Chapter 03

data fom the bufler at its leisug without losing any datadm the port. Likewise, a typi-
cal interupt-driven output system (that gets an iniptrwhenever the output device is
ready to accept merdata) caneamove data &m a bufer whenever the peripheral device
is ready to accept new data.

3.6 Laboratory Exercises

In this laboratory you will use the “SIMX86.EXE” ggram found in the Chapter
Three subdiectory This pogram contains a built-in assembler (compiler), debugapet
interrupter for the x86 hypothetical CPU%u will learn how to write basic x86 assembly
language prgrams, assemble (compile) them, modify the contents of mearalhexe-
cute your x86 mgrams. You will also experiment with memory-mapped /O,
I/0-mapped input/output, DMA, and polled as well as intetrdriven /O systems.

In this set of laboratory exases you will use the SIMx86.EXEqgram to enterdit,
initialize, and emulate x86 pgrams. This mgram equites that you install two files in
your WINDOWS\SYSTEM diectory Please see the README.TXT file in the CH3 subdi-
rectory for moe details.

3.6.1 The SIMx86 Program — Some Simple x86 Programs

To run the SIMx86 psgram double click on its icon or choosa from the Whdows
file menu and enter the pathname for SIMx86. The SIMx8§ram consists of the main
screen that you can select by clicking on Huior, Memory, or Emulator notebook tabs in
the window By default, SIMx86 opens the Editor sen. Fom the Editor sa@en you can
edit and assemble x86ggrams; fom Memory saen you can view and modify the con-
tents of memory; 6m the Emulator seen you execute x86qgrams and view x86 @
grams in memoty

The SIMx86 pogram contains two menu items: File and Edit. Thesstandad Wn-
dows menus so theiis little need to describe their operation except for two points. First,
the New Open, Save, and Sa®s items under the file menu manipulate the data in the
text editor box on the Editor &=n, they do not f&ct anything on the other sans. Sec-
ond, the Print menu item in the File menu prints thecgocode appearing in the text edi-
tor if the Editor saen is active, it prints the emtiform if the Memory or Emulator
scleens a active.

To see how the SIMx86 pgram operates, switch to the Editoresar (if you a@ not
already thee). Select “Open” &m the File menu and choose “EX1.X8ajrnm the Chapter
Three subdiectory That file should look like the following:

mov ax, [1000]
mov bx, [1002]
add ax, bx
sub ax, 1
mov bx, ax
add bx, ax
add ax, bx
halt

This short code sequence adds the two values at location 1000 and 1002, subtracts one
from their sum, and multiplies thesult by thee (ax + ax) + ax) = ax*3), leaving the esult
in ax and then it halts.

On the Editor s&@en you will see tiee objects: the editor window itself, a box that
holds the “StartingAddress,” and an “Assemble” button. The “Startihddress” box
holds a hexadecimal number that specifies /e assembler will srthe machine
code for the x86 gram you write with the editoBy default, this adésss is zey. About
the only time you should change this is when writing infgrservice outines since the
default eset addrss is zar. The “Assemble” button dicts the SIMx86 jmgram to con-

Page 128

System Organization

vert your assembly language sweircode into x86 machine code and esttire esult
beginning at the Startinfgddress in memoryGo ahead and @ss the “Assemble” button
at this time to assemble thisogram to memory

Now press the “Memory” tab to select the memoryesar On this seen you will see
a set of 64 boxes arranged as eights of eight boxes.dlthe left of these eighbws you
will see a set of eight (hexadecimal) memory edsles (by default, theses &000, 0008,
0010, 0018, 0020, 0028, 0030, and 0038). This tells you that the first eight boxes at the top of
the sceen corespond to memory locations 0, 1, 2, 3, 4, 5, 6, and 7; the sexomd eight
boxes comspond to locations 8, 8, B, C, D, E, and F; and so @kt this point you should
be able to see the machine codes for thgrnam you just assembled in memory locations
0000 though 000D. Theast of memory will contain zes.

