
Deck.gl
Lorenzo Adreani

Corso di: Big Data Architectures 

Prof. Paolo Nesi
Dep DINFO, University of Florence

Via S. Marta 3, 50139, Firenze, Italy

DISIT Lab, Sistemi Distribuiti e Tecnologie Internet

http://www.disit.dinfo.unifi.it/ , Https://www.disit.org
paolo.nesi@unifi.it http://www.disit.dinfo.unifi.it/nesi

http://www.disit.dinfo.unifi.it/
https://www.disit.org/
mailto:paolo.nesi@unifi.it
http://www.disit.dinfo.unifi.it/nesi
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/


Deck.gl
Deck.gl is a free and opensource library designed 
to offer high-performance for 3D WebGL-based 
visualization of large data sets. Users can quickly 
get impressive visual results with minimal effort 
by composing existing layers or exploiting the 
extensible layered architecture of Deck.gl to 
address custom needs.

Deck.gl can handle several tasks out of the box:
• Rendering and update large data sets with 

high-performance.
• Interactive event handling such as picking, 

highlighting, and filtering.
• Cartographic projections and integration with 

major basemap providers
• A catalog of proven, well-tested layers easy to 

deploy and use.

Deck.gl is designed to be highly customizable. 



World space

Common space

Clip space

preprojection

styling

projection

Geospatial

Cartesian



World space

Common space

Clip space

preprojection

styling

projection

CPU

Not provided

CPU

2D Library

leaflet

Geospatial

Cartesian



World space

Common space

Clip space

preprojection

styling

projection

Not provided

Not provided

GPU

Stock WebGL Libraries

three.js
regl

Geospatial

Cartesian



World space

Common space

Clip space

preprojection

styling

projection

Backend

CPU

GPU

Vector Web Maps

Google Maps
Mapbox GL JS

Geospatial

Cartesian



World space

Common space

Clip space

preprojection

styling

projection

GPU

GPU

GPU

deck.gl

Geospatial

Cartesian



Points CPU Aggregation GPU Aggregation Improve
ment

25K 535 iterations/s 359 iterations/s (slower)

100K 119 iterations/s 437 iterations/s 2.7x

1M 12.7 iterations/s 158 iterations/s 11x

Aggregation times



Layers (deck.gl)

Layer (scatterplot)

Layer (path)

Layer (icon)

Layer (polygon)

Layer (scatterplot)

draw()

draw()

draw()

draw()

draw()

Layers



Scenegraph

draw() draw() draw() draw() draw()

Layers



Layers



How it works



Layer

propsUser-defined layer options

state context
Assets and flags managed

by the layer
Info shared by all layers

Layers



A B C

Current layers New layersSet props

B C D

Layers



A B C

Current layers New layersSet props

B C D

No matching 
instance in new 

layers

finalizeState

Layers



A B C

Current layers New layersSet props

C D

Matched

Transfer state

Diff props

Props not changed

B

Layers



A B C

Current layers New layersSet props

D

Matched

Transfer state

Diff props

B

updateState

C

Layers



A B C

Current layers New layersSet props

B C

No matching 
instance in 

current layers

initializeState

D

Layers



Lifecycle Typical Operation Perf 
Impact

initializeState Create models, buffers, and textures High

updateState Pack attributes; update textures from 
props

Maybe 
high

draw Draw to the WebGL context Low

finalizeState Release all WebGL resources Low

Layers Lifecycle



OrthographicView Multi-View (minimap) FirstPersonView

Views and Controllers



Views



View

Layout Options

x

y

width

height

Projection Options

near

far

up

field of view

Views



View State

Camera Position

target

zoom

pitch

bearing

Views



Controller

Views



Renderbuffer

Picking
Other than simple visualizations most of the time 
a GIS web application must also offer interactive 
functionalities. An example is the possibility to get 
the characteristics of a particular building or 
element that the user picks on the interface. In 
videogames this is carried out with raytracing, 
that is however an expensive operation. Deck.gl 
implements a cheap alternative solution to do it.

The steps to achieve this are:



Picking Framebuffer: index-encoded

Picking
Other than simple visualizations most of the time 
a GIS web application must also offer interactive 
functionalities. An example is the possibility to get 
the characteristics of a particular building or 
element that the user picks on the interface. In 
videogames this is carried out with raytracing, 
that is however an expensive operation. Deck.gl 
implements a cheap alternative solution to do it.

