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Abstract

A wide increment of the object-oriented diffusion has
been registered. This is accompanied by the needs of met-
rics and tools for assessing class reusability, maintainabil-
ity, complexity, etc. Metrics have to produce confident re-
sults and have to be continuously revalidated on the basis of
specific purpose on their adoption. Tools for system assess-
ment must be capable of satisfying the needs of each com-
pany by supporting the definition of more specific metrics
and by providing appropriate views of software characteris-
tics. These views are useful to give at the developers as well
as at the managers immediately understandable represen-
tations of the system status. In this paper, a new approach
is proposed for system assessment. This approach is based
on the adoption of new and well-known metrics together
with a set of histograms and profiles that give a clear char-
acterization of the system under development. The seman-
tics of these histograms has been validated against several
projects. A brief overview of the tool, TAC++, developed
for system assessment has been also included.

Index terms: object-oriented metrics, system analysis, as-
sessment tool, profiles and histograms.

1 Introduction

In the recent years, the Object-Oriented Paradigm
(OOP) has been adopted for its promises about portabil-
ity, reusability, maintainability, etc. Obviously, these fea-
tures are not automatically achieved by adopting the OOP,
even if an object-oriented methodologies for development
are used. The adoption of the OOP implies changes in the
whole development process (i.e., project management, re-
source evaluation, resource planning, assessing, document-
ing, requirement analysis, analysis, design, coding, testing,
etc.) [10]. Due the needs of certification and standardiza-
tion, project management and assessment are becoming key
issues in the processes of development and maintenance. In
order to guarantee the control of the development process,
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quantitative metrics for evaluating and predicting product
characteristics must be used. Product features are typically:
quality (see ISO 9126), cost, reuse, conformance with the
requirements and the requests of the market, etc., and com-
pany goals for each specific product. The description of
product features is typically considered the product profile.

A growing attention to the process of software develop-
ment has created the need to get process-oriented informa-
tion, both real data and measured features have to be con-
tinuously compared for controlling the process and, when
needed, for adjusting the model (continuous process iden-
tification and improvement). This process of adaptation is
usually performed by adjusting weights and thresholds [6]
till the development process is identified, then it is main-
tained under control. The evaluation model can be based on
technical and cognitive metrics for the indirect measure of:
(i) effort of development, (ii) effort to understand for reuse,
(ii1) effort to understand for maintenance.

Some studies with metrics and measurement frameworks
for object-oriented systems have been presented in [7], [11],
[12], [5], where general concepts for the estimation of sys-
tem size, complexity and reuse level have been proposed to-
gether with many other metrics. Unfortunately, the effort in
defining new metrics has not been supported by the imple-
mentation of assessment tools. Presently, the commercial
assessment tools are only capable of (i) estimating a limited
number of metrics (some present a tool for defining new
metrics), (ii) visualizing specific views (profile). These are
not supported by an integrated tool for evaluating weights
and tuning metrics for the different project profiles and de-
velopment life-cycle phases.

Therefore, an integrated framework for developing and
maintaining under control the system under development
must be supported by tools for (i) defining and evaluat-
ing direct and indirect metrics, (ii) defining and show-
ing suitable views of the system (profiles, diagrams, ta-
bles, graphs, histograms, etc.) as well as of its compo-
nents/classes (views should be focussed on assessing qual-
ity, conformance to the OOP, etc.), (iii) tuning metrics by
estimating weights and scale factors, (iv) controlling project



evolution by using reference/threshold values, (v) collecting
and comparing projects trends (the basis for the continuos
improvement).

Please note that different views, profiles, histograms of
the same entity/class can be required by different people
involved in the project (project and task managers, develop-
ers, etc.), or by the same people in different phases of the
development life-cycle. These views must be focussed on
highlighting different aspects. Measured values must also
be compared against minimum, maximum and typical val-
ues and trends defined for the development phase under ob-
servation on the basis of the product profile required. These
in turn have to be defined by the company considering its
experience.

This paper reports a set of cognitive metrics (metrics
which include the measure of the aspects related to the
comprehension/understanding of the program/class/system)
and their interpretation for the assessment of C++ applica-
tions. The metrics proposed belong to a framework and tool
specifically defined for C++ language, the research proto-
type TAC++ (Tool for Analyzing C++ code). TAC++ is
comprised of an integrated class browser/editor, which is
capable of estimating the values of several direct metrics.
On these bases, high-level indirect metrics can be obtained.