The memory sa&en lets you look at and possibly modify 64 bytes of the total 64K
memory povided for the x86 mrtessors. If you want to look at some memory locations
other than 0000 tbugh 003Fall you need do is edit the first adds (the one that cur
rently contains ze). At this time you should change the starting addrof the memory
display to 1000 so you can modify the values ates$dis 1000 and 1002rfremberthe
program adds these two values togethenpelthe following values into the cespond-
ing cells: at addiss 1000 enter the value 34, at location 1001 the value 12, at location 1002
the value 01, and at location 1003 the value 02. Note that if you type an illegal hexadecimal
value, the system will turn that celild and beep at you.

By typing an addrss in the memory display starting askdr cell, you can look at or
modify locations almost anywherin memory Note that if you enter a hexadecimal
addess that is not an even multiple of eight, the SIMx8gm@m disable up to seven cells
on the first ow. For example, if you enter the starting asdr 1002, SIMx86 will disable
the first two cells since they cespond to addsses 1000 and 1001. The first active cell is
1002. Note the SIMx86eserves memory locations FFFOotmgh FFFF for mem-
ory-mapped 1/0. Thefore, it will not allow you to edit these locatiodsddresses FFFO
through FFF7 coaspond toead-only input ports (and you will be able to see the input
values even though SIMx86 disables these cells). Locations FFe@ghhFFFF a
write-only output ports, SIMx86 displays garbage values if you look at these locations.

On the Memory page along with the memory value display/edit cellg, #metwo
other entry cells and a button. The “Clear Memory” button clears memory by writing
zews thoughout. Since your pgram’s object code and initial values aurently in
memory you should not @ss this button. If you do, you will need sassemble your
code andeenter the values for locations 100®tigh 1003.

The other two items on the Memory een let you set the intet vector addrss
and the eset vector addss. By default, theset vector addss contains zer This means
that the SIMx86 begins pgram execution at adebs zev whenever youeset the emula-
tor. Since your prgram is cumntly sitting at location zerin memory you should not
change the defauleset addrss.

The “Interupt MVector” value is FFFF by default. FFFF is a special value that tells
SIMx86 “ther is no intempt service outine pesent in the system, so igreaall inter
rupts.” Any other value must be the adds of an ISR that SIMx86 will call whenever an
interrupt occurs. Since theqggram you assembled does not have an upegervice ou-
tine, you should leave the intept vector cell containing the value FEFF

Finally, press the “Emulator” tab to look at the emulatoeear This s&en is much
busier than the other two. In the upper left hand corner of teersés a data entry box
with the labellP. This box holds the cuwent value of the x8éhstruction pointer register
Whenever SIMx86uns a pogram, it begins execution with the insttion at this addss.
Whenever you m@ss theaset button (or enter SIMx86 for the first time), theegister
contains the value found in theset vectorlf this register does not contain peat this
point, pess theeset button on the Emulator sen to eset the system.

Immediately below thé@ value, the Emulator pagisassambles the instuction found
at the addess in thép register This is the very next ingtction that SIMx86 will execute
when you pess the “Run” or “Step” buttons. Note that SIMx86 does not obtain this

Page 129

Chapter 03

Page 130

instruction flom the sowe code window on the Editor sen. Instead, it decodes the
opcode in memory (at the aéds found irip) and generates this string itself. Téfere,
there may be minor diérences between the insttion you wote and the instiction
SIMx86 displays on this page. Note that a disassembledigtiett contains several
numeric values in mt of the actual inafiction. The first (foudigit) value is the memory
addess of that instiction. The next pair of digits (or the nexte@mpairs of digits) arthe
opcodes and possible ingttion operand values. For example, ithve ax, [1000] instruc-
tion’s machine code is C6 00 10 since thesetlae thee sets of digits appearing at this
point.

