) as the stopband; the parameter γ (γ < 0.5)

controls the transition bandwidth.
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Hence, the frequency interval that must be considered into the spectrum analysis step at the first stage is

(γfs/2, fs/2). In the second stage, the analyzed interval is (γfs/4, γfs/2), and, in general, if we define f
(i)
s =

fs/2(i−1) as the sampling frequency of the input of the ith stage, the frequency interval considered by the spectrum

analyzer block is (apart from the first stage) (γf
(i)
s /2, γf

(i)
s ). The filter mask H(ω) and the analyzed regions are

depicted in Figure 5.

ππ
2γπ

2 ω

Interval to be

analyzed in

the next

stages

X(ω)

H(ω)

Interval

affected by

aliasing after

decimation

Interval processed by

the spectrum analyzer

Figure 5. Filter mask and the analyzed regions.

Table I summarizes the system parameters we used to implement the OFB. With the chosen transition band, the

interval from E9 to E10 is analyzed in the first stage, and the interval from ENoct+1−i to D]Noct+2−i, i = 2, . . . , Noct,

is analyzed in the ith stage. At the end of the whole process, a spectral representation from E1 (at 41.203 Hz) to

E10 (at 21.096 kHz), sufficient to cover the extension of almost every musical instrument, is obtained.

Table I
OFB CHARACTERISTICS

Sampling frequency (fs) 44.1 kHz
Number of octaves (Noct) 9

Frequency range [40 Hz , 20 kHz]
Hann’s window length (NH ) 256 samples

FIR passband (0, 0.46 π)
FIR stopband (π/2, π)

FIR ripples (δ1 = δ2) 10−3

Filter length 187 samples

C. Pitch Estimation Module

The Pitch Estimation module receives as input the spectral information produced by the Octave Filter Bank

block. This module includes the Constant-Q Bispectral Analysis, the Iterative 2-D Pattern Matching, the Iterative
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Pitch Estimation and the Pitch & Intensity Data Collector blocks. The first block computes the bispectrum of the

input signal at the frequencies of interest. The Iterative 2-D Pattern Matching block is in charge of computing

the 2-D correlation between the bispectral array and a fixed, bi-dimensional harmonic pattern. The objective of

the Iterative Pitch Estimation block is detecting the presence of the pitches, and subsequently extracting the 2-D

harmonic pattern of detected notes from the bispectrum of the actual signal frame. Finally, the Pitch & Intensity

Data Collector block associates energy information to corresponding pitch values in order to collect the intensity

information.

In order to better explain the interaction of harmonics generated by a mixture of sounds, we first focus on the

application of the bispectral analysis to examples of monophonic signals, and then some examples of polyphonic

signals are considered.

1) Monophonic signal: Let x(n) be a signal composed by a set H of four harmonics, namely H = {f1, f2, f3, f4},

fk = k · f1, k = 2, 3, 4, i.e.,

x(n) =
4∑

k=1

2 cos(2πfkn/fs),

X(f) =
4∑

k=1

δ(f ± fk),

where constant amplitude partials have been assumed. According to (3), the bispectrum of x(n) is given by

Bx(η1, η2) = X(η1)X(η2)X∗(η1 + η2) =

=
( 4∑

k=1

δ(η1 ± fk)
)( 4∑

l=1

δ(η2 ± fl)
)( 4∑

m=1

δ(η1 + η2 ± fm)
)

.

When the products are developed, the only terms different from zero that appear are the pulses located at (fk, fl),

with fk, fl such that fk + fl ∈ H. Hence, we have

Bx(η1, η2) =δ(η1 ± f1)δ(η2 ± f1)δ(η1 + η2 ± f2) + δ(η1 ± f1)δ(η2 ± f2)δ(η1 + η2 ± f3)

+ δ(η1 ± f1)δ(η2 ± f3)δ(η1 + η2 ± f4) + δ(η1 ± f2)δ(η2 ± f1)δ(η1 + η2 ± f3)

+ δ(η1 ± f2)δ(η2 ± f2)δ(η1 + η2 ± f4) + δ(η1 ± f3)δ(η2 ± f1)δ(η1 + η2 ± f4).