The main aspects of the metric framework have been in-
herited from these presented in [11], [12]. Due to the high
number of metrics, which are available in the framework
(including the most diffuse and well-know metrics in the
literature), only few of them have been discussed, some
other metrics have been presented in [12], [2]. The met-
rics proposed can be used to produce histograms which can
be very useful for analyzing the conditions/suitability of the
system under assessment. Moreover, these histograms can
be very useful for detecting critical conditions — e.g., iden-
tifying classes with bad design and class hierarchy with un-
suitable organization, and poor comprehensibility. The se-
mantics of the histograms and the suitability of the metrics
discussed have been validated on the basis of several small-
medium sized projects.

2 A Selection of Metrics for Cognitive Assess-
ment

In this section, a selection of metrics for cognitive assess-
ment is presented. The selection has been performed on the
basis of the authors experience — e.g., [11], [12] and con-
sidering the several similar experiences presented in the lit-
erature — e.g. [8]. According to these experiences, the pro-
cesses of reuse, maintenance, development with libraries,
prediction of costs, etc. can be aided by the adoption of
cognitive measures. These in turn can be concretized by us-
ing direct an indirect measures; such as cognitive complex-
ity, class complexity/size, the structure of the inheritance
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class tree, the cohesion/coupling among methods, the cohe-
sion/coupling among classes, etc. [7], [8], [6], [11].

The metrics reported in the next subsections can be clas-
sified in Method-, Class- and System-Level metrics. These
metrics can be profitably used for system assessment high-
lighting some of the above mentioned aspects. The system
assessment consists in the analysis of the values of metrics
with respect to the quantity of methods or classes having
those values for the whole system. In this way, histograms
of the system with respect to the selected metrics are ob-
tained. Qualitatively, these histograms are only marginally
dependent on the language and on the application field.
Similar histograms have been presented in [8] and [1], by
considering other metrics. For most of the metrics discussed
a validation process has been performed on the basis of sev-
eral projects by using a multilinear regression analysis [14].

In this paper, some new metrics and a further level of
analysis for the above mentioned histograms are introduced.
It will be shown that it is very useful to analyze the trend of
the histogram to detect possible anomalies and disfunctions.

To help the reader to understand the metric formulation
and discussion, the authors have prepared Tab.4 in which
the metrics and their corresponding meaning are reported
in alphabetic order.

2.1 Method-Level Metrics

For evaluating complexity/size of methods, most of the
traditional mainly functional metrics (such as the number
of Lines Of Code (LOC), the Halstead measure (Ha) [4],
the McCabe complexity (M ¢) [9]), can be profitable used.
By using these metrics, data flow aspects related to method
parameters are neglected [15] (the set of parameters of a
method represent a cognitive measure of its complexity). In
order to avoid this problem, more general metrics including
the external interface of methods have been defined.

In general, complex as well as big methods are difficult
to be understood and, thus, to be maintained and reused. For
this reason, the evaluation of method complexity/size can
be useful for measuring system understandability. Thus, in
order to guarantee methods reusability, a maximum accept-
able value for method complexity/size has to be respected.
This maximum value must be set on the basis of company
needs and experiences — e.g., by evaluating the cost of main-
tenance of each method in terms of effort for a couple of
years in several projects.

Bounds for LOC of class methods have been identified
on the basis of the research group and industrial experiences
and projects in order to maintain the costs of modification
low — i.e., a mean of 20 LOC per method. For the max-
imum value of LOC' per method, two distinct cases have
been recorded on the basis of different types of application;
in particular, 150 LOC for systems endowed with a Graphic



User Interface (GUI) and about 50 for systems without GUI.
These values are very similar to those reported in [8].

2.2 Class Level Metrics

By using M¢, Ha, and LOC metrics it is possible to
define a set of pure functional class metrics (the sum of
complexities or size of all class methods). It has been of-
ten demonstrated that such metrics are not very suitable for
evaluating object-oriented projects, since they are not capa-
ble of considering the object-oriented aspects {13], [5], [12].
In fact, they neglect information about class specialization
(is_a, that means code and structure reuse), and class asso-
ciation and aggregation (is_part_of and is_referred_by, that
mean class/system structure definition and dynamic manag-
ing of object sets, respectively). On the other hand, WM C
(Weighted Methods for Class) [1], and LOC (used in [8])
have been adopted as good compromises between precision
and simplicity of evaluation.

