Reengineering Analysis of
Object-Oriented Systems via
Duplication Analysis

F. Floravanti, G. Migliarese, P. Nesi

Department of Systems and Informatics

University of Florence
Via S. Marta 3, 50139, Firenze, Italy
tel: +39-055-4796523, fax: +39-055-4796363
nesi@ingfil.ing.unifi.it, nesi@dsi.unifi.it
http://www.dsi.unifi.it/~nesi

ICSE 2001, Canada

Problem Description

@ Different OO software applications evolved on the basis
of the same Initial version of an OO Class Library or FW
@ Re-engineering the
« library (generalising, improving, etc.) and
& applications (sharing more code with the library)
@ Via Code Analysis looking for duplications
& manual/assisted inspection for duplication and reasoning
& duplication analysis with TREND tool
& comparison of these processes

Evolution ’M Reengineerin New System A
Domain Analysis Q \ T
New

Domain or :
framework/li

framework/librar ~~Evolution /
‘ﬁ’ Reengineering

Reengineering Process

ICSE 2001, Canada

Problem Description, Why and Effects

@ Reengineering performed to
& extend the library/framework application domain
& reduce costs of maintenance, of applications and of library
& Increase maintainability, ...
& reduce the fault proneness,

@ Unfortunately, high costs for code reengineering
understanding
navigation
processing:

method generalisation, moving attributes, changing
class hierarchy, etc.

ICSE 2001, Canada

Duplications and Similarities in OO systems

@ Functional Duplications (cut and past !!)
& Self duplication of code segments (methods and/or classes)
& duplication of methods instead of parameterisation
& similar methods in different classes, different types

@ Structural Similarities

& similar classes in terms of data structure
& classes with different names, modelling “similar” objects
& class attributes of the same type with different names for

“modelling the same aspects”

\4 \4
‘X

Module 1

ICSE 2001, Canada

Module 2

Duplication Analysis and Metrics for OO

@ Duplication analysis can be influenced by
& #... solving
&« format dependency
blank lines, comments, etc.
& single line vs small sequences of duplicated lines
& variable and their types
& computationally intensive
epolishing code, standardizing formatting
® To reduce these problems: pre-processing and
specific metrics and a method for OO systems
& detecting duplications at levels of
files, classes and methods
& class similarity on class structure and hierarchy

/S
D

1 ICSE 2001, Canada

D

/S

\I

Research Tool: TREND

support for the Reengineering Process
& Code Analysis for object oriented code

Several different algorithms and metrics for
& pre-processing
& duplication analysis
& similarity detection
Reasoning on results, Method proposed
& support of visualisation methods
Reorganisation of classes/methods in modules
& classes and methods assignment to modules, packages
code indexing for
& fast manual precise reengineering

ICSE 2001, Canada

General TREND Process Architecture

= General information
\SOU\EESJ on data variables and
constants

Preprocessing

. (-Structural Metrics on data:
: attributes, classes, structures,
4 unions, templates.

P . TH Metrics code flow
reprocessing. ~ _(methods and procedure)

4 # elimination —> Files H—’

v Reformatting

\/—_
—p Code Analysis
v metric estimation _,Classes”]—»

¥ code reorganization —

v variable ->type M
K

-
Functional metrics on :
- : /Indexmg of
duplication for file, S
duplications
Y class and method levels.

-

1 ICSE 2001, Canada

Pre-processing algorithms

@ SPA, Source Processing Algorithm
& Comment elimination, preprocessing phase of compiler

@ SFA, Source Formatting Algorithm
& one instruction per line ({ and } on different lines)
& structural metrics estimation
& code reorganization, one Hxx + one Cxx per class
& flow charts of methods and procedures

I @ VSA, Variable Substitution Algorithm
& substitution of Variable names with their type/class name

ICSE 2001, Canada

Code analysis, Duplication analysis

@ Algorithms for Duplication Estimation
« line duplication at level of files, class and methods

& sequence of duplicated lines (minimum number of ﬂ“cﬂs
duplicated lines to consider a duplication) Sﬂu“

& estimation of duplication metrics II

@ Extraction of structural and functional aspects
& structural similarities of classes
& metric values about similarities

® Results analysis
some guidelines for reasoning on tables
visualisation mechanisms
code indexing for code navigation

A

I ICSE 2001, Canada 9

General and Structural Metrics

TNAL Total Number of Locally defined Attributes
TLOC Total number of Lines Of Code

NCL Number of system classes

TNML Total Number of Locally defined Methods

Nbyte Total Number of bytes of the system source files

NFile Total Number of system source Files

® NAL; Number of local attributes of the i-th class

® NALST,; (Number of Attributes Locally defined with the Same Type)
number of identical in type attributes between two classes, independently
of the access qualifier (i.e., private, protected and public)