Below the cument disassembled inatition, SIMx86 displays 15 insittions it disas-
sembles. The starting adds for this disassemble rist the value in thep register
Instead, the value in the lower right hand corner of theescspecifies the starting disas-
sembly addess. The two little aowvs next to the disassembly starting &ddrlet you
quickly incement or de@ment the disassembly starting adrAssuming the starting
addess is zar (change it to zerif it is not), pess the down asw. Note that this in&-
ments the starting adeks by one. Now look back at the disassembled ligimgou can
see, pessing the down aw has poduced an intessting esult. The first instrction (at
addess 0001) is “****’ The four asterisks indicate that this particular opcode is an illegal
instruction opcode. The second ingttion, at addrss 0002, isot ax. Since the mrgram
you assembled did not contain an illegal opcodenot a instruction, you may be won-
dering whee these instictions came &ém. Howevernote the starting adess of the first
instruction: 0001. This is the second byte of the firstuc$ion in your pogram. In fact,
the illegal instuction (opcode=00) and the not ax instion (opcode=10) aractually a
disassembly of thenov ax, [1000] two-byte operand. This should clearly demonstrate a
problem with disassembly — it is possible to get “out of phase” by specify a starting
addess that is in the middle of a multi-byte instion. You will need to consider this
when disassembling code.

In the middle of the Emulator s=n thee ae several buttons: Run, Step, Halt, Inter
rupt, and Reset (the “Running” box is an annunciatotra button). Rissing the Run but-
ton will cause the SIMx86 pgram to un the pogram (starting at the adzhs in thep
register) at “full” speed. IBssing the Step button instts SIMx86 to execute only the
instruction thatip points at and then stop. The Halt button, which is only active while a
program is unning, will stop execution. Bssing the Inteapt button generates an inter
rupt and pessing the Reset buttoesets the system (and halts execution ifognam is
currently unning). Note that gssing the Reset button clears the x®#fisters to zerand
loads thep register with the value in theset vector

The “Running” annunciator is gray if SIMx86 is not @amtly unning a pogram. It
turns ed when a mrgram is actuallyunning.You can use this annunciator as an easy
way to tell if a pogram is unning if the pogram is busy computing something (or is in
an infinite loop) and theris no I/O to indicate pgram execution.

The boxes with thex, bx, cx, anddx labels let you modify the values of theegisters
while a ppgram is notunning (the entry cells amot enabled while aggram is actually
running). These cells also display the eatrvalues of theegisters whenever aqgram
stops or between insittions when you arstepping tlough a pogram. Note that while
a piogram is unning the values in these cellg atatic and do noeflect their curent val-
ues.

The “Less” and “Equal” check boxes denote the values of the less than and equal
flags. The x86 cmp instction sets these flags depending on d&sellt of the comparison.
You can view these values while thegmam is notunning.You can also initialize them
to true or false by clicking on the appriate box with the mouse (while theogram is
not unning).

In the middle section of the Emulator esen thee ae four “LEDs” and four “toggle
switches.” Above each of these objects is a hexadecimaleadddenoting their mem-
ory-mapped /O addssses. Wting a zeo to a coresponding LED adeésss turns that
LED “off” (turns it white). Witing a one to a coesponding LED adéss turns that LED

System Organization

“on” (turns it red). Note that the LEDs onlgspond to bit zer of their port addrsses.
These output devices igrmall other bits in the value written to these addes.

The toggle switches pvide four memory-mapped input devices. If yaad the
addess above each switch SIMx86 wiiturn a zev if the switch is df SIMx86 wiill
return a one if the switch is in the on positi¥ou can toggle a switch by clicking on it
with the mouse. Note that a littleatangle on the switch turnedr if the switch is in the
“on” position.

The two columns on the right side of the Emulateesecr(“Input” and “Output”) dis-
play input valueseaad with theget instruction and output values thmit instruction
prints.