2.2.1 Class Complexity/Size.

In [3], a fully object-oriented metric for evaluating class
complexity/size has been presented together with a com-
parison with the above mentioned object-oriented metrics.
It includes cognitive, structural and functional aspects. The
class complexity/size, CC, has been defined as the sum
of the External Class Description (EC D) (complexity/size
due to class definition and method interface definition) and
the Internal Class Implementation (JC'I) (method imple-
mentation):

CC =ECD +1CI, )

where C'C components can be decomposed in complexities
due to locally and inherited class members:

ECD = ECDL + ECDI, 2)
ICI = werCL 4 weCl, 3)
where:
FECDL = 'wCACLCACL—G—H)CMICLCMICL,
ECDI = wcaciCACI+ wemiciCMICIH, 4)

and thus: CACL is the Class Attribute Complexity Local
(complexity due to attributes locally defined); CACT is the
Class Attribute Complexity Inherited; CMICL, the Class
Method Interface Complexity Local (complexity of local
method parameters); CMIC1I, the Class Method Interface
Complexity Inherited (as the previous for methods inher-
ited); C'L, the Class complexity/size due to Local methods;
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and C1, the Class complexity/size due to Inherited meth-
ods. Metrics CL and C'I measure the complexity/size of
the functional part estimated by using one of the above men-
tioned metrics: Ha, Mc, LOC. (Please note that C'L eval-
uated with Mcis equal to WMC.)

Thus, according to the metric used, CC may be con-
sidered a complexity or a size metric integrating cogni-
tive aspects. Metric CC' takes into account both structural
(attributes, relationships of is_part_of and is_referred_by)
and cognitive (methods, method “cohesion” by means of
CMICL and CMICI, respectively), and functional by
means of CL, CI, aspects of the class.

Weights in the above metrics have to be evaluated by
using of a multilinear regression [14] on the basis of actual
class effort. The weight values obviously depend on the
purpose and on the phase in which the metric is evaluated.
Thus, a trend for the weights along the development and/or
maintenance and/or the reuse process has to be determined.

It has been demonstrated [12] that these metrics produce
slightly better results regarding to correlation and variance
with respect to metrics: WM C [1], to that in [13], and that
in [5] for the same purpose. Therefore, the evaluation of
CC, as well as that of other simple class complexity/size
metrics (e.g., WMC, CI), is very useful for maintaining
under control the evolution of system classes, and thus of
the whole system. The control of the indiscriminate grow-
ing of classes is operated by defining suitable thresholds ac-
cording to the company experience and goals, as well as to
the OOP. The identification of these thresholds is performed
by using the same process adopted for evaluating those of
method-level metrics. Similar experiences have led some
authors to declare these reference values on the basis of their
experience [8], [3], etc.

The above mentioned EC D metric gives a measure of
what can be observed by reading the class definition, for
example in the phase of class reuse or maintenance. Itis a
measure of the cognitive complexity of the class. Even more
useful is the analysis of EC DL and EC DI for evaluating
whether the class or its superclasses are sufficiently easy to
be understood, and thus to be reused or maintained at rea-
sonable costs. Moreover, EC' D can be used for predicting
class complexity/size during system analysis/early-design.

In Tab.1, the reference values obtained for CC- and
EC D-based metrics are reported. C'C' has been evaluated
by considering the weights evaluated in [12]. Thus, the re-
sults obtained for C'C' cannot be compared with those pro-
duced by the other metrics. When maximum values were
reached and overcome, a decrease in understandability ap-
pears with a corresponding decrease in maintainability and
reusability.

In the table the minimum values are also reported since
each class has to provide a minimum ECD to be under-
standable. Peaks for EC'DI and ECDL are typically



I | Mean Values | Max Values | Min Values ]|

cc 200 1500 -
ECD 350 1500 20
ECDI 200 2000 80
ECDL 150 1600 20
ICrI 200 1500 -
crI 150 1200 -
CL 50 700 -

Table 1. Reference values for CC- and EC D-based of
metrics.

present in 100 and 30, respectively.

2.2.2 Number of Class Attributes and Methods

A simple approach to class size evaluation can be based on
counting the number of local attributes and methods (see
metric Size2 = NAL + NML defined by Li and Henry
in [7], sum of the number of local attributes and methods).
On the other hand, this simple counting of class members
could be in many cases too coarse. For example, when an
attribute is an instance of a very complex class its presence
in a class often implies a high cost of method development
which is not considered simply by increasing N AL of one
unit. Moreover, Size2 does not consider the class mem-
bers inherited (that is, reuse). For these reasons, in order
to improve the metric precision, a more general metric has
been defined by considering the sum of the number of class
attributes and methods both local defined and inherited, re-
spectively:

NAM = wyaLNAL+wyumiNML

+wnarNAI + wnmr NMI. 5)

Also in this case, the typical values of weights can be esti-
mated by using a multilinear regression technique. If the
purpose is to detect critical conditions (of excessive cost
of reuse or development) the weights can be imposed to
be equal to 1. Please note that, these metrics can be used
as indirect measures (i) since the early phases of software
development for predicting class size and thus class devel-
opment costs, (ii) on libraries for evaluating the effort of
adoption/reuse.

