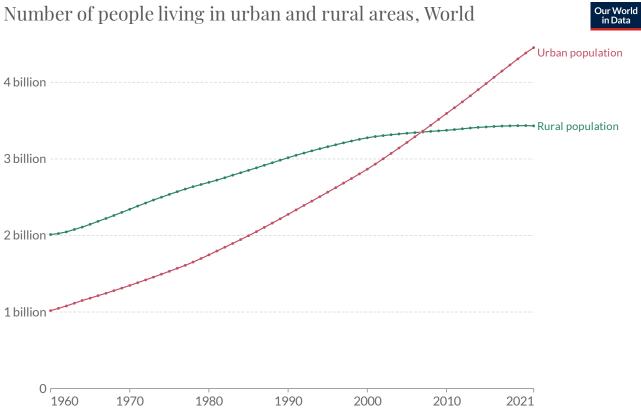


Data 4 Mobility

Marco Fanfani

Corso di: Big Data Architectures **Prof. Paolo Nesi**

Dep DINFO, University of Florence Via S. Marta 3, 50139, Firenze, Italy **DISIT Lab, Sistemi Distribuiti e Tecnologie Internet** <u>http://www.disit.dinfo.unifi.it/</u>, <u>Https://www.disit.org</u> <u>paolo.nesi@unifi.it</u> <u>http://www.disit.dinfo.unifi.it/nesi</u>


Contacts

- Email: marco.fanfani@unifi.it
- Office: room 241, 2° floor, Santa Marta
- Lab: DISIT, room 231, 2° floor, Santa Marta

Urbanization

- Urban population is continuously growing
- Projections indicate that more than two-thirds of the world population will live in highly-dense cities by 2050

Data source: World Bank based on data from the UN Population Division OL. Note: Urban populations are defined based on the definition of urban areas by national statistical offices.

OurWorldInData.org/urbanization | CC BY

SNAP4city

Source: https://ourworldindata.org/urbanization

Urbanization challenges

- Urbanization leads to several challenges
 - Social
 - Environmental
 - Energy
 - Healthcare
 - Infrastructure
 - Mobility and transportation

Urban mobility

- Urbanization leads to several challenges
 - Social
 - Environmental
 - Energy
 - Healthcare
 - Infrastructure
 - Mobility and transportation

Urban mobility – Traffic Congestion

- Traffic congestion is a significant challenge in urban areas and leads to
 - delays
 - increased travel times
 - reduced productivity

Urban mobility – Infrastructure

- Many cities struggle with **limited or outdated infrastructure** to support the growing demand for urban transport:
 - insufficient road capacity
 - inadequate public transport systems
 - lack of cycling and pedestrian infrastructure

Urban mobility – Environmental Impact

- Urban transport is a significant contributor to air pollution and greenhouse gas emissions.
- Private vehicles, particularly those running on fossil fuels, emit pollutants that **harm air quality** and contribute to climate change.

Urban mobility – Transport Mode Integration

- Fragmented and **poorly integrated transport systems** pose challenges for seamless travel experiences.
- Lack of coordination between **different modes of transport**, such as buses, trains, and bicycles, can result in inconvenient transfers, time-consuming journeys, and reduced efficiency.

Urban mobility – Affordability, Accessibility

- Accessibility to affordable transport options is essential for ensuring equitable mobility within urban areas.
- Limited access to public transport, high fares, and insufficient coverage in certain neighborhoods can lead to transport poverty and social exclusion.

Urban mobility – Safety, Security

- Ensuring the **safety and security of commuters** is a significant challenge in urban transport.
- Issues such as traffic accidents, crime, and harassment can discourage people from using public transport or walking and cycling.

Urban mobility – Behavioral Change

- Encouraging **behavioral change and shifting travel patterns** from private vehicles to sustainable modes of transport can be challenging.
- Many individuals are accustomed to using **private cars** due to convenience, habit, or lack of viable alternatives.

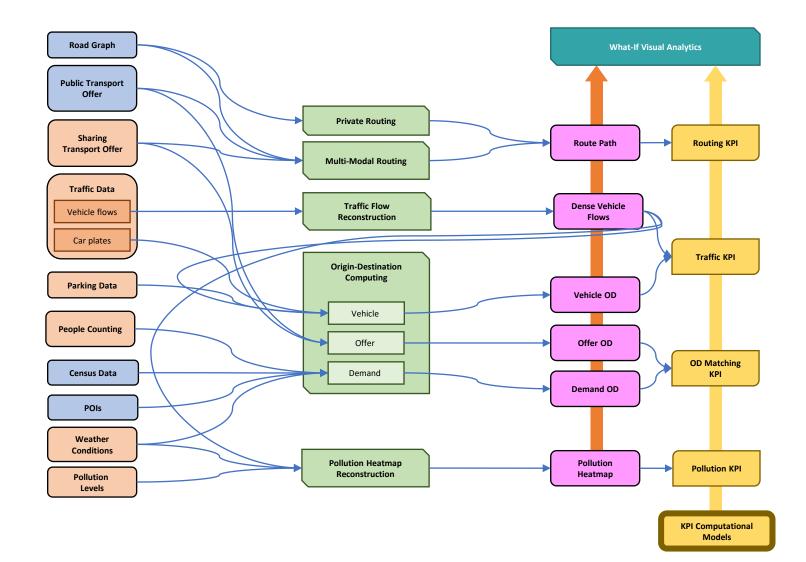
Urban mobility – Financial Sustainability

- Developing and maintaining urban transport infrastructure requires significant financial resources.
- Funding constraints can limit the ability of cities to invest in new projects, upgrade existing systems, and ensure ongoing maintenance.
- Exploring innovative financing mechanisms, public-private partnerships, and securing sustainable funding sources are crucial for the long-term financial sustainability of urban transport.

Urban mobility – Solutions

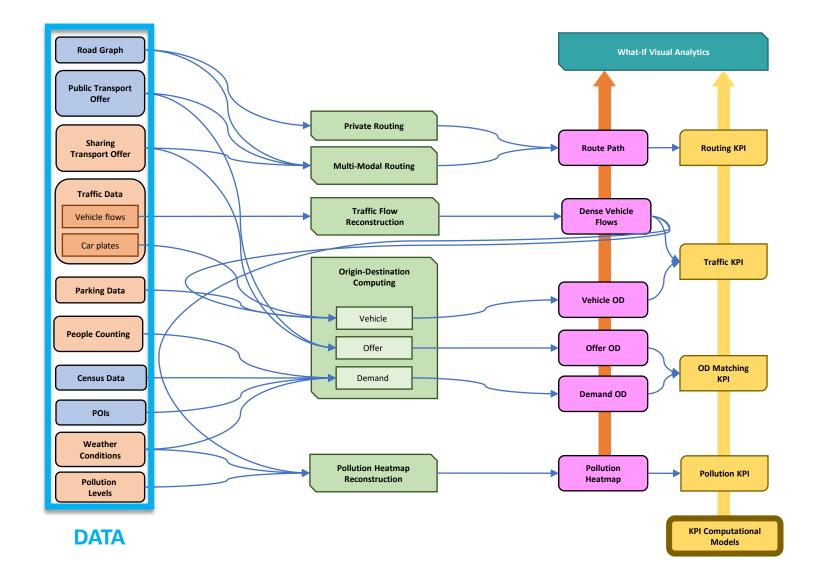
- Solving the urban mobility challenges requires multidisciplinary effort
 - Civil engineering
 - Urban planning
 - Geography
 - Human and social studies
 - Information technologies

- IT plays a pivotal role in addressing the urban mobility problem
- A platform is required to enable other experts to work on the mobility problem
- The development of a platform requires three macro-activities
 - Data acquisition and modelling
 - Development of analytical software to perform reconstruction, prediction, evaluations
 - Development of graphical interfaces to show and interact with the system