For this first exagise, you will use the Step button to single stepugh each of the
instructions in the EX1.x86 pgram. First, begin by pssing the Reset butfn Next,
press the Step button once. Note that the values iip tiedax registers change. Tl
register value changes to 0003 since that is theessldf the next ingiction in memory
ax’s value changed to 1234 since that’s the value you placed at location 1000 when operat-
ing on the Memory seen. Single step thugh the emaining instuctions (by epeatedly
pressing Step) until you get the “Halt Encouatirdialog box.

For your lab report: explain the esults obtained after the execution of each unstr
tion. Note that single-stepping ttugh a pogram as you’ve done feeis an excellent way
to ensue that you fully understand how theogram operatedAs a generalule, you
should always single-step dugh every psggram you write when testing it.

3.6.2 Simple 1/0-Mapped Input/Output Operations

Go to the Editor selen and load the EX2.x86 file into the edifdnis pogram into-
duces some new concepts, so take a moment to study this code:

mov bx, 1000
a get
mov [bx], ax
add bx, 2
cmp ax, 0
jne a
mov cx, bx
mov bx, 1000
mov ax, 0
b: add ax, [bx]
add bx, 2
cmp bx, cx
ib b
put
halt

The first thing to note arthe two strings “a:” and “b:” appearing in column one of the
listing. The SIMx86 assembler lets you specify up to 26 statdabdsby specifying a sin-
gle alphabetic character followed by a colon. Labedsganerally the operand of a jump
instruction of some sort. Thefore, the “jne a” instiction aboveeally says “jump if not
equal to the statementgfaced with the ‘a:’ label” rather than saying “jump if not equal to
location ten (OAh) in memory

Using labels is much merconvenient than figuring out the aelklk of a tayet
instruction manually especially if the tget instuction appears later in the code. The
SIMx86 assembler computes the adddrof these labels and substitutes theecbaddess

22. It is a good idea to get in the habit cfgming the Reset button befaunning or stepping tbugh any po-
gram.

Page 131

Chapter 03

for the operands of the jump insttions. Note that yocan specify a numeric addss in

the operand field of a jump ingttion. Howeverall numeric addrsses must begin with

a decimal digit (even though theyedrexadecimal values). If your ¢gat addess would
normally begin with a value in the rang§ehrough F simply pepend a zerto the num-

ber For example, if “jne a” was supposed to mean “jump if not equal to location OAh” you
would write the instuction as “jne 0a”.

This poogram contains two loops. In the first loop, thegnpam eads a sequence of
values fom the user until the user enters the value.ZEmis loop stars each wat into
successive memory locations starting at estli 000h. Remembeach wad read by the
user equires two bytes; this is why the loop adds twoxon each iteration.

The second loop in this ggram scans tbugh the input values and computes their
sum.At the end of the loop, the code prints the sum to the output window usipg the
instruction.

For your lab report: single-step tlough this pogram and describe how each iostr
tion works. Reset the x86 andrnr this pogram at full speed. Enter several values and
describe the esult. Discuss the get and put iostion. Describe why they do
I/O-mapped input/output operations rather than memory-mapped input/output opera-
tions.

3.6.3

Page 132

Memory Mapped I/0

From the Editor s@en, load the EX3.x86 ggram file. That porgram takes the follow-
ing form (the comments weradded herto make the operation of thisogram cleagr):

a mov ax, [fffO]
mov bx, [fff2]
mov cX, ax ;Computes Sw0 and Sw1l
and X, bx
mov [fff8], cx
mov CX, ax ;Computes SwO or Swl
or X, bx
mov [fffa], cx
mov CX, ax ;Computes SwO xor Swil
mov dx, bx ;Remember, xor = AB’ + AB
not cX
not bx
and X, bx
and dx, ax
or cx, dx
mov [fffc], cx
not CX ;Computes Sw0 = Swl
mov [fffe], cx ;Remember, equals = not xor
mov ax, [fff4] ;Read the third switch.
cmp ax, 0 ;See ifit's on.
je a ;Repeat this program while off.
halt

Locations OFFFOh, OFFF2h, and OFFF4hespond to the first the toggle switches
on the Execution page. These antemory-mapped I/O devices that put az®rone into
the coresponding memory locations depending upon whether the toggle switch is in the
on or of state. Locations OFFF8h, OFA&E;, OFFFCh, and OFFFEh cespond to the four
LEDs. Witing a zeo to these locations turns the @sponding LED df writing a one
turns it on.