Note that peaks arise along the first and third quadrant bisector thanks to the fact that f2 = 2f1 and f4 = 2f2. By

considering the non-redundant triangular region T defined in Section II-B, the above expression can be simplified

into

Bx(η1, η2) =δ(η1 − f1)δ(η2 − f1)δ(η1 + η2 − f2) + δ(η1 − f2)δ(η2 − f1)δ(η1 + η2 − f3)

+ δ(η1 − f3)δ(η2 − f1)δ(η1 + η2 − f4) + δ(η1 − f2)δ(η2 − f2)δ(η1 + η2 − f4).
(4)



12

Equation (4) can be generalized to an arbitrary number T of harmonics as follows:

Bx(η1, η2) =
bT/2c∑

p=1

δ(η2 − fp)
T−p∑
q=p

δ(η1 − fq)δ(η1 + η2 − fp+q). (5)

This formula shows that every monophonic signal generates a bidimensional bispectral pattern characterized by

peaks positions {(fi, fi), (fi+1, fi), . . . , (fT−i, fi)}, i = 1, 2, . . . , bT
2 c. Such a pattern is depicted in Figure 6 for a

synthetic note at a fundamental frequency f1 = 131 Hz, with T = 7 and T = 8.

Bispectrum estimated via the direct method
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Figure 6. Bispectrum of monophonic signals (note C3) synthesized with (a) T = 7 and (b) T = 8 harmonics.

The energy distribution in the bispectrum domain is validated by the analysis of real world monophonic sounds.

Figure 7 shows the bispectrum of a C4 note played by an acoustic piano and a G3 note played by a violin, both

sampled at fs = 44100 Hz. Even if the number of significant harmonics is not exactly known, the positions of the

peaks in the bispectrum domain confirm the theoretical behaviour previously shown.

2) Polyphonic signal: Consider the simplest case of a polyphonic signal: a bichord. Accordingly with the linearity

of the Fourier Transform, the spectrum of a bichord is the sum of the spectra of the component sounds. From

Equation (3), it is clear that the bispectrum has a non-additivity nature. This means that, the bispectrum of a

bichord is not equal to the sum of the bispectra of component sounds, as described in Appendix A. In order to be

more specific, two examples, in which the two notes are spaced by either a major third or a perfect fifth interval,

are considered; such intervals are characterized by a significant number of overlapping harmonics. Figures 8-(a)

and 8-(b) show the bispectrum of synthetic signals representing the intervals C3 − E3 and C3 −G3, respectively.

For each note, ten constant-amplitude harmonics were synthesized. The top row plots in Figures 8-(a) and 8-(b)

demonstrate the spectrum of the synthesized audio segments, from which the harmonics of the two notes are

apparent. Overlapping harmonics, e.g., the frequencies 5i · F0C3
= 4i · F0E3

for the major third interval, with i

an integer, can not be resolved. In Figure 9, the bispectrum of a real bichord produced by two bowed violins,
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Figure 7. Bispectrum of (a) a C4 (261 Hz) played on a upright piano, and of (b) a G3 (196 Hz) played on a violin (bowed). Both sounds
have been sampled at 44100 Hz.

playing the notes A3 (220 Hz) and D4 (293 Hz), is shown. The interval is a perfect fourth (characterized by a

fundamental frequencies ratio equal to 4:3, corresponding to a distance of 5 semitones in the well-tempered scale),

so that each third harmonic of D4 overlaps with each fourth harmonic of A3. Both in the synthetic and in the real

sound examples, the patterns relative to each note are distinguishable, apart from a single peak on the quadrant

bisector.

In Appendix A, the bispectrum of polyphonic sound is theoretically treated, together with some examples. In

particular, the cases regarding polyphonic signals with two or more sounds have been considered. In the case

of bichords, one of the most interesting cases, being a perfect fifth interval, since it presents a strong partials

overlap ratio. In this case, the analysis of residual coming from the difference of the real bispectrum of the bichord

signal with respect to the linear composition of the single bispectra of concurrent sounds, has been performed. The

formal analysis has demonstrated that the contributions of this residual are null or negligible for proposed multi-F0

estimation procedure. This theoretical analysis has been also confirmed by the experimental results, as shown with

some examples. Moreover, the case of tri-chord with strong partial overlapping and a high number of harmonics

per sound has confirmed the same results.