These metrics are strongly dependent on the role of the
class. GUI classes usually present a higher number of at-
tributes and methods. According to company experience as
in [8], [3] suitable thresholds have been evaluated and can
be imposed in order to control the indiscriminate growing of
classes in terms of attributes and methods. Similar sugges-
tions, for constraining these numbers, have been also sug-
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gested by several other authors. Differently from the other
metrics discussed the evaluation of these metrics is really
cheap.

In Tab.2 the reference values are shown. As discussed, a
strong difference between normal and GUI classes (on left
and right of each column, respectively) was detected. When
the maximum value is reached and overcome an increase of
the reuse and maintenance cost have been registered due to
the decrease of understandability which in turn is due to the
increment of general complexity.

I | Mean Values | Maximum Values ||

NAM 45-117 69 - 189
NAMI 30-78 46 - 126
NAML 15-39 23-63
NA 9-27 15-45
NAI 6-18 10-30
NAL 3-9 5-15

NM 36 - 90 44 - 144
NMI 24 - 60 36-96
NML 12-30 18- 43

Table 2. Reference values for NA M family of metrics.

Please note that the number of local methods tends to
be bigger in C++ rather than in other languages since C++
needs of a mean of at least 2 constructors and one destructor.

2.2.3 Deep Inheritance Tree and the Number of Super-
classes.

The structure of the inheritance hierarchy impacts on sys-
tem maintainability, reusability, extensibility, testability,
etc. since a high number of superclasses can make classes
hard to understand and test. In the literature, the so-called
DIT, Depth of Inheritance Tree metric has been proposed.
DIT estimates the number of direct superclasses until the
root is reached [1]. It ranges from 0 to IV (0 in the case of
root classes). Metric DIT is strongly correlated with main-
tenance costs [7].

Initially, no rules were given for solving multiple inher-
itance cases. In the implementations reported in the litera-
ture, for the case of multiple inheritance, DIT metric eval-
uates the maximum value among the possible paths towards
the several roots (for example 5 for class M, see Fig.1) or the
mean value among the possible values 3, 4, and 5, thus 4.
These measures are an over-simplification of the real con-
ditions — e.g., class M presents 7 superclasses and, thus, its
complexity obviously depends on all these classes. For this
reason, metric NSU P, Number of SUPerclasses, has been
defined by the authors. Also in this case, suitable bounds
must be defined for controlling the object-“orientedness” of
the hierarchy and the related features.



Figure 1. A specialization hierarchy with multiple inher-
itance.

2.2.4 Number of Children and the Number of Sub-
classes.

In order to better analyze the position and the relevance of
a class in the class hierarchy, it is very important to eval-
uate the number of its direct subclasses. To this end, the
so-called NOC, metric has been defined. This estimates
the Number Of Children, considering only the direct sub-
classes [1]. It ranges from O to IV (0 in the case of a leaf).
Classes with a high number of children must be carefully
designed and tested since their code is used by several en-
tities. On the other hand, a high number of children can
be due to a lack of hierarchyzation. Thus, this metric can
be useful for identifying critical classes. This metric is also
strongly correlated with maintenance costs as demonstrated
in [7].

The same punctualization made for DIT can be made
for NOC. According to the example of Fig.1, class E has
two children without considering that it presents at least 6
subclasses (considering only those reported in the figure).
For this reason, N SU B, Number of SUBclasses, has been
defined. It counts the subclasses until leaves are reached.
Thus NSUB can be regarded as a more precise measure
of class relevance in the system. Also in this case, suitable
bounds have to be defined.

2.2.5 DIT, NSUP, NOC and NSUB, Reference Values.

In Tab.3, the reference values for the inheritance tree analy-
sis metrics are shown. A strong difference between normal
and GUI classes has been detected, but only regarding the
maximum values. When the maximum value of NSUP
is overcome the class inherits too much features to be eas-
ily understandable. On the other hand, when the maximum
value of NSUB is overcome the implementation of the
class is really critical since an error in its body can produce
a fault in a wide number of other classes.
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In order to identify the max number of SU P for a hier-
archy is useful to think about real world. OOP recommend
to model classes as close as possible to real object descrip-
tions. Real world rarely need more than 5 nested levels for
completely describe the target object.