• Main goals are

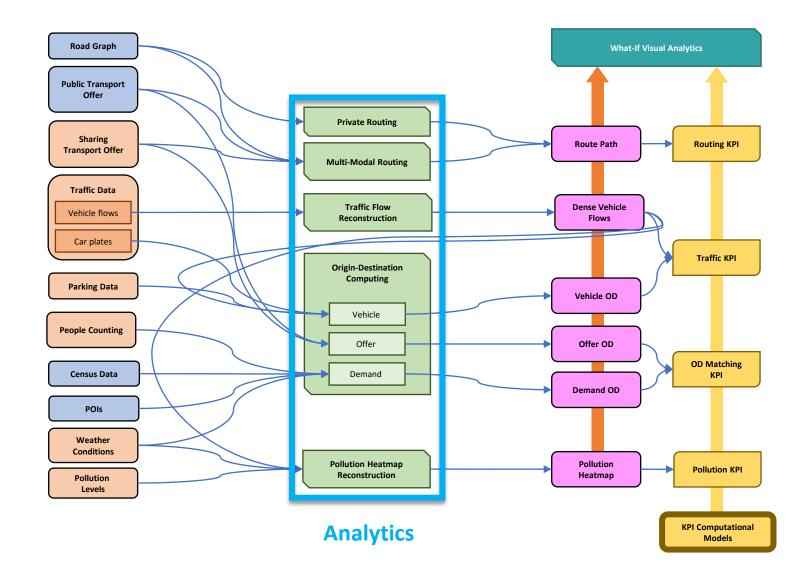
JNIVERSITÀ Degli studi

- **Real-time assessment** of the urban mobility environment using acquired data and produced reconstructions
 - Traffic level
 - Public transport
 - ...
- Predictive analysis on the actual scenario or on different scenarios,
 - i.e., What-If analysis
 - Traffic Flow Reconstruction
 - Transport demand vs offer assessment
 - ..
- Computation of Key Performance Indicators (KPI)
 - SUMI Sustainable Urban Mobility Indicators
 - PUMS Piano Urbano di Mobilità Sostenibile

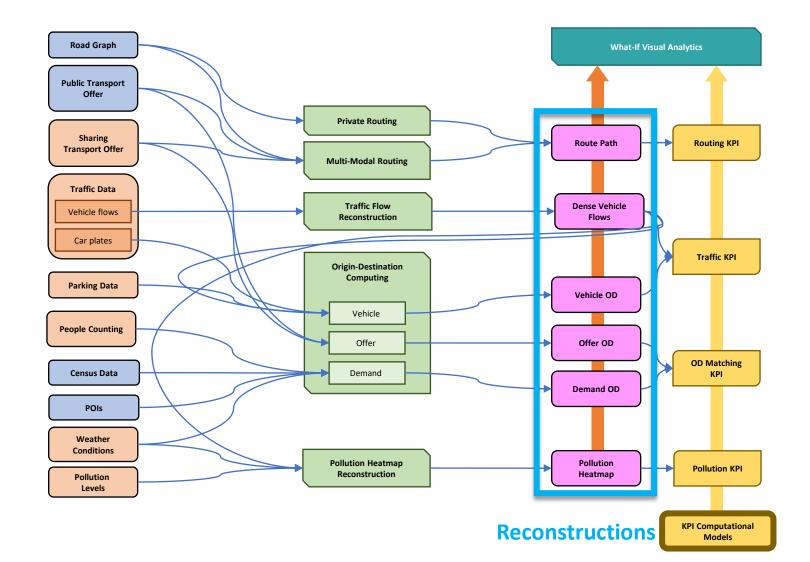

UNIVERSITÀ Degli studi

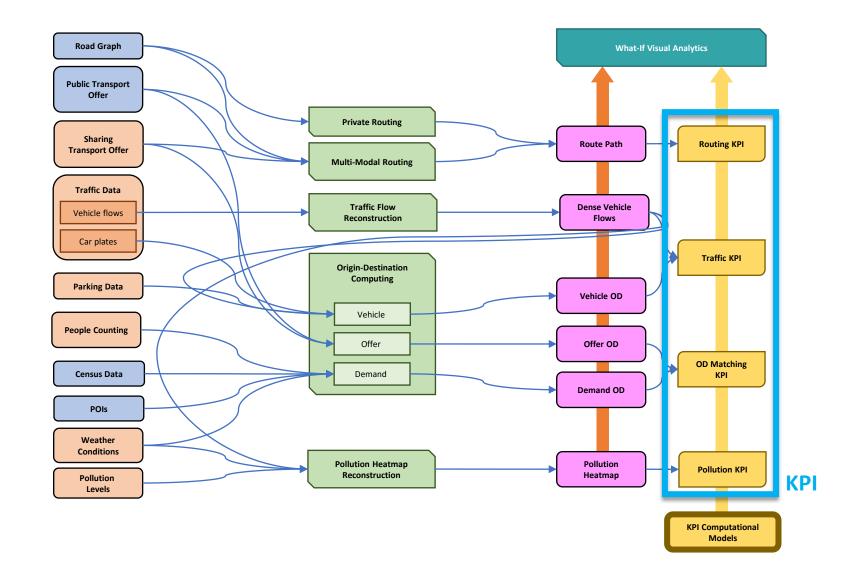
FIRENZE

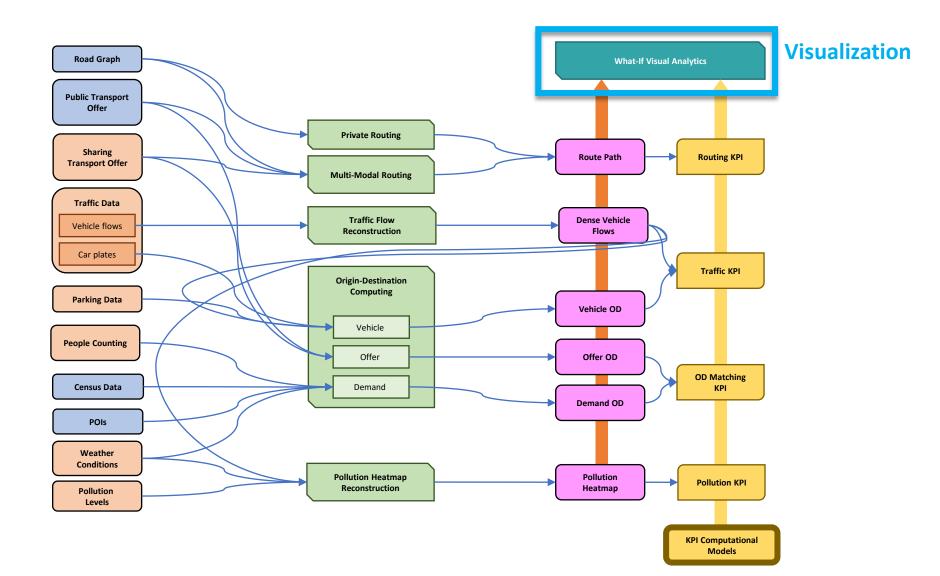
DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