The steps to achieve this are:
• Rendering the buildings in an offscreen canvas 

and color them with a value that represent the 
index.



Picking Framebuffer: index-encoded

Picking
Other than simple visualizations most of the time 
a GIS web application must also offer interactive 
functionalities. An example is the possibility to get 
the characteristics of a particular building or 
element that the user picks on the interface. In 
videogames this is carried out with raytracing, 
that is however an expensive operation. Deck.gl 
implements a cheap alternative solution to do it.

The steps to achieve this are:
• Rendering the buildings in an offscreen canvas 

and color them with a value that represent the 
index.

• Retrieve the area of the pointer from the 
buffer.



Picking Framebuffer: attribute-incoded (z)

Picking
Other than simple visualizations most of the time 
a GIS web application must also offer interactive 
functionalities. An example is the possibility to get 
the characteristics of a particular building or 
element that the user picks on the interface. In 
videogames this is carried out with raytracing, 
that is however an expensive operation. Deck.gl 
implements a cheap alternative solution to do it.

The steps to achieve this are:
• Rendering the buildings in an offscreen canvas 

and color them with a value that represent the 
index.

• Retrieve the area of the pointer from the 
buffer.

• If there are multiple colors in the buffer re-
color them according to the altitude Z, in order 
to pick the closest one.



Picking Framebuffer: attribute-incoded (z)

Picking
Other than simple visualizations most of the time 
a GIS web application must also offer interactive 
functionalities. An example is the possibility to get 
the characteristics of a particular building or 
element that the user picks on the interface. In 
videogames this is carried out with raytracing, 
that is however an expensive operation. Deck.gl 
implements a cheap alternative solution to do it.

The steps to achieve this are:
• Rendering the buildings in an offscreen canvas 

and color them with a value that represent the 
index.

• Retrieve the area of the pointer from the 
buffer.

• If there are multiple colors in the buffer re-
color them according to the altitude Z, in order 
to pick the closest one.

• Return the index of the object.



AmbientLight PointLight

CameraLight DirectionalLight

Lights



No effect fxaa tiltShift

Post-Process effects



ScatterplotLayer

User-created Layers Layers Drawn to Context

GeoJSONLayerTileLayer

PointCloudLayer

TextLayer

ScatterplotLayer

IconLayer

PathLayer

SolidPolygonLayer

ScatterplotLayer

PointCloudLayer

Application deck.gl

Composite layer

Primitive layer

Layers



Use Cases





Geospatial analytics with kepler.gl



Self-driving car visualization with streetscape.gl



Implementation



map = new deck.Deck({
viewState: {

longitude: -122.45,
latitude: 37.78,
zoom: 12,
pitch: 30,
bearing: 0,

},
canvas: document.getElementById('cvs'),
onViewStateChange: ({ viewState }) => {

currentViewState = viewState
map.setProps({ viewState: { ...currentViewState } });

},
controller: true,
layers: [

// LAYERS
],
getTooltip: ({ layer, object }) => {

// TOOLTIP LOGIC
}

});

For the initialization of the map with Deck.gl we simply 
need to provide the initial canvas element or a div 
element that will contain it.

Then we can provide many optional parameters, some 
of them are:
• ViewState or InitalViewState: is an object with the 

initial state of the view, like longitude and latitude.
• Views and Controller: we can set the view/s of the 

application and their relative controllers.
• Layers: The initial layers that will be shown at the 

start of the application.

After the initialization we can manage all the deck 
application with the created object.

Map Initialization



function createOrthomapLayer(props) {
return new deck.TileLayer({

id: 'OrthomapLayer',
data: 'https://URL_TO_TILE_SERVER',

minZoom: 0,
maxZoom: 19,
tileSize: 256,

renderSubLayers: props => {
const {

bbox: { west, south, east, north }
} = props.tile;

return new deck.BitmapLayer(props, {
data: null,
image: props.data,
bounds: [west, south, east, north]

});
},
...props,

});
}

The TileLayer is used to render a huge number of data, 
subdivided in tiles. This layer is extremely useful in 
order to have a scalable way to render only the data 
that are visible to the user.