3) Harmonic pattern correlation: Consider a 2-D harmonic pattern as dictated by the distribution of the bispectral

local maxima of a monophonic musical signal expressed in semitone intervals. The chosen pattern, shown in

Figure 10, has been validated and refined by studying the actual bispectrum computed on several real monophonic

audio signals. The pattern is a sparse matrix with all non-zero values (denoted as dark dots) set to one.

The Iterative 2-D Pattern Matching block computes the similarity between the actual bispectrum (produced by

the Constant-Q Bispectral Analysis by using the spectrum samples given by the Octave Filter Bank block) of the

analyzed signal and the chosen 2-D harmonic pattern. Since only 12Noct spectrum samples (at the fundamental
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Figure 8. Spectrum and bispectrum generated by (a) a major third C3 − E3 and (b) a perfect fifth interval C3 − G3. Ten harmonics
have been synthesized for each note. The regions into dotted lines in the bispectrum domain highlight that local maxima of both single
monophonic sounds are clearly separated, while they overlap in the spectral representation.

frequencies of each note) are of interest, the bispectrum results to be a 12Noct×12Noct array.The cross-correlation

between the bispectrum and the pattern is given by:

ρ(k1, k2) =
CP−1∑

m1=0

RP−1∑

m2=0

P (m1,m2) |Bx(k1 + m1, k2 + m2)| , (6)

where 1 6 k1, k2 6 12Noct are the frequency indexes (spaced by semitone intervals), and P denotes the sparse

RP × CP 2-D harmonic pattern array. The ρ coefficient is assumed to take a maximum value when the template

array P exactly matches the distribution of the peaks of the played notes. If a monophonic sound has a fundamental

frequency corresponding to index q, then the maximum of ρ(k1, k2) is expected to be positioned at (q, q), upon the

first quadrant bisector. For this reason, ρ(k1, k2) is computed only for k1 = k2 = q and denoted in the following

as ρ(q). The 2-D cross-correlation computed in this way is far less noisy than the 1-D cross-correlation calculated

on the spectrum (as illustrated in the example in Appendix B). Finally, the ρ array is normalized to the maximum

value over each temporal frame.

The Iterative 2-D Pattern Matching block output is used by the Iterative Pitch Estimation block, whose task is

ascertaining the presence of multiple pitches in an audio signal.

4) Pitch Detection: (4a) - Recall on Spectrum Domain. Several methods based on pattern matching in the

spectrum domain were proposed for multiple-pitch estimation [5], [6], [7], [46]. In these methods, an iterative

approach is used. First, a single F0 is estimated by using different criteria (e.g., maximum amplitude, or lowest
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Figure 9. Detail (top figure) of the bispectrum of a bichord (A3 at 220 Hz and D4 at 293 Hz), played by two violins (bowed), sampled at
44100 Hz. The arrow highlights the frequency at 880 Hz, where the partials of the two notes overlap in the spectrum domain.
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Figure 10. Fixed 2-D harmonic pattern used in the validation tests of the proposed music transcriptor. It represents the theoretical set of
bispectral local maxima for a monophonic 7-partials sound all weights are set equal to unity.

peak-frequency); then, the set of harmonics related to the estimated pitch is directly canceled from the spectrum and

the residual is further analyzed until its energy is less than a given threshold. In order not to excessively degrade

the original information, a partial cancelation (subtraction) can be performed based on perceptual criteria, spectral

smoothness, etc. The performance of direct/partial cancelation techniques, on the spectrum domain, significantly

degrades when the number of simultaneous voices increases.
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(4b) - Proposed Method. The method proposed in this paper uses an iterative procedure for multiple F0 estimation

based on successive 2-D pattern extraction in the bispectrum domain. Consider two concurrent sounds, with

fundamental frequencies Fl and Fh (Fl < Fh), such that Fh : Fl = m : n. Let Fov = nFh = mFl be the

frequency value of the first overlapping partial. Consider now the bispectrum generated by the mixture of the two

notes (as an example, see Figure 8). A set of peaks is located at the same abscissa Fov, that is at the co-ordinates