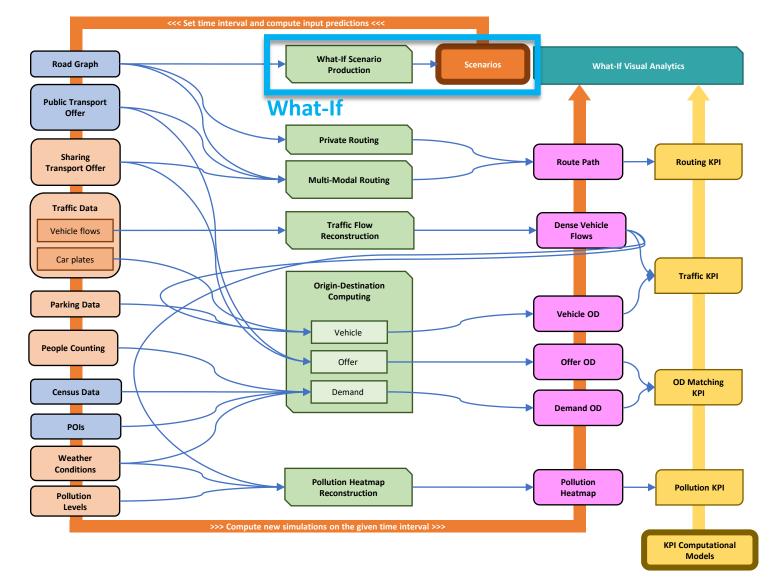

DISIT

INTERNET TECHNOLOGIES LAB DISTRIBUTED DATA INTELLIGENCE AND TECHNOLOGIES LAB







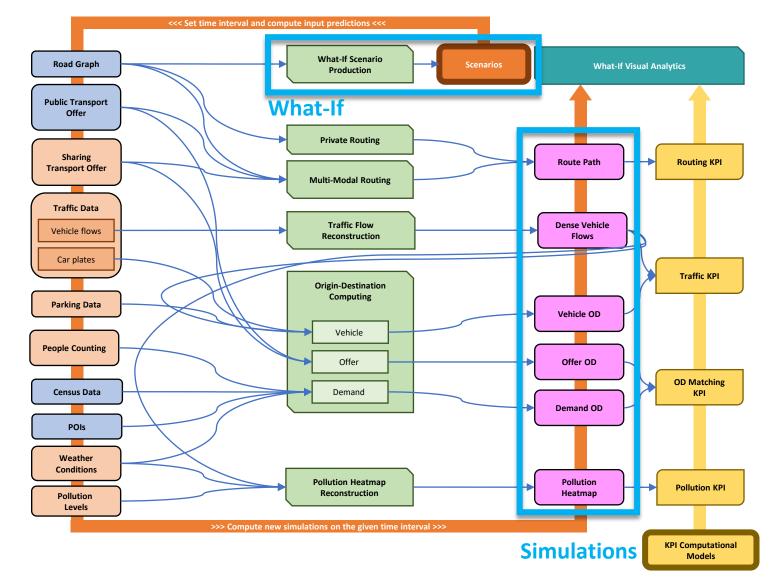

UNIVERSITÀ Degli studi

FIRENZE

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

DISIT

INTERNET TECHNOLOGIES LAB DISTRIBUTED DATA INTELLIGENCE AND TECHNOLOGIES LAB SNAD4CITY

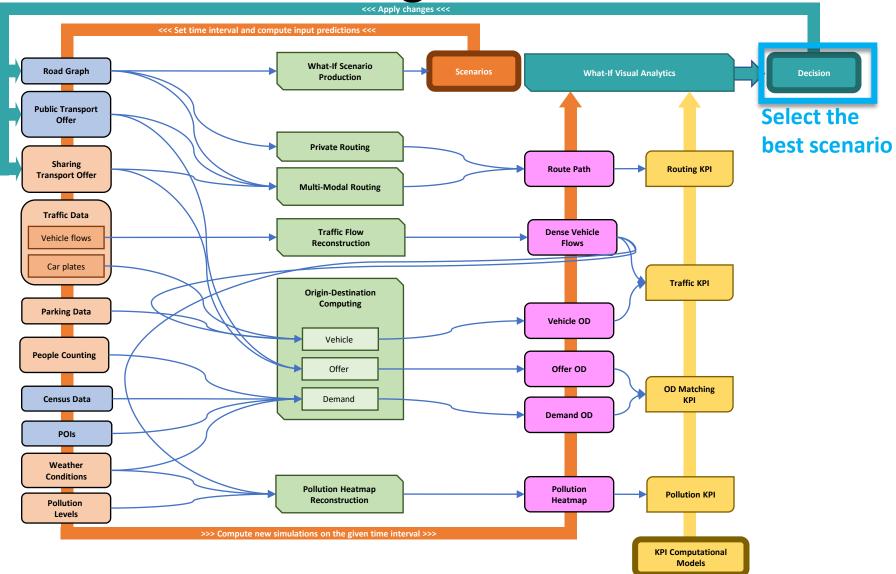


UNIVERSITÀ Degli studi

FIRENZE

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

INTERNET TECHNOLOGIES LAB DISTRIBUTED DATA INTELLIGENCE AND TECHNOLOGIES LAB SNAD4CITY



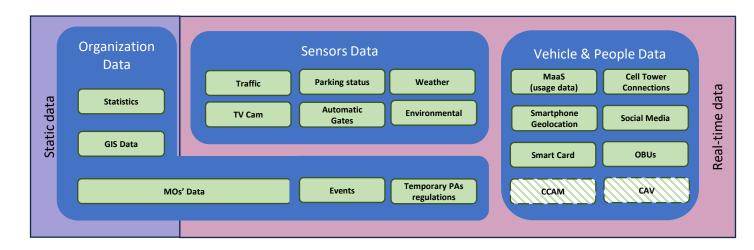
UNIVERSITÀ Degli studi

FIRENZE

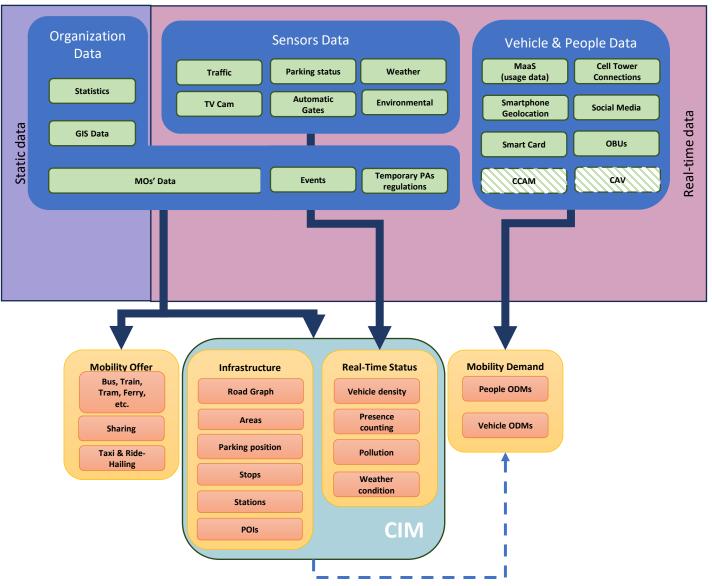
DINFO DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

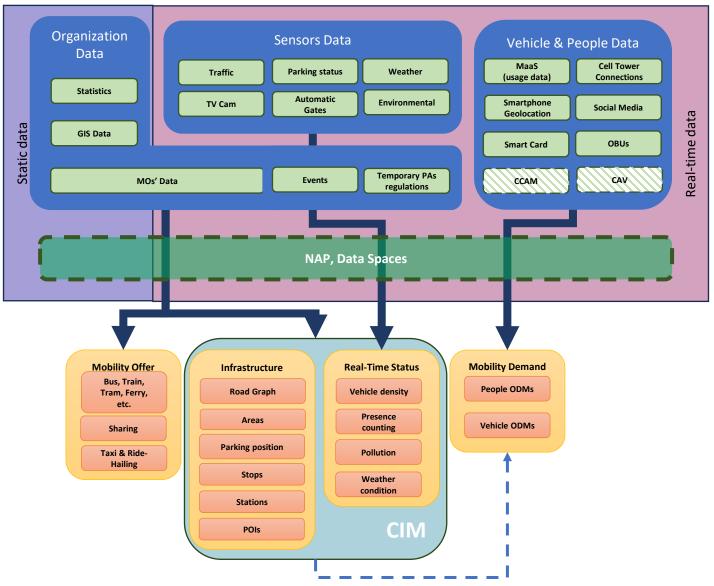
INTERNET TECHNOLOGIES LAB DISTRIBUTED DATA INTELLIGENCE AND TECHNOLOGIES LAB SNAD4city

Which data? In which format?


- We will see an overview of the data required to build a platform for urban mobility management
- We will also discuss about the formats and standards used to distribute such data

Which data?


- A possible taxonomy of mobility data is to group data according to their source
 - Data from public or private organizations
 - Data from IoT sensors
 - Data produced directly by vehicles or people


Which data?

Which data?

- Statistical data include surveys, reports, census information
- Can be used to obtain a description of the
 - Population, according to gender, age, wealth
 - Vehicle models, motorizations, registration dates
 - Distribution of urban services
 - ..
- Statistics are particularly useful to compute the KPIs (e.g., how many people have a bus stop at less than 100m from their home?)
- Statistical data are mainly distributed by national institute of statistics

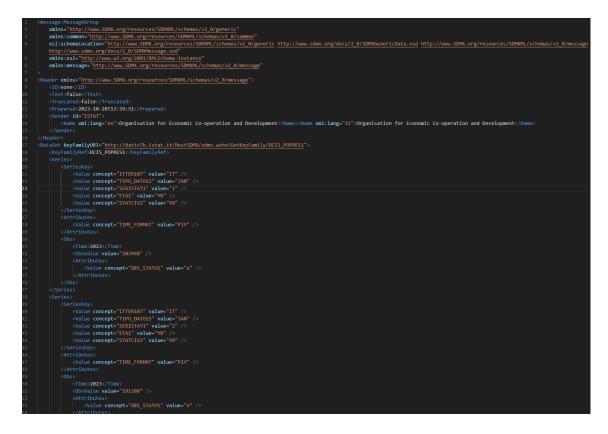
- In Italy we can use the ISTAT portal (<u>https://www.istat.it/</u>)
- The portal I.Stat (<u>http://dati.istat.it/</u>) let to search and download data about different categories