0 [ Mean Values | Maximum Values ||

DIT 2 4-5
NSUP 2 5-6
NOC 2 10-20
NSUB 5 30-90

Table 3. Reference values for metrics on class hierarchy.

According to our experiments NSUP and NSUB are
better ranked for detecting critical conditions with respect
to DIT and NOC; in the sense that they are more sensitive
to the specialization mechanisms.

2.3 System-Level Metrics

Several system-level metrics have been presented in or-
der to evaluate the conformity of the project to the OOP and
the above mentioned features [7], [81, (6], [11], such as: (i)
mean method complexity; (ii) mean number of methods per
class; (iii) mean number of attributes per class; (iv) mean
number of classes per tree (typically C++); (v) maximum
depth of inheritance, (vi) maximum number of classes in a
tree, (vii) number of trees, etc. These values give a concise
system assessment, but in several occasions they can lead to
wrong deductions since the manager (the evaluator) is not
capable of identifying the critical conditions.

To solve this problem, several system histograms have
been defined and adopted. The histograms report the sys-
tem status by depicting the behavior of the above mentioned
metrics with respect to the quantity of classes and/or meth-
ods. For example: (i) Number of Methods as function of
method complexity/size; (ii) NCL, Number of CLasses,
as a function of CC'; (iii) NCL as a function of Number
of Attributes (N A); (iv) NCL as a function of Number of
Methods (N M), etc.

As shown in the next Section, the mentioned histograms
are much more expressive than the single evaluation of a
simple mean value of a class metric, since they describe the
behavior of the metric in the context of the system — e.g.,
the value of a class-level metric for all classes. This behav-
ior can be compared with typical behaviors registered for
similar projects in the same company. For example, mean
and maximum values can be satisfactory, but may exist in
the system one or more classes with a complexity greater
than the maximum value. In addition, the qualitative shape
of the histogram is independent of the application context
and language.



It is also very useful to maintain under control the evolu-
tion of these histograms for analyzing and, thus, for detect-
ing problems of the development and/or maintenance pro-
CESS.

3 A System Assessment

In this section, the adoption of the mentioned system his-
tograms and bounds is shown by using a small-sized project
(LIOO, Lectern Interactive Object Oriented). It consists in
a class framework for modeling music implemented under
UNIX operating system by using calls to Xwindows. In its
development a special attention to reuse and maintainability
aspects have been given. It was comprised of 113 classes in
its first version and 136 in the fifth, LIOOS; several inter-
mediate versions were analyzed. In LIOOS the number of
classes was close to the final number, but some classes re-
mained to be completed yet. This has been experienced by
observing LIOOG6 and the final version, LIOO7. The class
framework has been totally reused in the ESPRIT HPCN
project MOODS (Music Object Oriented Distributed Sys-
tem).

In general, it has been observed that it is marginally rele-
vant to have the system compliant with simple bounds since
the system may present suitable mean values even with crit-
ical conditions. For this reason, the histograms correspond-
ing to the metrics discussed must be analyzed in order to
identify conditions to be corrected. The resolution of the
critical conditions strongly reduces the fault probability and
the costs of reuse.

3.1 Class Complexity/Size

In Fig.2, the histograms of internal class complexity due
both to inherited and local methods of LIOOS, are reported.
These histograms are very useful to identify classes for
which the complexity is too high with respect to the accept-
able costs of analyzability and/or further development. A
correct histogram has to present a low metric value at the
peak with a rapidly decreasing trend for higher values. By
observing C1 histogram, several classes with unacceptable
values bigger than 1200 were detected. This can be due to
(i) a too deep class hierarchy, or (ii) the presence of strongly
complex superclasses, or (iii) the presence of GUI-based
classes. In the case of LIOO, some classes for modeling the
elementary features of the GUI were built. For the CT his-
togram, 27 classes with CI = 0 are also present. These can
be (i) structures (in C++ structures are considered classes as
well) or (ii) root classes or (iii) stand-alone classes (which
are also roots). The verification of these conditions is quite
easy. Otherwise, classes with C'I = 0 are too abstract, and
thus have to be furtherly analyzed to verify the justification
of the lack of complexity. This can be due to (i) a disputable
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definition of the hierarchy or to (ii) the presence of the sys-
tem in an early phase of development.
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Figure 2. Histograms for CI and CL.