(Fov, klFl) and (Fov, khFh), where kl = 1, 2, . . . , m − 1, kh = 1, 2, . . . , n − 1. Hence, the peaks have the same

abscissa but are separated along the y-axis. If, for example, Fl is detected as the first F0 candidate, extracting

its 2-D pattern from the bispectrum does not completely eliminate the information carried by the harmonic Fov

related to Fh, that is the peaks at (Fov, khFh) are not removed. On the contrary, if Fh is detected as the first F0

candidate, in a similar way the peaks at (Fov, klFl) are not removed. This is strongly different than in methods

based on direct harmonic cancelation in the spectrum, where the cancelation of the 1-D harmonic pattern, after the

detection of a note, implies a complete loss of information about the overlapping harmonics of concurrent notes.

The proposed procedure can be summarized as follows:

1) Compute the 2-D correlation ρ(q) between the bispectrum and the chosen template, only upon the first

quadrant bisector:

ρ(q) =
CP−1∑

m1=0

RP−1∑

m2=0

P (m1,m2) |Bx(q + m1, q + m2)| , (7)

derived directly from Equation (6)

2) Select the frequency value q0 yielding the highest peak of ρ(q) as the index of a candidate F0;

3) Cancel the entries of the bispectrum array that correspond to the harmonic pattern having q0as fundamental

frequency;

4) Repeat steps 1-3 until the energy of the residual bispectrum is higher than θEEB , where θE , 0 < θE < 1 is

a given threshold and EB is the initial bispectrum energy.

Once multiple F0 candidates have been detected, the corresponding energy values in the signal spectrum are

taken by the Pitch & Intensity Data Collector block, in order to collect also the intensity information. The output

of this block is the array π(t, q), computed over the whole musical signal, where q is the pitch index and t is the

discrete time variable over the frames: π(t, q) contains either zero values (denoting the absence of a note) or the

energy of the detected note. This array is used later in the Time Events Estimation module to estimate note durations,

as explained in the next section. In Appendix B, an example of multiple F0 estimation procedure, carried out by

using the proposed method is illustrated step by step. Results are compared with those obtained by a transcription

method performing a 1-D direct cancelation of the harmonic pattern in the spectrum domain. The test file is a real

audio signal, taken from RWC Music Database [39], analyzed in a single frame.



17

In conclusion, the component of the spectrum at the frequency Fov is due to the combination of two harmonics

related to the notes Fl and Fh. According to eq. (3), the spectrum amplitude at Fov affects all the peaks in the

bispectrum located at (Fov, klFl) and (Fov, khFh). Interference of the two notes occurring at these peaks is not

resolved; nevertheless, we deem that the geometry of the bispectral local maxima is a relevant information that is

an added value of the bispectral analysis with respect to the spectral analysis, as experimental results confirm.

D. Time Events Estimation

The aim of this module is the estimation of the temporal parameters of a note, i.e., onset and duration times. The

module is composed of three blocks, namely the Time-Frequency Representation block, the Onset Times Detector

block, and the Notes Duration Detector block.

The Time-Frequency Representation block collects the spectral information X(f) of each frame, used also to

compute the bispectrum, in order to represent the signal in the time-frequency domain. The output of this block is

the array X(t, q), where t is the index over the frames, and q is the index over pitches, 1 6 q 6 12Noct.

The Onset Times Detector block uses the variable X(t, q) to detect the onset time of the estimated notes, which

is related to the attack stage of a sound. Mechanical instruments produce sounds with rapid volume variations over

time. Four different phases have been defined to describe the envelope of a sound, that is Attack, Decay, Sustain

and Release (ADSR envelope model). The ADSR envelope can be extracted in the time domain - without using

spectral information - for monophonic audio signals, whereas this approach results less efficient in a polyphonic

context. Several techniques [47], [48], [49] have been proposed for onset detection in the time-frequency domain.