I.Stat i tuo accesso diretto alla statistica italiana	I Stat ii tuo accesso diretto					
Popolazione residente al 1º gennaio •			Peri			
a nei temi 🔊 Annula 🕎 Personalizza 👻 🖼 Esporta 👻 🔓 La tua interrogazione 👻						
Tipo di indicatore demografico	popolazione al 1º gennaio					
ensimento agricoltura 2010	totale V					
ensimenti permanenti della						
polazione e delle abitazioni, Stato civile O prese, istituzioni pubbliche e	lotale 🗸					
prese, sanction publicitie e Seleziona periodo profit						
ensimento popolazione e abitazioni Sesso						
111 III III III III III III III III III	A 7	▲ ▼	▲ ▼			
biente ed energia						
atteristiche del territorio e Italia	(e) 28 749 359	(e) 30 101 358	(e) 58 850 7			
olazione e famiglie aviga anche su IstatData aviga anche su IstatData	(e) 7 741 249	(e) 8 075 808	(e) 15 817 0			
popolazione Piemonte	(*) 2 068 142	(e) 2 172 594	(e) 4 240 7			
Popolazione residente al 1º gennaio Torino	(e) 1 067 065	(e) 1 131 172	(e) 2 198 2			
Italia, regioni, province Vercelli Vercelli	(e) 80 857	(e) 84 648	(e) 165 5			
Regioni e comuni Novara	(e) 176 451	(e) 184 943	(e) 361 3			
Cuneo Cuneo	(e) 287 463	(e) 292.485	(e) 579 S			
centenaria (105 anni e più) Asti Popolazione residente -	(e) 102 109	(e) 105 337	(e) 207 4			
bilancio Alessandria	(e) 197 883	(e) 207 818	(e) 405.7			
ndicatori demografici 0 Biella	(*) 81 561	(e) 87 262	(e) 168 S			
trimoni e unioni civili Verbano-Cusio-Ossola	(*) 74 753	(e) 78 929	(e) 153 (
alità e fecondità Valle d'Aosta / Vallée d'Aoste	(e) 60 254	(e) 62 701	(e) 122			
rtalità Valle d'Aosta / Vallée d'Aoste	(e) 60 254	(e) 62 701	(e) 122			
parazioni e divorzi e Liguria	(e) 723 806	(e) 778 818	(e) 1 502 (
anieri e immigrati Imperia	(e) 101.085	(e) 107 011	(e) 208 (
bolazione Intercensuaria Savona						
visioni demografiche	(e) 128 482					
izioni economiche delle Genova	(+) 390 035	(e) 423 591	(e) 813 (
La Spezia	(+) 104 204	(e) 110 075	(e) 214.2			
tenza e previdenza Lombardia	(*) 4 889 047	(e) 5 061 695	(e) 9 950 7			
ione e formazione Varese	(e) 428 105	(e) 449 583	(e) 877 (
ra, comunicazione, viaggi Legend:						
tizia e Sicurezza Dati estratti il 20 ott 2023, 13h52 UTC (GMT) da 1.Stat						
nunfifiana e nnininne dei Jalemologia Stat (9 OECD Tutti i diriti riservati. Condizioni duso Politica sulla privacy Dicharazione di accessibilità			per il login FAQs e Contatti Mappa del sito Manuale			

• Data can be exported in different formats

- Data can be exported in different formats
 - Microsoft Excel

File Home Inserisci Layout d					iuida 🖵	
$1 \qquad \checkmark \mid : \times \checkmark f_x \mid$	=DotStatQu	ery(B1)				
A	B C	D	E	F	G H	
Dataset:Popolazione residente al 1º gennaio						
Tipo di indicatore demografi		ne al 1º genr	naio			
E Stato civ	tà totale					
Seleziona perio	_		2023			
Ses		aschi	femmine	e	totale	
Territorio			()			
Italia	(e)	28749359		0101358 (€		7
Nord-ovest	(e)	7741249		8075808		
Piemonte	(e)	2068142		2172594	424073	
Torino	(e) (e)	1067065		1131172		-
Vercelli	(e) (e)	80857	(e)	84648 (*		
Novara	(e) (e)	176451	(=)	184943 (*		
Cuneo Asti	(e) (e)	287463		292485		
	(e) (e)	102109		105337 (*		
Alessandria Biella	(e) (e)	197883		207818		
	(e) (e)	81561		87262		
Verbano-Cusio-Ossola Valle d'Aosta / Vallée d'Aoste		74753		78929 (*		2
	(e)	60254	(e)	62701	^{a)} 12295	5
Valle d'Aosta / Vallée d'Aoste	(e)	60254	(e)	62701 (*		2
Liguria	(e)	723806		778818 (*		
Imperia	(e)	101085		107011 (*	e) 20809	-
Savona	(e)	128482		138141 (*		
Genova	(e)	390035		423591 (*		
La Spezia	(e)	104204	(e)	110075 (*		-
Lombardia	(e)	4889047	(e)	5061695	e) 995074	2
Varese	(e)	428105	(e)	449583 (*	^{a)} 87768	
Como	(e)	293134		302379 (*		3
Sondrio	(e)	87968		90504 (*		2
Milano	(e)	1568453		1650938 (*	e) 321939	1
Bergamo	(e)	548741		555027 (*	^{a)} 110376	8
Brescia	(e)	621848		632145 (*	e) 125399	3
Pavia	(e)	262527	(e)	272441 (*	e) 53496	8
Cremona	(e)	173810		177359 (*		9
Mantova	(e)	200065	(e)	204631 (*		
Lecco	(e)	164006		168037 (*	e) 33204	3
Lodi	(e)	112982	(e)	114513 (*	e) 22749	5
Monza e della Brianza	(e)	427408	(e)	444138 (*		6
Nord-est	(e)	5657745	(e)	5874945	e) 1153269	0
Trentino Alto Adige / Südtirol	(e)	531680		543637 (6	e) 107531	7
Provincia Autonoma Bolzano	(e)		(e)			4
I.Stat export	(e) +	264436	: (100021 (6	·/	7