Observing the results obtained for C'L, few classes with
values bigger than 700 were detected. Their complexity was
due to their unjustified growing. In some cases, the devel-
opment leads to implement methods that could be more cor-
rectly placed in their superclasses. Therefore, it is suggested
to control these classes in order to verify if their methods
can be moved in the superclass (maybe identifying duplica-
tions of methods in subclasses). Please note that, for CL
histogram, there exists several classes with CL close to 0.
These are classes which optimally exploit the class hierar-
chy, while classes with CL = 0 are typically structures or
classed under construction.

3.2 External Class Description

In Fig.3, ECDI and ECDL histograms are reported,
for LIOOS. The ECD gives an indirect measure of un-
derstandability of the class by observing its attributes and
method interfaces. The EC DI histogram presents a peak
in 100 satisfying the criteria stated in the previous Section.
It also evident the presence of 27 classes with EC DI close



to zero. These are the already identified root classes, stand
alone classes and structures. EC DL histogram presents a
peak which contains all the classes with metric value be-
tween 0 and 100; most of these classes assume values in the
range 20 40, according to minimum value presented in the
previous section. Please note that there exists two classes
with extremely high values for ECDL. From the analysis
of LIOOS, it results that a great part of the complexity for
these classes is due to the attributes. The comparison be-
tween the two histograms allows to identify if the system
present structural problems (at the level of class hierarchy)
or only problems in the leaf classes. If the class hierarchy is
not well-structured classes with high EC DI appear. There-
fore, in the situation depicted in Fig.3 problems are present
only if the leaf classes. These classes have to be inspected
in order to verify if their complexity is justified.
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Figure 3. Histograms for ECDI and ECDL.

3.3 Number of Class Attributes

In Fig.4, the histograms for the number of attributes, in-
herited and local, have been reported. In general, when the
number of attributes increases, also the number of methods
to manage the attributes usually augments. Therefore, in
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order to maintain limited the class complexity and thus to
obtain acceptable values of maintainability and testability
for the whole system it is necessary to maintain the number
of attributes reasonably low.
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Figure 4. Number of classes per Number of Attributes
per class: N AT inherited, N AL local

Please note that in LIOOS, N AL assumes a mean value
that accomplishes that reported in Tab.2, while a few classes
are outside of the optimal value. Classes with NAL = 0
present a mainly behavioral specialization. Simple rela-
tionships among N AL, N AI can be supposed in terms of
NSUP.

In Fig.4, the mean value of N AT is close to 6, but two
peaks exist in the profile (at 19 and 29). By eliminating
the peaks, a mean value of about 3 is obtained. Therefore,
it has been recommended to investigate classes related to
peaks since they present too much attributes. After an in-
spection, it has been observed that these classes have been
derived from GUI classes with a large number of protected
attributes and so they are obviously out of the nominal range
for NON-GUI classes. In this case, the peaks have to be
considered a justified exception.

Classes having a great number of inherited attributes are,



in general, derived from classes with a large number of local
attributes; or classes very deep in the hierarchy. A compar-
ison between N SU P and N AlI, for classes out of the opti-
mal range can help to identify the classes to be investigated.
If a class is not so deep in the hierarchy, upper level classes
must be investigated in order to discover if all the attributes
defined are related to the child classes or if one or more of
the parent classes can be split in order to reduce the com-
plexity. In Fig.5 an example of class splitting is reported,;
classes are represented with ellipses and lower letter are lo-
cally defined attributes. By the splitting of the class named
B into two classes (generating abstract class A7), the num-
ber of inherited attributes of leaf classes named C' and D
is lowered. This operation can be performed only if the at-
tributes can be reassigned to different classes according to
their adoption by the class methods. This can be a strong
support to make more reusable the class hierarchy.

NAKC)=8

NAKD)=8

NAKC)=6

NAI(D)=6

Figure 5. Class splitting example.

3.4 Number of Class Methods

In Fig.6, the number of local and inherited methods per
class is reported with respect to the number of classes.
These metrics are used for evaluating the functional com-
plexity of the class. In general, a large number of methods
denote a high number of functionalities and, thus, the class
may result to be too complex. This could be due to a lack
of a correct specialization or for the lack of the exploitation
of the mechanisms of delegation.

The optimal figure for NML is a graph with a peak close
to 7, according to Tab.2, for NON-GUI classes and about
three times this value for GUI classes, with a rapid de-
creasing profile. The classes that have no local methods
(NML = 0) can be structures or classes that specialize all
the methods of the parent classes. A great value for NML
may be due to the presence of a lot of virtual methods, hav-
ing obviously a low functional complexity.