The methods based on the phase-vocoder functions [48], [49] try to detect rapid spectral-energy variations over

time: this goal can be achieved either by simply calculating the amplitude difference between consecutive frames

of the signal spectrogram or by applying more sophisticated functions. The method proposed in this paper uses the

Modified Kullback-Liebler Divergence function, which achieved the best performance in [50]. This function aims

at evaluating the distance between two consecutive spectral vectors, highlighting large positive energy variations

and inhibiting small ones. The modified Kullbak-Liebler divergence DKL(t) is defined by:

DKL(t) =
12Noct∑

q=1

log
(

1 +
|X(t, q)|

|X(t− 1, q)|+ ε

)
,

where t ∈ [2, . . . , M ], with M the total number of frames of the signal; ε is a constant, typically ε ∈ [10−6, 10−3],

which is introduced to avoid large variations when very low energy levels are encountered, thus preventing DKL(t)

to diverge in proximity of the release stage of sounds. DKL(t) is an (M − 1)-element array, whose local maxima

are associated with the detected onset times. Some example plots of DKL(t) are shown in Figure 11.

The Notes Duration Detector block carries out the estimation of notes duration. The beginning of a note relies on
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Figure 11. Results of onset detection procedure obtained applying the Modified Kullback-Liebler Divergence over audio spectrogram for
two fragments from RWC - Classical Database: (a) 7 seconds extracted from Mozart’s String Quartet n. 19, K465; (b) the first 30 seconds
of Mozart’s first movement of Sonata for piano in A major K331.

the DKL(t) onset locations. The end of a note is assumed to coincide with the release phase of the ADSR model and

is based on the time-frequency representation. A combination of the information coming from both the functions

X(t, q) and π(t, q) (the latter computed in the Pitch Estimation module, see III-C4) is used, as described below. The

rationale for using this approach stems from the observation of the experimental results: π(t, q) supplies a robust

but time-discontinuous representation of the detected notes, whereas X(t, q) contains more robust information about

notes duration. The algorithm is the following:

For each q̄ such that ∃π(t, q̄) 6= 0 for some t, do:

1) Execute a smoothing (simple averaging) of array X(t, q̄) along the t-axis;

2) Identify the local maxima (peaks) and minima (valley) of the smoothed X(t, q̄);

3) Select from consecutive peak-valley points the couples whose amplitude difference exceed a given threshold

θpv;

4) Let (V1, P1) and (P2, V2) be two consecutive valley-peak and peak-valley couples that satisfy the previous

criterion: the extremals (V1, V2) identify a “possible note” event;

5) For each “possible note” event, do:

a) Estimate (V̄1, V̄2) ⊂ (V1, V2) such that (V̄1, V̄2) contains a given percentage of the energy in (V1, V2);

b) Set the onset time ONT of the note equal to the maximum of the DKL(t) array nearest to V̄1;

c) Set the offset time OFFT of the note equal to V̄2;

d) If π(t, q̄), with t ∈ (ONT ,OFFT ) contains non-zero entries, then a note at the pitch value q̄, beginning

at ONT and with duration OFFT - ONT is detected.
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E. System Output Data

The Post-Processing module tasks are the following. First, a cleaning operation in the time-domain is made in

order to delete events having a duration shorter than a user defined time tolerance parameter TTOL. Then, all the

information concerning the estimated note is tabulated into an output list file. These data are eventually sent to

a MIDI Encoder (taken from the Matlabr MIDI Toolbox in [51]), which generates the output MIDI SMF0 file,

provided that the user defines a tempo value TBPM , expressed in beats per minute.

IV. EXPERIMENTAL RESULTS AND VALIDATION

In this section, the experimental tests that have been set up to assess the performances of the proposed method

are described. First, the evaluation parameters are defined. Then, some results obtained by using excerpts from the

standard RWC-C database are shown, in order to highlight the advantages of the bispectrum approach with respect

to spectrum methods based on direct pattern cancellation. Finally, the results of the comparison of the proposed

method with others participating at the MIREX 2009 contest are presented.

A. Evaluation parameters

In order to assess the performances of the proposed method, the evaluation criteria that have been proposed in

MIREX 2009, specifically those related to the multiple F0 estimation (frame level and F0 tracking), were chosen.

The evaluation parameters are the following [52]:

• Precision: the ratio of correctly transcribed pitches to all transcribed pitches for each frame, i.e.,

Prec =
TP

TP + FP
,

where TP is the number of the true positives (correctly transcribed voiced frames) and FP is the number of

false positives (unvoiced note-frames transcribed as voiced).

• Recall: the ratio of correctly transcribed pitches to all ground truth reference pitches for each frame, i.e.,

Rec =
TP

TP + FN
,

where FN is the number of false negatives (voiced note-frames transcribed as unvoiced).