- Data can be exported in different formats
 - Microsoft Excel
 - CSV

"ITTER107","Territorio","TIPO_DATO15","Tipo di indicatore demografico","SEXISTAT1","Sesso","ETA1","Età","STATCIV2" "TIME", "Seleziona periodo", "Value", "Flag Codes", "Flag "IT","Italia","JAN","popolazione al 1º gennaio","1","maschi","Y0","0 anni","99","totale","2023","2023",203968,"e","dato stimato "IT","Italia","JAN","popolazione al 1º gennaio","2","femmine","Y0","0 anni","99","totale "IT","Italia","JAN","popolazione al 1º gennaio","9","totale","Y0","0 anni","99","totale ","2023","2023",191380,"e","dato stimato ,"2023","2023",395348,"e","dato stimato" "ITC", "Nord-ovest", "JAN", "popolazione al 1º gennaio", "1", "maschi", "Y0", "0 anni", "99", "totale", "2023", "2023", 53351, "e", "dato stimato" "ITC", "Nord-ovest", "JAN", "popolazione al 1º gennaio", "2", "femmine", "Y0", "0 anni", "99", "totale", "2023", "2023", 50106, "e", "dato stimato" "ITC", "Nord-ovest", "JAN", "popolazione al 1º gennaio", "9", "totale", "Y0", "0 anni", "99", "totale", "2023", "2023", 103457, "e", "dato stimato "ITC1","Piemonte","JAN","popolazione al 1º gennaio","1","maschi","Y0","0 anni","99"," "2023","2023",13333,"e","dato stimato "ITC1", "Piemonte", "JAN", "popolazione al 1º gennaio", "2", "femmine", "Y0", "0 anni", "99", ."2023"."2023".12805."e" "dato stimato "ITC1", "Piemonte", "JAN", "popolazione al 1º gennaio", "9", "totale", "Y0", "0 anni", "99", "tota "2023" "2023" 26138 "e" "dato stimato" "ITC11", "Torino", "JAN", "popolazione al 1º gennaio", "1", "maschi", "Y0", "0 anni", "99", "totale ,"2023","2023",6944,"e","dato stimato" "ITC11", "Torino", "JAN", "popolazione al 1º gennaio", "2", "femmine", "Y0", "0 anni", "99", "totale" ","2023","2023",6657,"e","dato stimato "ITC11", "Torino", "JAN", "popolazione al 1º gennaio", "9", "totale", "Y0", "0 anni", "99", "tota "2023","2023",13601,"e","dato stimato "ITC12", "Vercelli", "JAN", "popolazione al 1º gennaio", "1", "maschi", "Y0", "0 anni", "99", " "ITC12", "Vercelli", "JAN", "popolazione al 1º gennaio", "2", "femmine", "Y0", "0 anni", "99", " "ITC12", "Vercelli", "JAN", "popolazione al 1º gennaio", "9", "totale", "Y0", "0 anni", "99", "t le","2023","2023",993,"e","dato stimato ,"2023","2023",441,"e","dato stimato" "ITC13", "Biella", "JAN", "popolazione al 1º gennaio", "2", "femmine", "Y0", "0 anni", "99", "totale", "2023", "2023", 399, "e", "dato stimato" "2023","2023",840,"e","dato stimato" "ITC14", "Verbano-Cusio-Ossola", "JAN", "popolazione al 1º gennaio", "2", "femmine", "Y0", "0 anni", "99", "te ale","2023","2023",394,"e","dato stimato "ITC14", "Verbano-Cusio-Ossola", "JAN", "popolazione al 1º gennaio", "9", "totale", "Y0", "0 anni", "99", "totale", "2023", 777, "e", "dato stimato" "ITC15", "Novara", "JAN", "popolazione al 1º gennaio", "1", "maschi", "Y0", "0 anni", "99", "totale", "2023", "2023", 1207, "e", "dato stimato" "ITC15", "Novara", "JAN", "popolazione al 1º gennaio", "2", "femmine", "Y0", "0 anni", "99", "totale", "2023", "2023", 1133, "e", "dato stimato "ITC15", "Novara", "JAN", "popolazione al 1º gennaio", "9", "totale", "Y0", "0 anni", "99", "to ","2023","2023",2340,"e","dato stimato "ITC16", "Cuneo", "JAN", "popolazione al 1º gennaio", "2", "femmine", "Y0", "0 anni", "99", "to ","2023","2023",1957,"e","dato stimato "2023","2023",4011,"e","dato stimato" "2023","2023",635,"e","dato stimato" "ITC17", "Asti", "JAN", "popolazione al 1º gennaio", "2", "femmine", "Y0", "0 anni", "99", "tota "2023","2023",604,"e","dato stimato" "ITC17", "Asti", "JAN", "popolazione al 1º gennaio", "9", "totale", "Y0", "0 anni", "99", "tot "2023","2023",1239,"e","dato stimato" "ITC18", "Alessandria", "JAN", "popolazione al 1º gennaio", "1", "maschi", "Y0", "0 anni", "99", " otale","2023","2023",1180,"e","dato stimato "ITC18", "Alessandria", "JAN", "popolazione al 1º gennaio", "2", "femmine", "Y0", "0 anni", "99", "totale", "2023", "2023", 1157, "e", "dato stimato" "dato stimato" "ITC2", "Valle d'Aosta / Vallée d'Aoste", "JAN", "popolazione al 1º gennaio", "2", "femmine", "Y0", "0 anni", "99", " "."2023"."2023".379."e ."dato stimato "ITC2", "Valle d'Aosta / Vallée d'Aoste", "JAN", "popolazione al 1º gennaio", "9", "totale", "Y0", "0 anni", "99", "t ',"2023","2023",782,"e","dato stimato" "ITC20", "Valle d'Aosta / Vallée d'Aoste", "JAN", "popolazione al 1º gennaio", "1", "maschi", "Y0", "0 anni", "99", "totale", "2023", 202 "ITC20", "Valle d'Aosta / Vallée d'Aoste", "JAN", "popolazione al 1º gennaio", "2", "femmine", "Y0", "0 anni", "99", "totale", "2023", "2023", 379, "e", "dato stimato "ITC20", "Valle d'Aosta / Vallée d'Aoste", "JAN", "popolazione al 1º gennaio", "9", "totale", "Y0", "0 anni", "99", "totale "2023","2023",782,"e","dato stimato "ITC3","Liguria","JAN","popolazione al 1º gennaio","1","maschi","Y0","0 anni","99","totale","2023","2023",4462,"e","dato stimato" "ITC3","Liguria","JAN","popolazione al 1º gennaio","2","femmine","Y0","0 anni","99"," ","2023","2023",4104,"e ."2023"."2023".8566."e"."dato stimato" "ITC31", "Imperia", "JAN", "popolazione al 1º gennaio", "1", "maschi", "Y0", "0 anni", "99", "totale", "2023", "2023", 635, "e", "dato stimato" "ITC31", "Imperia", "JAN", "popolazione al 1º gennalo", "2", "femmine", "Y0", "0 anni", "99", "totale", "2023", "2023", 623, "e", "dato stimato "ITC31", "Imperia", "JAN", "popolazione al 1º gennaio", "9", "totale", "Y0", "0 anni", "99", "totale ","2023","2023",1258,"e","dato stimato "ITC32","Savona","JAN","popolazione al 1º gennaio","1","maschi","Y0","0 anni","99","to "2023","2023",726,"e" "dato stimato "ITC32","Savona","JAN","popolazione al 1º gennaio","2","femmine","Y0","0 anni","99","1 ","2023","2023",684,"e","dato stimato "ITC32"."Savona"."JAN"."popolazione al 1º gennaio"."9"."totale"."Y0"."0 anni"."99"."to "2023", "2023", 1410, "e", "dato stimato "ITC33", "Genova", "JAN", "popolazione al 1º gennaio", "1", "maschi", "Y0", "0 anni", "99", "to "2023","2023",2471,"e","dato stimato "ITC33", "Genova", "JAN", "popolazione al 1º gennaio", "2", "femmine", "YO", "O anni", "99", " ."2023"."2023".2209."e"."dato stimato "2023","2023",4680,"e","dato stimato" "ITC34","La Spezia","JAN","popolazione al 1º gennaio","1","maschi","Y0","0 anni","99","tota ","2023","2023",630,"e","dato stimat

- Data can be exported in different formats
 - Microsoft Excel
 - CSV
 - **SDMX** (Statistical Data and Metadata eXchange),
 - see <u>https://sdmx.org/</u>
 - ISTAT seems to implement the SDMX-ML based on XML

GIS Data

- Geographic Information System (GIS) data:
 - Data to represent geographic information

SNAP4city

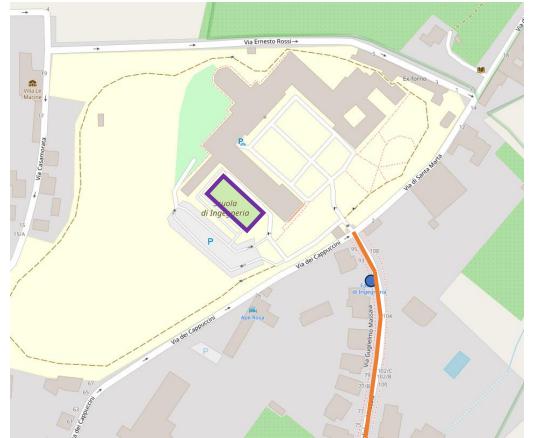
GIS Data

- Data to represent geographic information
- Vector data: each described entity is geo-localized with different shapes
 - Point

SNAP4CITY

GIS Data

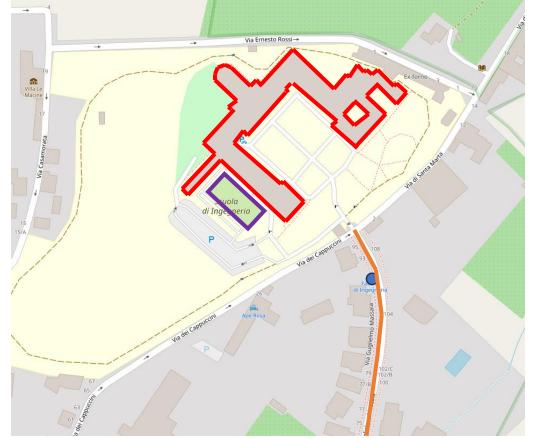
- Data to represent geographic information
- Vector data: each described entity is geo-localized with different shapes
 - Point
 - Line



SNAP4CITY

GIS Data

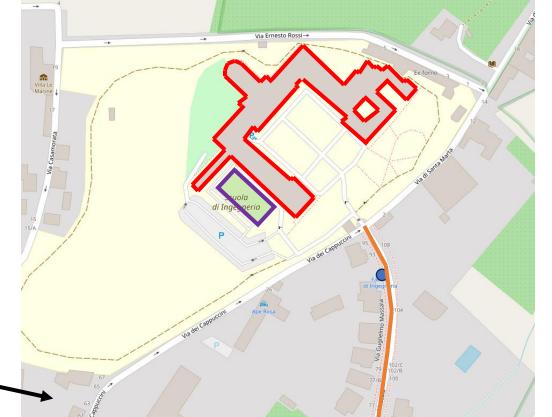
- Data to represent geographic information
- Vector data: each described entity is geo-localized with different shapes
 - Point
 - Line
 - Polygon



SNAP4CITY

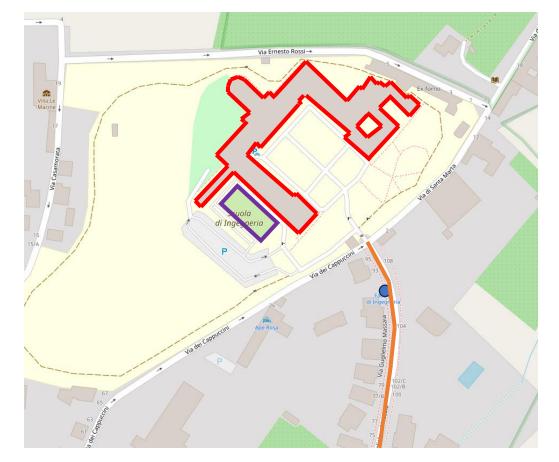
GIS Data

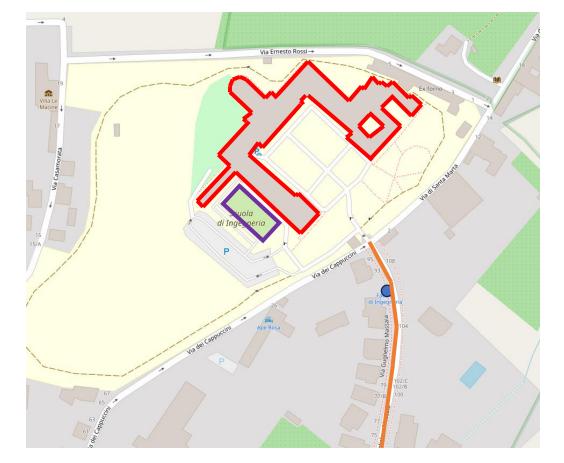
- Data to represent geographic information
- Vector data: each described entity is geo-localized with different shapes
 - Point
 - Line
 - Polygon
 - Multi-polygon