System Organization

This pogram computes the logical and, xor, and xnor (not xor) functions for the
values ead fom the first two toggle switches. Thisogram displays thessults of these
functions on the four output LEDs. Thisogram eads the value of the tHitoggle
switch to determine when to quit. When thedhimggle switch is in the on position, the
program will stop.

For your lab report: run this pogram and cycle tbugh the four possible combina-
tions of on and dffor the first two switches. Include thesults in your labaport.

3.6.4 DMA Exercises

In this execise you will start a mgram onning (EX4.x86) that examines and eper
ates on values found in memofmhen you will switch to the Memory s&n and modify
values in memory (that is, you will dictly access memory while theogram continues
to run), thus simulating a peripheral device that uses DMA.

The EX4.x86 ppgram begins by setting memory location 1000h to.ZEnen it loops
until one of two conditions is met — either the user toggles the FFFO switch or the user
changes the value in memory location 100@ugdling the FFFO switch terminates thepr
gram. Changing the value in memory location 1000h transfersottmta section of the
program that adds togethemwords, wheen is the new value in memory location 1000h.
The pogram sums the wds appearing in contiguous memory locations starting at
addess 1002h. The actuabgram looks like the following:

d: mov cx, 0 ;Clear location 1000h before we
mov [1000], cx ; begin testing it.

; The following loop checks to see if memory location 1000h changes or if
; the FFFO switch is in the on position.

a mov cx, [1000] ;Check to see if location 1000h
cmp cx, 0 ; changes. Jump to the section that
jne c ; sums the values if it does.
mov ax, [fff0] ;If location 1000h still contains zero,
cmp ax, 0 ; read the FFFO switch and see if it is
je a ; off. If so, loop back. If the switch
halt ; is on, quit the program.

; The following code sums up the “cx” contiguous words of memory starting at
; memory location 1002. After it sums up these values, it prints their sum.

o mov bx, 1002 ;Initialize BX to point at data array.
mov ax, 0 ;Initialize the sum

b: add ax, [bx] ;Sum in the next array value.
add bx, 2 ;Point BX at the next item in the array.
sub cx, 1 ;Decrement the element count.
cmp cx, 0 ;Test to see if we've added up all the
jne b ; values in the array.
put ;Print the sum and start over.
jmp d

Load this pogram into SIMx86 and assemble it. Switch to the Emulatescipess
the Reset button, make suhe FFFO switch is in thefgfosition, and thenun the po-
gram. Once the pgram is unning switch to the memory s&n by pessing the Memory
tab. Change the starting display aski#rto 1000. Change the value at location 1000h to 5.
Switch back to the emulator sem.Assuming memory locations 1002 ahgh 100B all
contain zeo, the pogram should display a zein the output column.

Switch back to the memory page. What does location 1000h now contain? Change the
L.O. bytes of the wals at addrss 1002, 1004, and 1006 to 1, 2, andshectivelyChange

Page 133

Chapter 03

the value in location 1000h to #&. Switch to the Emulator page. Describe the output in
your lab eport. Ty entering other values into memorgggle the FFFO switch when you
want to quit unning this pogram.

For your lab report: explain how this prgram uses DMAo povide pogram input.
Run several tests with fifrent values in location 1000h andfdiént values in the data
array starting at location 1002. Include thsuits in youreport.

For additional credit: Stoe the value 12 into memory location 1000. Explain why the
program printgwo values instead of just one value.

3.6.5

Page 134

Interrupt Driven 1/O Exercises

In this execise you will loadtwo programs into memory: a mainggram and an
interrupt service gutine. This exaise demonstrates the use of inipts and an inteupt
service outine.