• Accuracy: an overall measure of the transcription system performance, given by

Acc =
TP

TP + FN + FP
.

• F-measure: a measure yielding information about the balance between FP and FN , that is

F-measure = 2× Prec× Rec
Prec + Rec

.
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B. Validation of the proposed method by using the RWC-C database

1) Experimental data set: The performances of the proposed transcription system have been evaluated by testing

it on some audio fragments taken from the standard RWC - Classical Music Database. The sample frequency is

44.1 kHz and a frame length of 256 samples (which is approximately 5.8 ms) have been chosen.

For each audio file, segments containing one or more complete musical phrases have been taken, so that the

excerpts have different time lengths. In Table II, the main features of the used test audio files are reported. The set

includes about 100000 one-frame-long voiced events.

Table II
TEST DATA SET FROM RWC - CLASSICAL DATABASE. VN(S): VIOLIN(S); VLA: VIOLA; VC: CELLO; CB: CONTRABASS; CL: CLARINET

# Author Title Catalog Number Instruments
Data RWC-MDB
(1) J.S. Bach Ricercare a 6, BWV 1079 C-2001 n. 12 2 Vns, Vc
(2) W. A. Mozart String Quartet n. 19, K 465 C-2001 n. 13 Vn, Vla, Vc, Cb
(3) J. Brahms Clarinet Quintet, op. 115 C-2001 n. 17 Cl, Vla, Vc
(4) M. Ravel Ma Mï£¡re l’Oye, Petit Poucet C-2001 n. 23B Piano
(5) W. A. Mozart Sonata K 331, 1st mov. C-2001 n. 26 Piano
(6) C. Saint - Saëns Le Cygne C-2001- n. 42 Piano and Violin
(7) G. Faurï£¡ Sicilienne, op. 78 C-2001 n. 43 Piano and Flute

The musical pieces were selected with the aim of creating an heterogeneous dataset: the list includes piano solo,

piano plus soloist, strings quartet and strings plus soloist recordings. Several metronomic tempo values were chosen.

The proposed transcription system has been realized and tested in Matlabr environment installed on a dual core

64-bit processor 2.6 GHz with 3 GB of RAM. With this equipment, the system performs the transcription in a

period which is approximately fifteen times the input audio file duration.

2) Comparison of bispectrum and spectrum based approaches: In this section, the performances of bispectrum

and spectrum based methods for multiple F0 estimation are compared. The comparison is made on a frame-by-frame

basis, that is every frame of the transcribed output is matched with every corresponding frame of the ground truth

reference of each audio sample, and the mismatches are counted.

The proposed bispectrum based algorithm, referred to as BISP in the following, has been described in Section

III-C. A spectrum-based method, referred to as SP1 in the following, is obtained in a way similar to the proposed

method by making the following changes: 1) the bispectrum front-end is substituted by a spectrum front-end; 2) the

2-D correlation in the bispectrum domain, using the 2-D pattern in Figure 10, is substituted by a 1-D correlation

in the spectrum domain, using the 1-D pattern in Figure 1. Both bispectrum and spectrum based algorithms are

iterative and perform subsequent 2-D harmonic pattern extraction and 1-D direct pattern cancelation, after an F0

has been detected. The same pre-processing (constant-Q analysis), onset and duration, and post-processing modules

have been used for both algorithms. A second spectrum-based method, referred to as SP2 in the following, in which
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F0 estimation is performed by simply thresholding the 1-D correlation output without direct cancelation, has been

also considered.

The frame-by-frame evaluation method requires a careful alignment between the ground truth reference and the

input audio. The ground truth reference data have been obtained from the MIDI files associated to each audio sample.

The RWC-C Database reference MIDI files, even though quite faithful, do not supply an exact time correspondence

with the real audio executions. Hence, time alignment between MIDI files and the signal spectrogram has been

carefully checked. An example of the results of the MIDI-spectrogram alignment process is illustrated in Figure 12.
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Figure 12. Graphical view of the alignment between reference MIDI file data (represented as rectangular objects) and the spectrogram of
the corresponding PCM Wave audio file (b). The detail shown here is taken from a fragment of Bach’s Ricercare a 6, The Musical Offering,
BWV 1079 (a), which belongs to the test data set.