ICSE 2001, Canada

10

Metrics for Duplication Analysis

NL; Number of Lines of entity X;

NLID; (Number of Lines Duplicated) number of code lines of X; which h
are also present in X

NLIDS;; (Number of Lines In Duplicated Sequences) length of the
sequence of lines of X; that are also present in X;,
In the next tables the number of consecutive Ilnes was set to 3

IID;; = 100 NLD;/NI; (Identity Index of Duplication)
Dupllcatlon |ndex of X; with respect to X

IID_S;; = 100 NLIDS;/NI; (ldentity Index of Duplication in Sequences)

>Matrices

NxM

Dupllcatlon index of X W|th respect to X, by considering only the J N+M
seqguences of dupllcated lines o
IID;; typically different than IID;, etc. entities
1
HM = .] HM Harmonic Mean of the above IID, IID_S metrics
mean{ }
al an
vje S;u S, Sl=mean{liD;} System Identity on NxM, (N+M)x(N+M) values

ICSE 2001, Canada

11

Reengineering Process: Case Study

® two applications: MWB and VM
& based on the same class library
& developed by different teams
& based on the same application domain
® Reengineering to obtain
a New Library and New Applications
& Increment of maintainability, less code, larger library
& Investment for new applications
® Manual reengineering

& Adoption of a simple tool for duplication detection,
no pre-processing and no metrics.

I & skilled people

Results compared with those obtained by using
the proposed metrics and tool, TREND

1 ICSE 2001, Canada

12

Performed Analyses

Duplication

Self-duplication analysis

Domain Analysis
Domain or
framework/librar q

plication estimation

may include the . _ | "

estimation of self t eenglneeﬂrqmg anl? ysis

duplications O assess the wor
performed by the team

ICSE 2001, Canada

13

Manu

al Re-engineering Results

System NFile NCL TNML | TNAL | TLOC NBYTE
MWB/VM old 7 76 589 674 12.016 389.921
MWB/VM new 10 62 530 640 11.708 415.659

@ 20 classes have been changed and some lines added

OPERATION PERFORMED NUMBER OF CLASSES
Deleted 14
Modified and moved in the library 13
Modified 7
Moved in the library 10
Unchanged 32

MWSB old

| MO_MWAB.hxx | MO_MWAB.cxx | | MO _list.hxx |
Z
R ¥
(Deleted

\ 4 \ 4 \ 4 \ 4
| MN_MWB.hxx | MN_MWB.cxx I | MN_sys_dati.hxx | MN_sys_dati.cxx I

MWB new

VM old

| MO_VM.hxx | MO_VM.cxx | | Other files |

Other files

\ 4 \ 4
| MN_VM.hxx | MN_VM.cxx |

VM new

I ICSE 2001, Canada 14

Problems Remained from Manual Reengineering.

® Some duplications were still present in the
new applications:

« for the lack of detection of structural similarities, the class
hierarchy was not modified in deep

& several files with more than 20% of duplication,
among these: 3 present more than the 30% of duplication.

® Similarities were hard to be identified

& structural similarities and duplications should drawn the
reengineering process

& a manual reengineering with a greater precision was impossible
with only 6 MM of effort

/S
D

1 ICSE 2001, Canada

TREND Pre-Processing

@ Pre-processing of old MWB and VM Files

Algorithm Sl

No Preprocessing 6.88
SPA 8.38
SFA 10.63
SPA+SFA 13.50
SPA+SFA+VSA 17.25

@ Slis the System Duplication Index (mean of IID matrices)
data obtained for the estimation at file level

® SPA+SFA+VSA was the best solution for preparing the
duplication analysis as confirmed by the experts
considering the values estimated by the single modules

/S
D

1 ICSE 2001, Canada

File Duplication Analysis, Old Versions

FILE1 FILE2 [IDXY IIDXY_S HM

.Only files with HM>27% [mo_Tisthxx MO_VM.cxx $ 85 83| 70

MO_VDialog.cxx MO_gpro.cxx 59 39 38

have been reported MO _list.hxx MO_MWB.cxx : 61 37 37

.CXX and Hxx files were [mMo_gpro.cxx MO_VDialog.cxx qggp 56 36 35

- d d MO _list.hxx MO_VDialog.cxx 60 35 35

consiaere MO_MWB.cxx MO_VM.cxx g 56 31 33

MO_MWB.hxx MO_VM.hxx 54 34 33

80 MO_VM.cxx MO_MWB.cxx 51 24 32

70 MO _list-hxx MO _gpro.cxx 57 28 30
60] .

co MO _VDialog.cxx MO_VM.cxx ‘ 52 ?9 3Q

HM

40

301
201
0 v I~y

— ™M 1O N~ O

11 |
|
|

iiiiiiiiii

13
15

@ T A A 0 Y ol © > B
- << AN N N N N ™M

Comparison Number

® This analysis confirmed the work performed by the experts
& deletion of MO _list.hxx
& moving part of MO_MWB.cxx and MO_VM.cxx into LIB