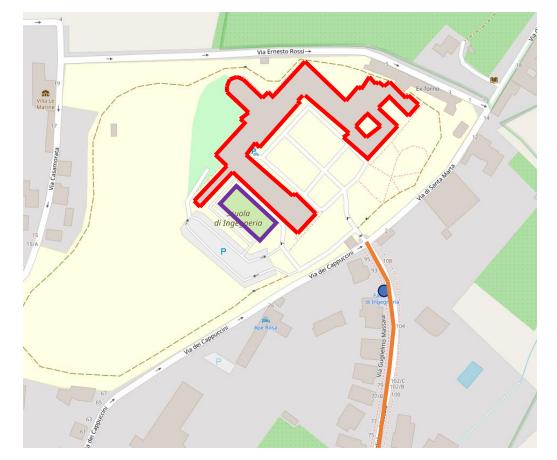


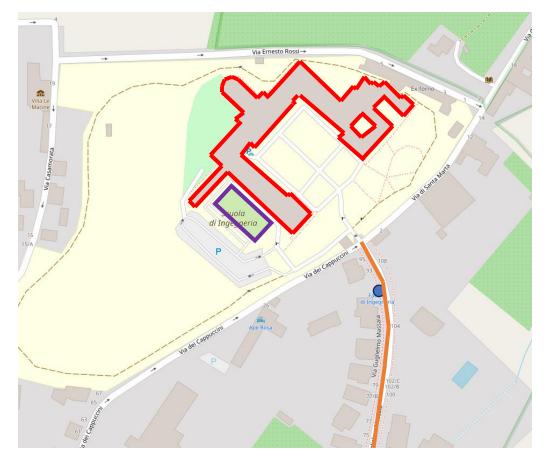
SNAP4city

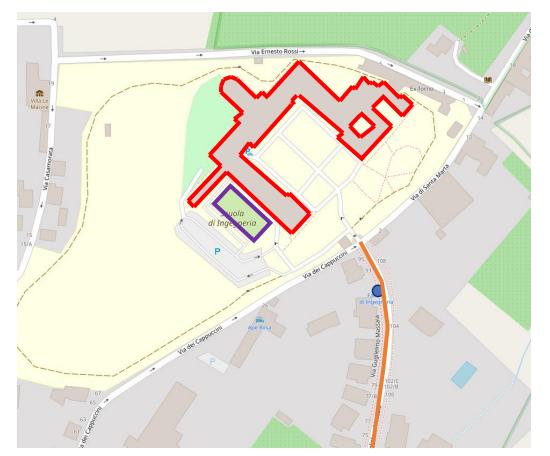
GIS Data

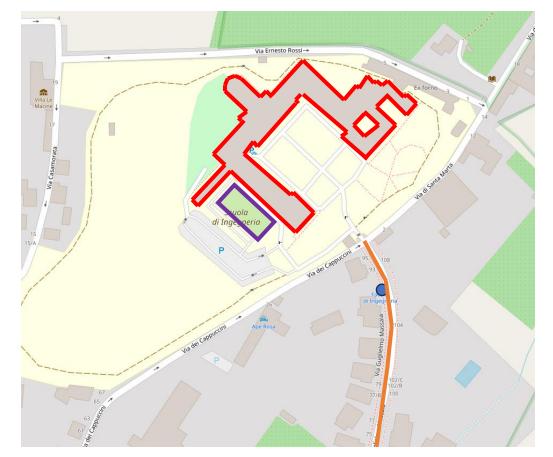

- Data to represent geographic information
- Vector data: each described entity is geo-localized with different shapes
 - Point
 - Line
 - Polygon
 - Multi-polygon
- Raster data: images with localization information

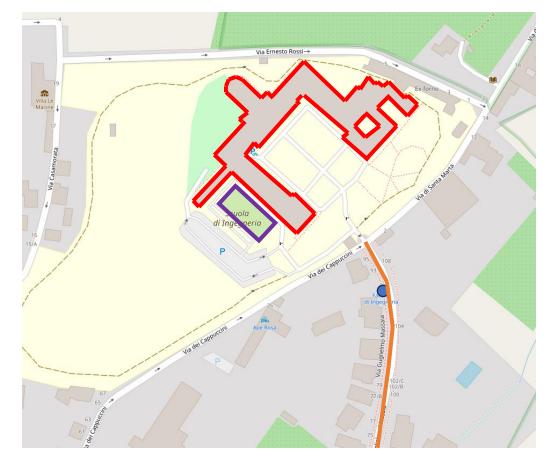

- GIS data are used to represent and describe the infrastructures
 - **Roads** represented as line segments


- GIS data are used to represent and describe the infrastructures
 - **Roads** represented as line segments
 - Areas represented as polygons


- GIS data are used to represent and describe the infrastructures
 - **Roads** represented as line segments
 - Areas represented as polygons
 - Building ground shapes represented as polygons or multi-polygons


- GIS data are used to represent and describe the infrastructures
 - Roads represented as line segments
 - Areas represented as polygons
 - Building ground shapes represented as polygons or multi-polygons
 - Traffic signs and traffic lights as points

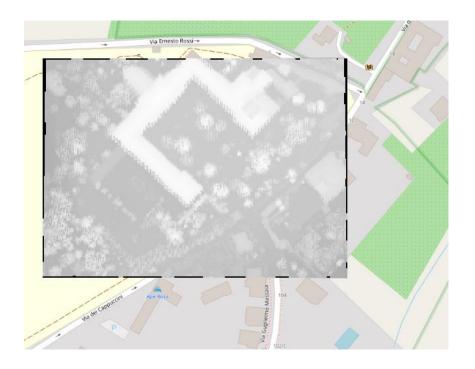

- GIS data are used to represent and describe the infrastructures
 - Roads represented as line segments
 - Areas represented as polygons
 - Building ground shapes represented as polygons or multi-polygons
 - Traffic signs and traffic lights as points
 - Point of Interest (POI) as point

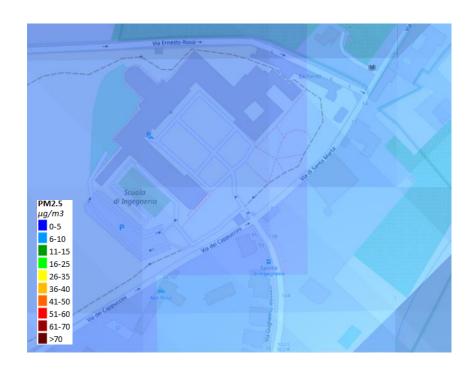

- GIS data are used to represent and describe the infrastructures
 - Roads represented as line segments
 - Areas represented as polygons
 - Building ground shapes represented as polygons or multi-polygons
 - Traffic signs and traffic lights as points
 - Point of Interest (POI) as point
 - Parking as points or polygons

- GIS data are used to represent and describe the infrastructures
 - Roads represented as line segments
 - Areas represented as polygons
 - Building ground shapes represented as polygons or multi-polygons
 - Traffic signs and traffic lights as points
 - Point of Interest (POI) as point
 - Parking as points or polygons
 - ..