The performances of algorithms BISP, SP1 and SP2 applied to the audio data set described in section IV-B1

are shown in Tables III, IV and V. The Tables show the overall accuracy and the F-measure evaluation metrics,

as well as the TP, FP and FN for each audio sample. A comparison of the results is presented in Figure 13, and a

graphical comparison between the output of BISP and SP1 is shown in Figure 15. In Figure 14, a graphical view

of the matching between the ground truth reference and the system piano-roll output representations is illustrated.

The results show that the proposed BISP algorithm outperforms spectrum based methods. BISP shows an overall

accuracy of 57.6%, and an F-measure of 72.1%. Since pitch detection is performed in the same way, such results

highlight the advantages of the bispectrum representation with respect to spectrum one. The results are encouraging

considering also the complex polyphony and the multi-instrumental environment of the test audio fragments.

The comparison with other automatic transcription methods is demanded to the next section, where the results

of the MIREX 2009 evaluation framework are reported.
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Table III
BISP: TRANSCRIPTION RESULTS OBTAINED WITH THE TEST DATA SET LISTED IN TABLE II.

# Data Reference events TP FP FN Accuracy% F-measure%
(1) 16063 11025 2482 5038 59.4 74.6
(2) 6584 4401 2158 2223 50.1 66.8
(3) 12652 8865 2079 3787 60.2 75.1
(4) 12424 10663 2655 1761 70.8 82.8
(5) 6054 4120 1294 1934 56.1 71.8
(6) 20032 15122 6746 4910 56.5 72.2
(7) 21653 16563 9933 5090 52.4 68.8

TOTAL 95412 70759 27347 24743 57.6% 72.1%

Table IV
SP1: TRANSCRIPTION RESULTS OBTAINED WITH THE TEST DATA SET LISTED IN TABLE II.

# Data Reference events TP FP FN Accuracy% F-measure%
(1) 16063 10348 6327 5715 46.4 63.2
(2) 6584 3216 2021 3318 38.0 54.6
(3) 12652 6026 8187 6626 29.0 44.9
(4) 12424 10363 3920 2061 63.8 77.6
(5) 6054 4412 4542 1642 42.0 58.8
(6) 20032 9952 7558 10080 36.2 53.0
(7) 21653 11727 9813 9926 37.4 54.3

TOTAL 95412 56044 42368 39368 40.7% 57.8%

C. Results from MIREX 2009

The Music Information Retrieval Evaluation eXchange (MIREX) is the community-based framework for the

formal evaluation of Music Information Retrieval (MIR) systems and algorithms [53]. In 2009, MIREX has reached

its fifth running. The proposed BISP method has been submitted for an evaluation and a comparison with the other

participants in the field of Multiple Fundamental Frequency Estimation & Tracking, which is divided into the

following tasks: 1) Multiple Fundamental Frequency Estimation (MF0E); 2A) Mixed Set Note Tracking (NT); and

2B) Piano Only Note Tracking. Task 1 is a frame level evaluation (similar to that described in section IV-B2) of the

Table V
SP2: TRANSCRIPTION RESULTS OBTAINED WITH THE TEST DATA SET LISTED IN TABLE II.

# Data Reference events TP FP FN Accuracy% F-measure%
(1) 16063 10234 7857 5829 42.8 59.9
(2) 6584 2765 2243 3769 31.5 47.9
(3) 12652 6206 9590 6446 27.9 43.6
(4) 12424 9471 3469 2953 59.6 74.7
(5) 6054 3642 3844 2412 36.8 53.8
(6) 20032 7769 6692 12263 29.1 45.0
(7) 21653 10399 8023 11254 35.0 51.9

TOTAL 95412 50486 41718 44926 36.8% 53.8%
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Figure 13. Results of comparison between bispectrum based (BISP) and spectrum based (SP1 and SP2) multi-F0 estimation methods. SP1
performs iterative pitch estimation and harmonic pattern subtraction; SP2 performs simple thresholding of cross-correlation measure.

(a) (b)

Figure 14. Graphical (piano-roll) view of event matching between the ground truth reference and transcribed MIDI (b), related to Ravel’s
Ma Mï£¡re l’Oye - Petit Poucet (a), present in the test data set.

submitted methods. Task 2 considers as events to be detected notes characterized by pitches, onset and offset times.