Regarding to NM 1, according to Tab.2, a good mean
value for N M I can be estimated around 14, with a rapidly
decreasing profile. The classes that have NMI = 0 are
root, stand alone classes or structures, but it is possible to
add to this group also classes that specialize all the methods

43

30 T T T
25
20
8
8
s
3]
k3 15
3
H
E
5
z
10
5
o 1 i
20 ° 20 40 60 80 100 120 140 160
Metric NMI
30 u T T t T T
25 |
20
2
2
k|
5 L
K 15
g
2
€
5
z
10
st
o ) A 'H‘IHW A M nn o _i0 0
10 [) 10 20 30 40 50 60 70

Metric NML

Figure 6. Number of classes per Number of Methods per
class: N M inherited, N M L local

inherited from parent classes.

In Fig.6, considering the inherited part, two peaks out of
the optimal profile, are present. In general, classes with this
kind of characterization are GUI classes or classes derived
from parents having a large number of local methods. Ana-
lyzing the data, a mean value of 29 methods for each class
has been estimated. It decreases to 24 with the elimination
of the two above described peaks.

If classes with a large number of local methods are iden-
tified, in order to reduce the collection of too much func-
tionalities in a single class, it is recommended to verify the
possibility of splitting these classes in two or more classes
specializing the original ones.

3.5 Number of Super- and Sub-Classes

In Fig.7 the figure of NSUP is reported. This metric
allows the identification of the number of levels in the class
hierarchy. When a lot of classes have more than 6 levels
it is recommended to check if it is possible to aggregate
more classes in one, in order to reduce the levels. These
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Figure 7. Number of classes per NSUP (superclasses) and
NSUB (subclasses).

classes present often unnecessary specialization in the par-
ent classes along the class hierarchy. A high number of
level in the class hierarchy leads to high costs of understand-
ing since the methods used in the leaf classes is distributed
among several classes.

For LIOOS, a peak for NSU P equal to 2 or 3 has been
obtained. The analysis of the related histogram allows the
identification of the number of roots or stand-alone classes,
which are classes with NSUP = 0. When 6 or more nest-
ing levels appear, it is necessary to re-analyze the class hi-
erarchy in order to verify if such a high number of levels is
needed. In Fig.7, it can be noted that LIOOS has a class with
a high number of children (about 100). This class is a root
class of a large class hierarchy that cannot be split since it
provides the fundamental methods and attributes for graph-
ics.

4 An Overview of TAC++ Tool

The above-mentioned metrics, as many others, can be
evaluated by using TAC++ (see Fig.8). TAC++ is a re-
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search prototype suitable for studying system (i) develop-
ment, (ii) maintenance, and (iii) architecture. As can be
observed in Fig.8, TAC++ is comprised of six main compo-
nents addressing the problems of: (i) navigating in the sys-
tem classes, (ii) evaluating low-level metrics, (iii) defining
and evaluating high-level metrics, (iv) defining and show-
ing metric histograms and profiles, (v) statistically analyz-
ing system for validating and tuning metrics, and (vi) col-

lecting real data.
Statistical Analyzer

LLM Evaluator HLM Evaluator

Browser

Figure 8. TAC++ Structure, Organization and Features

4.1 Collecting Low-Level Measures

The process of collecting low-level measures is based on
a first phase of preprocessing, such as those usually adopted
in compilers. The relationships among classes (is-a, is-part-
of, is-referred-by, coupling between classes by means of
methods, etc.) are identified. If the code of the used class
library is available, it can be considered into the assessment
process, however, the definitions (C++ headers files) of the
used libraries must be available.

The class browser provides an integrated editor for nav-
igating among system classes and their members. The
browser shows the list of classes with a synthetic descrip-
tion of their relationship: the class hierarchy, the list of
methods, etc. if the method is a Constructor, Destructor
or virtual definition from parents (methods), first Virtual
definition (methods).

TAC++ is capable of producing Low-Level Metrics
(LLM). These are direct metrics — such as LOC, Me¢, Ha,
NA, NM,NCL, NAML, Me¢, Ha, etc. The results pro-
duced by the LLMs Evaluator in different phases of the soft-
ware life cycle or system assessment can be collected and
analyzed. Please note that, most of the above mentioned
direct metrics can produce draft results even when only the
class definition is available, such as in the early analysis or
when a library is analyzed.

High-Level Metrics (HLMSs) can be defined by the user
on the basis of LLMs and HLMs. To this end, a specific in-
teractive tool allows the definition of new metrics by means
of a visual editor.