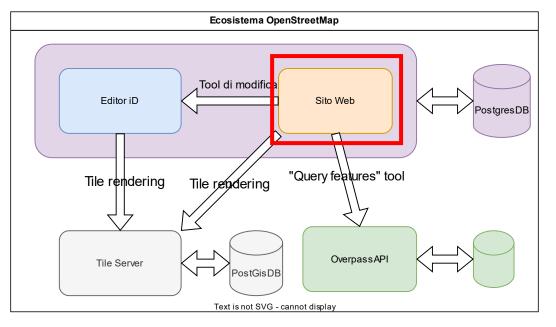
- GIS data are used to represent and describe the infrastructures
 - Ground maps

- GIS data are used to represent and describe the infrastructures
 - Ground maps, of different kinds

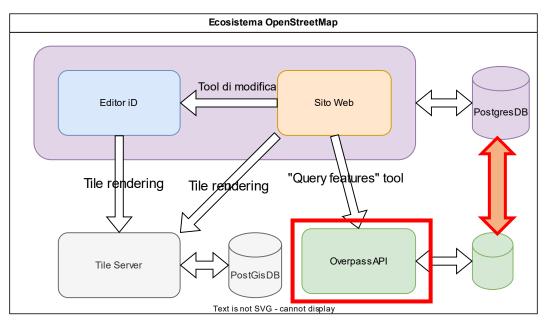

- GIS data are used to represent and describe the infrastructures
 - Ground maps, of different kinds
 - Aerial/satellite photos (orthomaps)


- GIS data are used to represent and describe the infrastructures
 - Ground maps, of different kinds
 - Aerial/satellite photos (orthomaps)
 - Elevation maps

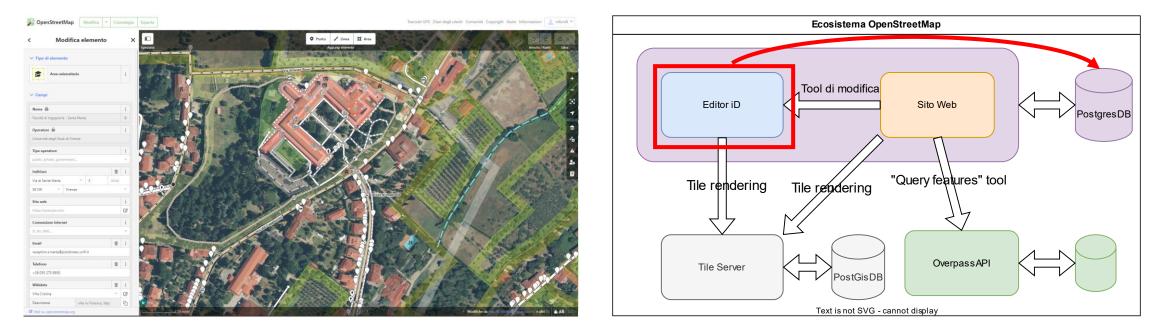
- GIS data are used to represent and describe the infrastructures
 - Ground maps, of different kinds
 - Aerial/satellite photos (orthomaps)
 - Elevation maps
 - Heatmaps


- GIS data can be retrieved from different services
- OpenStreetMap (<u>https://www.openstreetmap.org/</u>) is one of the most complete and updated source

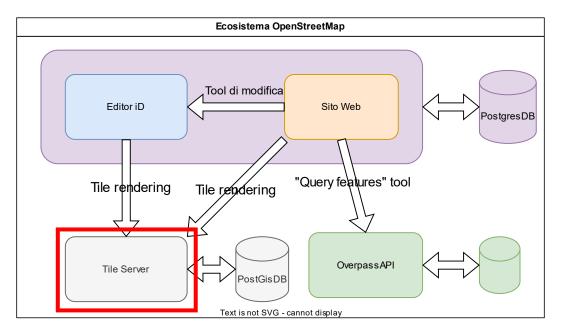
- GIS data can be retrieved from different services
- OpenStreetMap (<u>https://www.openstreetmap.org/</u>) is one of the most complete and updated source



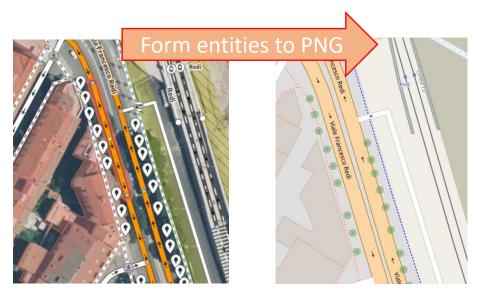
- GIS data can be retrieved from different services
- OpenStreetMap (<u>https://www.openstreetmap.org/</u>) is one of the most complete and updated source

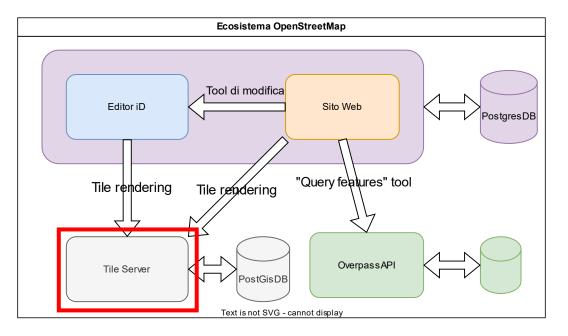


- GIS data can be retrieved from different services
- OpenStreetMap (<u>https://www.openstreetmap.org/</u>) is one of the most complete and updated source

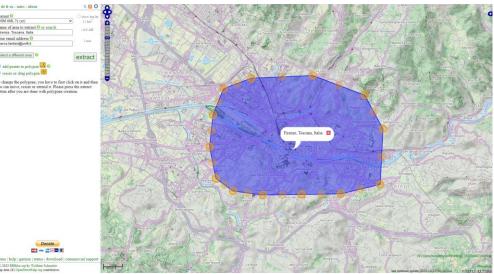


- GIS data can be retrieved from different services
- OpenStreetMap (<u>https://www.openstreetmap.org/</u>) is one of the most complete and updated source





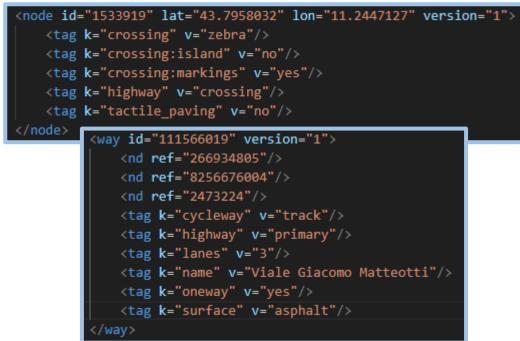
- GIS data can be retrieved from different services
- OpenStreetMap (<u>https://www.openstreetmap.org/</u>) is one of the most complete and updated source



- GIS data can be retrieved from different services
- OpenStreetMap (<u>https://www.openstreetmap.org/</u>) is one of the most complete and updated source
- Data from OSM DB can be exported using web services:
 - Geofabrik (<u>https://download.geofabrik.de/</u>)
 - HOT Export Tool (<u>https://export.hotosm.org/</u>)
 - BBBike (<u>https://download.bbbike.org/osm/</u>)

OSM data can be obtained in different formats

- OSM data can be obtained in different formats
- The preferred format is the XML OSM standard.



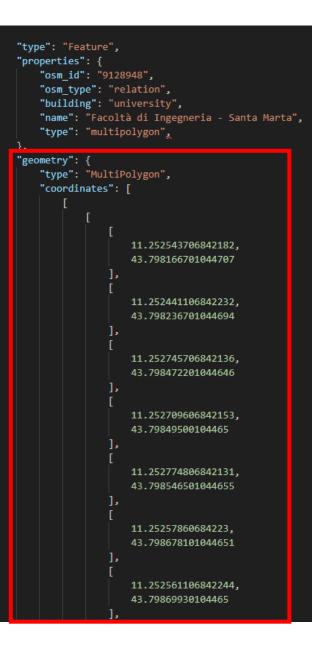
- OSM data can be obtained in different formats
- The preferred format is the XML OSM standard. It includes descriptions of
 - Nodes

- OSM data can be obtained in different formats
- The preferred format is the XML OSM standard. It includes descriptions of
 - Nodes
 - Ways

- OSM data can be obtained in different formats
- The preferred format is the XML OSM standard. It includes descriptions of
 - Nodes
 - Ways
 - Relations

```
<node id="1533919" lat="43.7958032" lon="11.24</pre>
   <tag k="crossing" v="zebra"/>
   <tag k="crossing:island" v="no"/>
   <tag k="crossing:markings" v="yes"/>
   <tag k="highway" v="crossing"/>
   <tag k="tactile paving" v="no"/>
 /node>
         <way id="111566019" version="1">
             <nd ref="266934805"/>
             <nd ref="8256676004"/>
             <nd ref="2473224"/>
             <tag k="cycleway" v="track"/>
             <tag k="highway" v="primary"/>
             <tag k="lanes" v="3"/>
             <tag k="name" v="Viale Giacomo Matteotti"/>
             <tag k="oneway" v="yes"/>
             <tag k="surface" v="asphalt"/>
```

relation id="9128948" version="1">
<member ref="28618378" role="outer" type="way"></member>
<member ref="656322769" role="inner" type="way"></member>
<tag k="addr:city" v="Firenze"></tag>
<tag k="addr:housename" v="Santa Marta"></tag>
<tag k="addr:housenumber" v="3"></tag>
<tag k="addr:postcode" v="50139"></tag>
<tag k="addr:street" v="Via di Santa Marta"></tag>
<tag k="amenity" v="university"></tag>
<tag k="building" v="university"></tag>
<tag k="building:levels" v="3"></tag>
<tag k="building:levels:underground" v="1"></tag>
<tag k="email" v="reception.s.marta@polobiotec.unifi.it"></tag>
<tag k="name" v="Facoltà di Ingegneria - Santa Marta"></tag>
<tag k="old_name" v="Villa Cristina"></tag>
<tag k="operator" v="Università degli Studi di Firenze"></tag>
<tag k="phone" v="+39 055 275 8950"></tag>
<tag k="phone_1" v="+39 055 275 8951"></tag>
<tag k="roof:levels" v="0"></tag>
<tag k="type" v="multipolygon"></tag>
<tag k="wikidata" v="Q4011923"></tag>
<tag k="wikipedia" v="it:Villa Cristina"></tag>
/relation>