The main pogram (EX5a.x86) will constantly comgamemory locations 1000h and
1002h. If they a¥ not equal, the main ggram will print the value of location 1000h and
then copy this value to location 1002h aedeaat this mcess. The main pgram epeats
this loop until the user toggles switch FFFO to the on position. The code for the crain pr
gram is the following:

a mov ax, [1000] ;Fetch the data at location 1000h and
cmp ax, [1002] ; see if it is the same as location
e b ; 1002h. If so, check the FFFO switch.
put ;If the two values are different, print
mov [1002], ax ; 1000h’s value and make them the same.
b: mov ax, [fffo] ;Test the FFFO switch to see if we
cmp ax, 0 ; should quit this program.
je a
halt

The interupt service outine (EX5b.x86) sits at location 100h in memdwhenever an
interrupt occurs, this ISR simply irements the value at location 1000h by loading this
value intoax, adding one to the value &1, and then storing this value back to location
1000h After these instrctions, the ISRaturns to the main pgram. The inteupt service
routine contains the following code:

mov ax, [1000] ;Increment location 1000h by one and
add ax, 1 ; return to the interrupted code.
mov [1000], ax

iret

You must load and assemble both files kefaitempting toun the main pygram.
Begin by loading the main pgram (EX5a.x86) into memory and assemble it atessdr
zer. Then load the ISR (EX5b.x86) into memagt the Startingddress to 100, and then
assemble your cod®arning: if you forget to change the starting address you will wipe out
your main programwhen you assenble the ISR If this happens, you will need to repeat this proce-
dure from the beginning.

After assembling the code, the next step is to set theupterector so that it contains
the addess of the ISR.d'do this, switch to the Memory s&m. The inteupt vector cell
should curently contain OFFFFh (this value indicates that iojgts ae disabled).
Change this to 100 so that it contains the esklof the inteapt service outine. This also
enables the intaupt system.

Finally, switch to the Emulator ssen, make serthe FFFO toggle switch is in the of
position, eset the grgram, and start itunning. Normally nothing will happen. Now
press the inteupt button and observe thesults.

System Organization

For your lab report: describe the output of theggram whenever you @ss the inter
rupt button. Explain all the steps you would need to follow to place theupteservice
routine at addrss 2000h rather than 100h.

For additional credit: write your own intemupt service outine that does something
simple. Run the main pgram and pss the inteupt button to test your codeekify that
your ISR works poperly

Machine Language Programming & Instruction Encoding Exercises

To this point you have beeneating machine languageograms with SIMx86’s
built-in assembleAn assembiler is a pgram that translates &8ClIl souce file contain-
ing textual epresentations of a pgram into the actual machine code. The assemtlder pr
gram saves you a considerable amount of work by translating huesatabte
instructions into machine codAalthough tedious, you can perform this translation your
self. In this exarise you will ceate some very shartachine language programs by encod-
ing the instuctions and entering their hexadecimal opcodes into memory on the memory
screen.

Using the instction encodings found in Figei8.19, Figue 3.20, Figue 3.21, and
Figure 3.22, write the hexadecimal values for the opcodes beside each of the following
instructions:

Binary Opcode HexOpe rand
mov cx, 0 LI T T TT] || |

a: get LI T TPl
put HEEEEREN
add ax, ax [[T [T T[1]]
put HEEEEREN
add ax, ax [[T [T T[]
put HEEEEREN
add ax, ax [[T[]
put HEEEEREN
a dd cx, 1 HEEEEEEE |
c nmp cx, 4 HEEEEEEE |
jb a HEREEEREE |
halt HEEEEREN

You can assume that theogram starts at adess zew and, thezfore, label 4” will be at

addess 0003 since thev cx, 0 instruction is thee bytes long.