4.2 Immediate Visualization of Results
In order to provide a fast and understandable view of the

project status, the values obtained for LLMs and HLMs can
be visualized in a set of specific views. These views are



typically directly defined in the internal quality manual of
the company together with many other rules that must be
followed for developing the system.

A profile is a consumptive view, which is capable of
showing the values of several metrics with respect to
their specific typical, maximum, minimum values. The
minimum/maximum value(s) can be considered the low-
est/greatest value(s) under/over which a correction should
be made.

Some examples of typical views are: (i) a view reporting
the effort prediction of a class: Size2, NAM, WMC, etc.;
(ii) a view presenting effort for reuse estimation of a class:
CCm, WMC, Mec, etc.; (iii) views reporting conformity to
OOP at system level (general system assessment): NRC
(Number of Root Classes of the System), NRC/NCL,
mean value of CC, etc.; (iv) views reporting class metrics
related to reusability and maintainability: NOC, NSUP,
NSUB, DIT, etc.

By using TAC++, it is also possible to show histograms
for each metrics and for all classes of the system under as-
sessment. Several examples of histograms have been al-
ready presented in the previous section.

4.3 Validating and Tuning Metrics

Metric validation process consists in identifying metric
parameters (weights) and the relevance of metrics compo-
nents on the basis of the knowledge of actual data, depend-
ing on the goals of the metric under validation —e.g., on the
basis of the real effort for development, maintenance, or the
number of defects encountered, etc.

The validation process can be used for (i) verifying
which terms of each identified metric is relevant for its es-
timation (this can be used for reducing the estimation ef-
fort and, in some cases, for increasing correlation and reli-
ability), (ii) evaluating the confidence of the measures ob-
tained, (iii) tuning metric models according to different con-
text and profiles (weights and scale identification), (iv) iden-
tifying metric parameters along the development life-cycle
for evaluating the development progress with respect to ref-
erence trend, and finally (v) for evaluating the goodness of
metrics in representing the selected feature.

Usually, the validation is performed by using mathemat-
ical and statistical techniques. The engine of Statistic Ana-
lyzer used in TAC++ is mainly based on Progress [14], for
which a graphical user interface has been added. The Statis-
tic Analyzer is capable of estimating all the metric weights
used in a metrics if the corresponding real values are avail-
able.

Weight values depend on the application context and,
thus, it is possible to obtain more precise results by esti-
mating the weights depending on the type of the system un-
der assessment. This can be simply done by using a little
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number of reference projects into the selected area and es-
timating weights with the previously applied method. The
reference projects must comply with OOP and quality pro-
files requested for the project area.

Usually a metric may present a high number of compo-
nents but not all the terms have the same importance. By
using the Statistic tool, it is possible to verify not only the
correlation of the whole metric with respect to the real data,
but also the correlation of each term of the metric with re-
spect to the collected effort, maintenance or other real data,
in general. Thus, the most relevant metric components for
the estimation of the targeted features can be identified.

Therefore, real data reporting direct measures of the
features that should be evaluated by metrics are needed —
e.g., real effort for developing, real effort for maintaining,
real effort for the class comprehension, number of defects,
etc. This information is collected by using Data Collector,
which has been developed in Java to be portable in a wide
number of platforms.

5 Conclusions

The adoption of the OOP has produced a great demand
of specific metrics. In this paper, several direct and indi-
rect metrics for the evaluation of effort, maintenance and
reusability costs, have been introduced together with an ap-
proach for their application during system assessment. Re-
sults about the statistical evaluation of bounds and typical
histograms have been reported. These values were obtained
on the basis of several projects and an example of their ap-
plication in analyzing a medium system has been reported.
It has been shown that, by interpreting the histograms pro-
duced through the application of these metrics, critical con-
ditions of the whole system can be identified. More specifi-
cally, histograms make evident degenerative conditions and
allow the identification of classes that require correction (to
be easily reused or maintained) or further development. In
order to manage the large number of metrics, an integrated
tool for defining, showing and validating them is manda-
tory. TAC++ is a highly configurable environment to con-
trol all the aspects of C++ projects since the early phase
of system development. TAC++ offers many features for
aiding project development and maintenance. It has been
profitably used for controlling the development and mainte-
nance of several projects carried out by the research group
and in some industry in order to validate its use on the ap-
plication field. The results obtained by the above mentioned
projects have permitted to establish bounds, reference pro-
files and histograms for a wide typology of applications,
that are in use in present and will be used in future C++
projects.
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