I ICSE 2001, Canada 17

File vs Class Level Analysis

@ File level analysis is too coarse for reasoning on classes
and class hierarchy
@ In many cases,
& HxX files contain more than one class (negative aspect)
& Cxx files contain a large number of methods

@ Class level analysis
& structural analysis of classes
& duplication analysis of class definition (non useful)
& duplication analysis on class methods

@ These analysis produce complementary information

& In terms of attributes’ types two classes may similar or even
identical structure, but

& their functional part, methods, may confirm or not the similarity.

1 ICSE 2001, Canada

18

Class Structural Analysis of the Old Versions

® Similar classes

<
@ self Similarity in VM —

@ self Similarity in MWB—"=

CLASS; (FILE)

CLASS; (FILE)

O Similarity analysis VM-MWB

On 76 classes of the old systems,

5776 values, these are those with
HMm>= 80%

-

NAL; [NAL, |INALST|{HMm

/‘New_Sys_Metric New_Class_Metric |74 75 74 99 >

(MO _VM.hxx) (MO _VM.hxx)

Function Class 13 12 11 88 ?

(MO VM.hxx) (MO VM.hxx) N

System_Custom_M [Class_Custom_Met 23 31 23 (85

etric_Parser ric_Parser

(MO_VM.hxx) (MO_VM.hxx) P

Function Method 13 18 13 84

(MO_VM.hxx) (MO_VM.hxx) K‘)

Method Class 18 12 12 80
>(MO VM .hxx) (MO _VM.hxx)

Contenitore Contenitore Value |2 3 2 80

(MO_MWAB.hxx) (MO_MWAB.hxx)

Contenitore_Value |[Global 3 2 2 80

(MO MWAB.hxx) (MO MWAB.hxx)

Contenitore_Value [Metriche 3 2 2 80

(MO _MWAB.hxx) (MO MWAB.hxx)

Contenitore_Value [VMDialog 3 2 2 80

(MO MWAB.hxx) (MO MWAB.hxx)

PlotDialog Variable 5 4 4 89

(MO MWAB.hxx) (MO VM.hxx)

Attributo Variable 3 4 4 86

(MO MWAB.hxx) (MO VM .hxx)

Method View 6 6 5 83

(MO_MWAB.hxx) (MO_VM.hxx)

Attributo Parent 3 2 2 80

(MO MWAB.hxx) (MO VM .hxx)

Contenitore_Value |Global_Variable 3 2 2 80

(MO_MWAB.hxx) (MO_VM.hxx)

Info Parent 3 2 2 80

(MO _MWAB.hxx) (MO _VM.hxx)

InfoDialog Variable 6 4 4 80

(MO MWB.hxx) (MO VM.hxx)

LISTA Container 2 3 2 80

(MO _MWAB.hxx) (MO _VM.hxx)

Method Variable 6 4 4 80

(MO MWAB.hxx) (MO VM.hxx)

ICSE 2001, Canada

Class Functional Analysis of Old Versions

MO MWB (1) MO VM (2) 11D, [11Dy; [1ID Sy, [1ID Sy
O MWB and VM class methods |5 - A
with duplications > [lLine Line 96 196 |96 96
InfoOpen InfoOpen 01 100 [91 100
%)
(“D>60 /0 Value Selected Metric |75 61 65 43
Single Metric [Value 65 75 44 65
ErrorDialog |ErrorDialog 61 89 27 81
]] Class; Class; NL; |[NL, [lID_Si; [ID_S;; |HM
VM self dUp'IC&tIOn New_Class_ |New_Sys_Metri| 824 | 776 01 96 (94
Metric c —
ClaSS mEthOdS Class_Custo |System Custo | 200 | 147 74 98 84 |)
m_Metric_Pa|m_Metric_Pars
(11D >70%) " fiser e
7 Function Method 194 | 228 74 78 75 D
Attribute Variable 110 60 76 67 74
Class Function 189 | 194 74 76 (73
. MWB self duplication
Classl ClB.SSz NL; |NL> ”D_Slz ||D_821 HM
CIaSS methOdS UkdmDialog VMDialog 139 |114 |62 81 71
(||D>5OO/0\T »lICustomMetric |MetricMember [105 [198 |49 58 59
Single_Metric [Value

20

1 ICSE 2001, Canada

L L
Summary: Class Analysis of the Old Versions

® The selection of classes presenting a structural similarity and/or
functional duplication has allowed to identify the most heavy
duplicated classes