The data can also come from multiple sources and then 
for every tile the data will be represented in one or 
more layer.

For example, to render the orhtomap, we use this layer 
together with the BitmapLayer that is specialized to 
visualize an image in a certain region.

The format of the tile is a de-facto standard defined by 
OpenStreetMap for retrieving GIS data from the 
servers.

Tile Layer



function createArcLayer(props) {
return new deck.ArcLayer({

id: 'ArcLayer',
data: 'https://URL_TO_DATA',

getSourceColor: d => [Math.sqrt(d.inbound), 140, 0],
getSourcePosition: d => d.from.coordinates,
getTargetColor: d => [Math.sqrt(d.outbound), 140, 0],
getTargetPosition: d => d.to.coordinates,
getWidth: 12,
pickable: true,

...props
});

}

The Arc Layer is specialized in drawing arcs between 
two points. You just need to define the source and 
target positions and it will draw a curved 3D line 
between those points. It is possible also to define the 
color that can change from the source to the target, 
and it will appear as a gradient. Like every other layer 
there are a lot of different properties that you can 
define to customize it.

This layer is useful for example to show origin 
destination matrices and vehicle/people flows and 
trajectories.

Arc Layer



function createHeatmapLayer(props) {
return new deck.HeatmapLayer({

id: 'HeatmapLayer',
data: 'https://URL_TO_DATA',

getPosition: d => d.COORDINATES,
radiusPixels: 25,

...props
});

}

The Heatmap Layer is capable to aggregate multiple 
points and draw them as heatmap (a different solution 
with respect to use PNG images). The aggregation 
process is carried out in the GPU and can work with 
millions of points in a few seconds.

Moreover, the aggregation is redone every time the 
zoom changes so to let the user visualize the data in 
multiple scales and have a rougher or finer 
representation according to the actual zoom.

Heatmap Layer



function createHexagonLayer(props) {
return new deck.HexagonLayer({

id: 'HexagonLayer',
data: 'https://URL_TO_DATA',

elevationScale: 4,
extruded: true,
getPosition: d => d.COORDINATES,
radius: 200,
pickable: true,

...props
});

}

The Hexagon Layer is used to create columns that can 
represent different kind of information (similar to the 
3D column used in the digital twin). This layer is capable 
to aggregate the data in GPU and show 3D pillars with a 
height depending of the quantity of the data that fall 
inside the considered area.

An example this can be used to quantify the traffic in a 
certain area or to visualize a particular value measured 
by IoT sensors.

Hexagon Layer



function createTerrainLayer(props) {
return new deck.TerrainLayer({

id: 'TerrainLayer',

bounds: [-122.5233, 37.6493, -122.3566, 37.8159],
elevationData: 'https://url_to_elevation',
elevationDecoder: {

rScaler: 2,
gScaler: 0,
bScaler: 0,
offset: 0

},
material: {

diffuse: 1
},
texture: 'https://url_to_texture',

...props
});

}

The Terrain Layer is used to visualize the ground level 
with a 3D representation. In order to achieve this, it 
requires a raster image describing the elevation data, 
and a decoder function to transform the pixel RGB 
values in accurate elevation in meters. Textures (e.g., 
cadastral or satellite maps) can be superimposed on the 
3D mesh.

The mesh construction is carried out in real-time using 
data that can be retrieved from a Geoserver using the 
WMS protocol. Multiple resolutions depending on the 
actual zoom can be used.

The algorithm to create the mesh is called Martini 
Tessellation, a particularly fast solution.

Terrain Layer



• https://deck.gl/

• https://wiki.openstreetmap.org/wiki/Slippy_map_tilenames

• https://wiki.openstreetmap.org/wiki/Raster_tile_providers

• https://github.com/mapbox/martini

• https://www.cs.ubc.ca/~will/papers/rtin.pdf

References

https://deck.gl/
https://wiki.openstreetmap.org/wiki/Slippy_map_tilenames
https://wiki.openstreetmap.org/wiki/Raster_tile_providers
https://github.com/mapbox/martini
https://www.cs.ubc.ca/~will/papers/rtin.pdf

	Default Section
	Diapositiva 1: Deck.gl
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12: How it works
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33: Use Cases
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37: Implementation
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44