Page 135

Chapter 03

For your lab report: enter the hexadecimal opcodes and operands into memory start-

ing at location zer using the Memory editor s=n. Dump these values and include them
in your lab eport. Switch to the Emulator sem and disassemble the code starting at

addess zav. \erify that this code is the same as the assembly code above. Print a copy of

the disassembled code and include it in your dggort. Run the gram and verify that

it works poperly

3.6.7

Page 136

Self Modifying Code Exercises

In the pevious laboratory exeise, you discoved that the system doesreally dif-
ferentiate data and insictions in memoryyou wee able to enter hexadecimal data and
the x86 pocessor #ats it as a sequence of executableunstns. It is also possible for a
program to star data into memory and then executéiprogram issaf-modifying if it
creates or modifies some of the instions it executes.

Consider the following x86 pgram (EX6.x86):

sub
mov

a mov
cmp
je
halt

b: mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov

jmp

ax, ax
[100], ax

ax, [100]
ax, 0
b

ax, 00c6
[100], ax
ax, 0710
[102], ax
ax, aba0
[104], ax
ax, 1000
[106], ax
ax, 8007
[108], ax
ax, 00e6
[10a], ax
ax, 0el0
[10c], ax
ax, 4

[10g], ax
100

This poogram writes the following code to location 100 and then executes it:

mov
put
add
add
put
sub
mov

jmp

ax, [1000]

ax, ax
ax, [1000]

ax, ax
[1000], ax
0004

:0004 is the address of the A: label.

For your lab report: execute the EX7.x86 ggram and verify that it generates the

above code at location 100.

Although this pogram demonstrates the principle of self-modifying code, dlpar
does anything usefuls a generalule, one would not use self-modifying code in the
manner above, wherone segment writes some sequence ofuictstns and then exe-
cutes them. Instead, mostograms that use self-modifying code only modify existing
instructions and often only the operands of thoseuntbtns.

System Organization

Self-modifying code is raty found in modern assembly languagegrams. Ro-
grams that a self-modifying a& had to read and understand, fiult to debug, and
often unstable. Bgrammers ofteresort to self-modifying code when the CPU’shitec-
ture lacks sufcient power to achieve a desirgoal. The later Intel 80x86quessors do
not lack for instuctions or addrssing modes, so it is veryedo find 80x86 mgrams that
use self-modifying codé The x86 pocessors, howevdnave a very weak insiction set,
so thee ae actually a couple of instances wdneelf-modifying code may gve useful.

A good example of anahritectural deficiency wherthe x86 is lacking is witlespect
to subputines. The x86 insiction set does not @vide any (diect) way to call andeturn

from a suboutine. Howeveryou can easily simulate a call areturn using thémp
instruction and self-modifying code. Consider the following x86 “eubine” that sits at
location 100h in memory:

; Integer to Binary converter.

; Expects an unsigned integer value in AX.

; Converts this to a string of zeros and ones storing this string of
; values into memory starting at location 1000h.

mov bx, 1000 ;Starting address of string.
mov cx, 10 ;16 (10h) digits in a word.
a mov dx, 0 ;Assume current bit is zero.
cmp ax, 8000 :See if AX’s H.O. bit is zero or one.
b b :Branch if AX'x H.O. bit is zero.
mov dx, 1 :AX’s H.O. bit is one, set that here.
b: mov [bx], dx ;Store zero or one to next string loc.
add bx, 1 ;Bump BX up to next string location.
add ax, ax ;AX = AX *2 (shift left operation).
sub cx, 1 :Count off 16 bits.
cmp cx, 0 ;Repeat 16 times.
ja a
jmp 0 ;Return to caller via self-mod code.