® This approach allowed to detect and analyse all relevant
duplicated classes in the 30% of time needed to “manual”
operation (including the results analysis)

® Great part of classes with HM>50% have been also
manipulated by the team during manual reengineering

® VM presented a stronger self duplication than MWB
® Common classes have been detected and moved into the LIB.
OPERATION TO PERFORM NUMBER OF CLASSES
Deletion 20
Moving in the library 20
System Nfile |[NCL |TNML |[TNAL
MW B/VM old 7 76 589 674
MWB/VM new 10 62 F530\ 4640\ Manual
MWB/VM TREND [112) {56) \505 623
i B

I ICSE 2001, Canada 21

Method Analysis of the Old Versions

@ ldentification of similar methods
& In the same classes
« In different classes
& structural reasoning about the method parameters
& flow chart analysis
& analysis based on flow chart metrics

@ reasoning about the distribution of similar methods
along the class hierarchy

@ Definition of guidelines for manipulating methods

ICSE 2001, Canada 22

Reengineering Process Analysis, File Level
® To Assess the performed manual

Reengineering

® Analysis of code movements

® Old systems have been compared
with the new versions, main files [VN_gprocx

¢ E.g.:

% MN_Metric_Dialog.cxx/hxx are MN_Vdialog.oxx

guite completely new.

& MN_sys dati.cxx derives its code

from MO_MWAB.cxx and
MO_VM.cxx

File Level, main files

y 12 |g 5
%I z| 2| 2| g| E| E|
o |2 (2 |2 (294129 |2
= = = = =X |= =

MN_ MetricDialog.cxx

MN_ MetricDialog.hxx

MN_MWB.cxx

MN_MWB.hxx

MN_sys_dati.cxx

MN_sys_dati.hxx

MN_VM.cxx

MN_VM.hxx

ICSE 2001, Canada

HM between 1% end 20%
HM between 21% and 50%
HM between 51% and 80%
HM between 81 % anc 100%

23

Reengineering Process Analysis, class level

® New Classes having light
columns have been

| — |

e |

g

created

® Old classes having more
than one dark box
highlight still present
duplications

the general spreading of
colour gives an idea of
the work performed by
the reengineering team

N

Old
Claisses

I T
X oy

H N -

e EEw =

ICSE 2001, Canada

New Classes

24

Some additional data

@ Support for the reengineering process
@ Support for assessing the reengineering process

@ Strong reduction of time analysis
Manual to semiautomatic:

& 1 MM instead of 8days
& A lot of manually non detected duplications

MWB/VM Files | Classes | Methods
Number 7 76 589
#comparisons 21 2.850| 173.166
Time CASH alg 3s 140 s 530 s
Number of Lines 11.149| 10.380 10.380
Total Byes 389.921| 248.331| 248.331

ICSE 2001, Canada

25

Conclusions

@ A Method and its adoption for
&« duplication detection and analysis
& similarity detection and analysis
& It can be used on different languages and cases

@ Duplication analysis of object-oriented systems

file, class, and method levels
« file level analysis is not enough to get conclusions
& simple duplication metrics and tools are not effective, HM

@ The tools defined includes
& algorithms for duplication and similarity
& specific metrics for the process
& suitable visualisation tools
& code reorganisation tool

1 ICSE 2001, Canada

26

Detalled Estimation Costs

By knowing the effort of maintenance it is possible to estimate the
costs of: duplication, deletion and addition.

qupfi] — NLF 201> 11D21[i]
100

new[i]= NLF2[i]—dup[i] | Number of new/added lines

del[i]= NLF1i] - dupl[i] Number delted lines

E_M[i]=Effort Measure
for each class couple i of
classi C1[i], C2[i].

Number of reused/duplicated lines

Multilinear Regression toestimatea, b, ¢, d
E _ M[i]=a*dup[i]+b* new[i]+ c * del[i]+d

ICSE 2001, Canada 27

Detalled Estimation CoStS a real case

1) multilinear regression analysis

R 0,858
R-squared 0,736
stderr 47,9
Coeffi p-val
d d=10,68 0,0086
dup a=0,245 3.86E-18
new b =0,197 4.34E-15
del c =0,463 2.01E-16

1000

600

E stimated EFffort

Correlation: Effort estimated and mearued
with metrics ID21

800 -

*

400 -

200 -

400 600 800
Measured Effort

200 1000

3) Correlation Analysis

Estimated Effort = a* DUP + b*NEW + c*DEL + d *N

DUP = a*X dupli]
NEW = b*Z newl]i]
DEL = c¢*Z del]i]
D =d*N

-effort of code reuse

-effort of code addition
-effort of code deletion
fixed cost of code analysis

ICSE 2001, Canada

28