For a specific definition of tasks and evaluation criteria, the reader should refer to [54]. Two different versions of

the proposed system have been submitted to MIREX: they are referred to as NPA1 and NPA2 as team-ID. The

differences between the two versions regard mainly the use of the Time Events Estimation module: NPA1 simply

performs a multiple-F0 estimation without onset and duration times detection, whereas NPA2 uses the procedures

described in Section III-D. As a result, NPA2 has reported better results than NPA1 in all the three tasks considered.

A detailed overview of the overall performance results is available at [55], see section Multiple Fundamental
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Figure 15. Graphical comparison between piano-roll output of BISP and SP1, and the reference ground truth data. The test audio example
is a fragment of the 3rd variation of Mozart’s Piano Sonata K 331.

Frequency Estimation and Tracking Results.

For Task 1 (MF0E), accuracy has been chosen as a key performance indicator. The proposed system NPA2 is mid-

level ranked, with an accuracy of 48%; anyway, it presents the second highest recall rate (76%); this demonstrates

that the proposed system has a good capability in detecting ground truth reference notes, showing a tendency

in detecting more false positives than false negatives. For Task 2A (Mixed Set NT) and Task 2B (Piano Only

NT), F-measure has been chosen as the overall performance indicator. In Task 2A, the proposed system NPA2 has

achieved the third highest F-measure rate and the second highest recall rate; again the precision rate show a quite

high false positive detection rate. In Task 2B, the proposed system NPA2 is top-ranked, outperforming all the other

competitors’ systems.

Results of MIREX 2009 are summarized in Figures 16-18

V. CONCLUSIONS

In this paper a new technique for automatic transcription of real, polyphonic and multi-instrumental music has

been presented. The system implements a novel front-end, obtained by a constant-Q bispectral analysis of the

input audio signal, which offers advantages with respect to lower dimensional spectral analysis in polyphonic pitch

estimation. In every frame, pitch estimation is performed by means of a 2-D correlation between signal bispectrum

and a fixed bi-dimensional harmonic pattern, while information about intensity of detected pitches is taken directly
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Figure 16. Results of MIREX 2009 evaluation task 1: Multiple F0 estimation on a frame by frame level (MF0E). The system proposed in
this paper has been submitted in two different versions, referred to as NPA1 and NPA2, from the name of the authors.
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Figure 17. Results of MIREX 2009 evaluation task 2A: Mixed-set note tracking (NT).

from the magnitude spectrum. Onset times are detected by a procedure that highlights large energy variations

between consecutive frames of the time-frequency signal representation. Such a representation is also the basis

for note durations estimation: a pitch against time representation of detected notes is compared with the audio

spectrogram; the duration of each detected note event in the former is adjusted to the duration of corresponding

event in the latter. All these data concerning pitches, onset times, durations and volumes are tabulated and output

as a numerical list and a standard MIDI file is produced.

The capabilities and the performance of the proposed transcription system have been compared with a spectrum

based transcription system. The evaluation data set has been extracted from the standard RWC - Classical Database;

for this purpose the whole architecture has been left the most general as possible, without introducing any a priori

knowledge. Standard parameters have been used for validation. Our system successfully identified over 57% of

voiced events, with an overall F-measure of 72.1%. Finally, a comparison with other methods have been made

within the MIREX 2009 evaluation framework, in which the proposed system has achieved good rankings: in
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Figure 18. Results of MIREX 2009 evaluation task 2B: Piano-only note tracking (NT).

particular, it has been top ranked in the piano-only tracking task. The MIREX results show a very good overall

recall rate in all the three tasks the proposed system was submitted to. The weakest aspect seems to be a still quite

high false positive rate, which affects the precision rate. This could be further improved with the introduction of

physical / musicological / statistical models, or any other knowledge that may be useful to solve the challenging task

of music transcription. The added values of the proposed solution, with respect to the methods based on multi-F0

estimation via direct cancellation on the spectrum domain, are the less leakage of information in presence of partial

overlapping, and the computation of a clearer 2-D cross-correlation which leads to stronger decision capabilities.
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