The only instaction that a prgram will modify in this sulmutine is the very laghp
instruction. This jump instrction must transfer comtrto the first instuction beyond the

jmp in the calling code that transfers cahto this suboutine; that is, the caller must stor
the return addess into the operand of timp instruction in the code abovAs it turns

out, thejmp instiuction is at addrss 120h (assuming the code above starts at location
100h). Theefore, the caller must sterthe eturn addess into location 121h (the operand

of the jmp instiuction). The following sample “main” pgram makes tee calls to the
“subroutine” above:

mov ax, 000c ;Address of the BRK instr below.
mov [121], ax ;Store into JMP as return address.
mov ax, 1234 ;Convert 1234h to binary.

jmp 100 ;"Call” the subroutine above.

brk :Pause to let the user examine 1000h.
mov ax, 0019 :Address of the brk instr below.
mov [121], ax

mov ax, fdeb ;Convert OFDEBh to binary.

jmp 100

brk

mov ax, 26 :Address of the halt instr below.
mov [121], ax

mov ax, 2345 ;Convert 2345h to binary.

jmp 100

halt

23. Many viuses and copy ptection pograms use self modifying code to make ificlifit to detect or bypass

them.

Page 137

Chapter 03

Load the suloutine (EX7s.x86) into SIMx86 and assemble it starting at location 100h.
Next, load the main pgram (EX7m.x86) into memory and assemble it starting at location
zem. Switch to the Emulator ssgn and verify that all theturn addesses (Och, 19h, and
26h) ae corect.Also verify that the eturn addess needs to be written to location 121h.
Next, un the pogram. The pgrgram will execute ark instruction after each of the first
two calls. The brk instiction pauses the ggram.At this point you can switch to the
memory saeen at look at locations 1000-100F in memdrigey should contain the
pseudo-binary conversion of the value passed to thewirn®. Once you verify that the
conversion is coeact, switch back to the Emulator sen and mss the Run button to con-
tinue pogram execution after thoek.

For your lab report: describe how self-modifying code works and explain in detail
how this code uses self-modifying code to simulate call andr instuctions. Explain
the modifications you would need to make to move the maigram to add¥ss 800h
and the sulmutine to location 900h.

For additional credit: Actually change the pgram and sulbbutine so that they work
properly at the adéssses above (800h and 900h).

3.7 Programming Projects

Note: You ae to write these pgrams in x86 assembly language code using the
SIMx86 piogram. Include a specification document, a test planpgram listing, and
sample output with your pgram submissions

1) The x86 instuction set does not include a multiply insttion. Wite a short ppgram that
reads two valuesdm the user and displays theipoguct (hint: emember that multipli-
cation is justepeated addition).

2) Create a callable sutmtine that performs the multplication imbtem (1) above. Pass the
two values to multiple to the sudartine in theax andbx registers. Return the guiuct in
thecx register Use the self-modifying code technique found in the section “Self Modifying
Code Exerises” on page 136.

3) Wkite a pogram that eads two two-bit numbers dim switches (FFFO/FFF2) and
(FFF4/FFF6). fleating these bits as logical values, your code should computedbédthr
sum of these two values (two-bésult plus a carry). Use the logic equations for the full
adder fom the pevious chaptebo not smply add these values using the x86 add instruction.
Display the thee-bit esult on LEDs FFF8, FREand FFFC.

4) Wkite a suboutine that expects an aéds in BX, a count in CX, and a valueAK. It
should write CX copies oAX to successive wdis in memory starting at adzsis BX.
Wkite a main pogram that calls this sututine several times with di&rent addesses.
Use the self-modifying code swautine call andeturn mechanism described in the labo-
ratory execises.

5) Wkite the generic logic function for the x86opessor (see Chaptewd). Hint: add ax, ax
does a shift left on the valuedr You can test to see if the highder bit is set by checking
to see ifax is greater than 8000h.

6) Wkite a pogram thateads the generic function number for a fimyout function fom the
user and then continuallgads the switches and writes thsuilt to an LED.

7) Wkite a pogram that scans an array of @erstarting at addss 1000h and memof
the length specified by the valueciy and locates the maximum value in that artas-
play the value after scanning the array

8) Wkite a pogram that computes the two’s complement of an array of values starting at
location 1000hCX should contain the number of values in the akagume each array
element is a two-byte integer

9) Wkite a “light show” pogram that displays a “light show” on the SIMx86’s LEDs. It
should accomplish this by writing a set of values to the LEDs, delaying for some time

Page 138