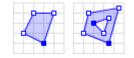

 Alternatively, OSM data can be downloaded as GeoJSON files

ype": "Feature",	
<pre>properties": {</pre>	
"osm_id": "9128	948",
"osm_type": "re	
"building": "un	iversity",
	à di Ingegneria - Santa Marta
"type": "multip	olygon",
geometry": {	
"type": "MultiP	olygon",
"coordinates":	[
] [
[[
	11.252543706842182,
	43.798166701044707
],	
	11.252441106842232,
	43.798236701044694
j,	
[
	11.252745706842136,
	43.798472201044646
],	43.738472201044040
, i i i i i i i i i i i i i i i i i i i	
	11.252709606842153,
	43.79849500104465
	43.79849500104405
],	
] [44 050774006040404
	11.252774806842131,
	43.798546501044655
],	
] [
	11.25257860684223,
	43.798678101044651
],	
] [
	11.252561106842244,
	43.79869930104465
],	
_	

- Alternatively, OSM data can be downloaded as GeoJSON files
- GeoJSON augment the standard JSON format with geographical features

GIS Data – Sources

• GeoJSON can define several geometric structure


```
"geometry": {
                                  "geometry": {
                                   "type": "Polygon",
  "type": "Point",
  "coordinates": [102.0, 0.5]
                                   "coordinates": [
                                        [100.0, 0.0],
"geometry": {
                                        [101.0, 0.0],
  "type": "LineString",
                                        [101.0, 1.0],
  "coordinates": [
                                        [100.0, 1.0],
    [102.0, 0.0],
                                        [100.0, 0.0]
    [103.0, 1.0],
    [104.0, 0.0],
    [105.0, 1.0]
```


• GeoJSON can define several geometric structure

```
"geometry": {
                                  "geometry": {
  "type": "Point",
                                  "type": "Polygon",
  "coordinates": [102.0, 0.5]
                                   "coordinates": [
                                        [100.0, 0.0],
"geometry": {
                                        [101.0, 0.0],
  "type": "LineString",
                                        [101.0, 1.0],
  "coordinates": [
                                        [100.0, 1.0],
    [102.0, 0.0],
                                        [100.0, 0.0]
    [103.0, 1.0],
    [104.0, 0.0],
    [105.0, 1.0]
```


- GeoJSON can define several geometric structure
 - Point
 Linestring
 Polygon
 Multipoint
 Multipostring
 - MultiLinestring
 - Multipolygon 🔀
 - GeometryCollection

- GeoJSON use the **EPGS:4326 WGS84** coordinate reference system (CRS), defining the coordinate of point in **latitude** and **longitude**
- When using different CRS, this information must be specified

```
"crs": {
    "type": "name",
    "properties": {
        "name": "urn:ogc:def:crs:EPSG::3003"
    },
```


- OSM data can be retrieved also as Esri Shapefile format
 - Developed and regulated by Esri as a mostly open specification for data interoperability
 - It can represent the entities already seen (points, lines, polygons, ...)
 - It is composed by several mandatory and optional files
 - .*shp* shape format;
 - .*shx* shape index format;
 - .*dbf* attribute format, columnar attributes for each shape;
 - .*prj* projection description

GIS Data – Sources

- OSM data can be retrieved directly from the PostgreSQL DB
- This relational DB is composed by tables representing
 - Nodes (i.e., points)
 - Ways (i.e., lines and polygons)
 - Relations (i.e., multilines and multipolygons)
- OSM can be deployed on-premise, see <u>https://github.com/openstreetmap/openstreetmap-website</u>

Is good to know...

- Another format to represent geometric spatial objects is the Well-Known Text (WKT) format.
- Similarly to GeoJSON, WKT can encode spatial entities like

Point	POINT(1 2)
LineString	LINESTRING(1.5 2.45, 3.21 4)
Polygon	POLYGON((1 2,1 4,3 4,3 2,1 2)) POLYGON((0.5 0.5,5 0,5 5,0 5,0.5 0.5), (1.5 1,4 3,4 1,1.5 1))
MultiPoint	MULTIPOINT(0 0,1 1)
MultilineString	MULTILINESTRING((0 0,-1 -2,-3 -4),(2 3,3 4,6 7))
MultiPolygon	MULTIPOLYGON(((0 1,3 0,4 3,0 4,0 1)), ((3 4,6 3,5 5,3 4)), ((0 0,-1 -2,-3 -2,-2 -1,0 0)))
GeometryCollection	GEOMETRYCOLLECTION(POINT(5 8), LINESTRING(-1 3,1 4))

- Raster data, i.e., images, requires different formats
- Most common formats include
 - PNG
 - GeoTIFF
 - Esri grid ASCII (ASC)

- Portable Network Graphics (PNG) is a raster-graphics file format that supports lossless data compression
- PNG is often the best raster format for maps, since the lossless compression keeps text and line work legible by preventing the compression artifacts (unlike JPEG)
- PNG can handle transparency (useful to indicate no-data values)
- PNG is widely used in many applications, in particular for web applications
- However, PNG does not embed geographic information!

- Maps represented as PNG are usually provided by GeoServers
- A GeoServer implements the OpenGIS Web Map Service (WMS) interface standard over HTTP/HTTPS

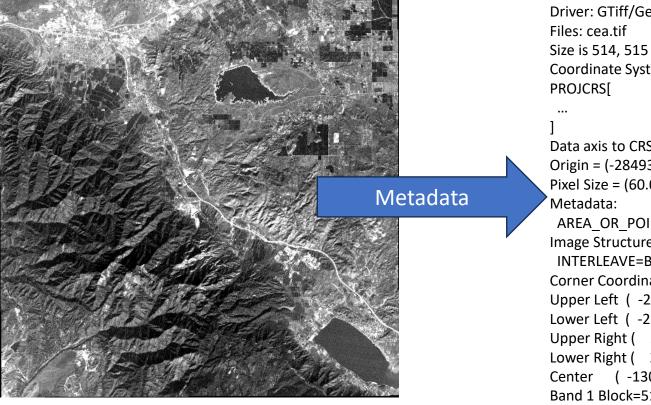
- Maps represented as PNG are usually provided by GeoServers
- A GeoServer implements the OpenGIS Web Map Service (WMS) interface standard over HTTP/HTTPS

Example REST call:

https://wmsserver.snap4city.org/geoserver/Snap4City/wms?service=WMS&request=GetMap&layers=dtm_orografi co_SuperRes_epgs4326_RGB&format=image%2Fpng&transparent=true&width=256&height=256&bbox=11.247253 41796875,43.76911045236617,11.25,43.77109381775649

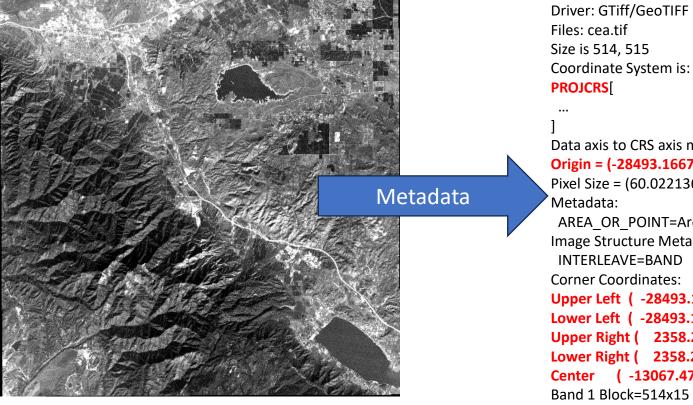
- Maps represented as PNG are usually provided by GeoServers
- A GeoServer implements the OpenGIS Web Map Service (WMS) interface standard over HTTP/HTTPS

Example REST call:


https://wmsserver.snap4city.org/geoserver/Snap4City/wms?service=WMS&request=GetMap&layers=dtm_orografi co_SuperRes_epgs4326_RGB&format=image%2Fpng&transparent=true&width=256&height=256&bbox=11.247253 41796875,43.76911045236617,11.25,43.77109381775649

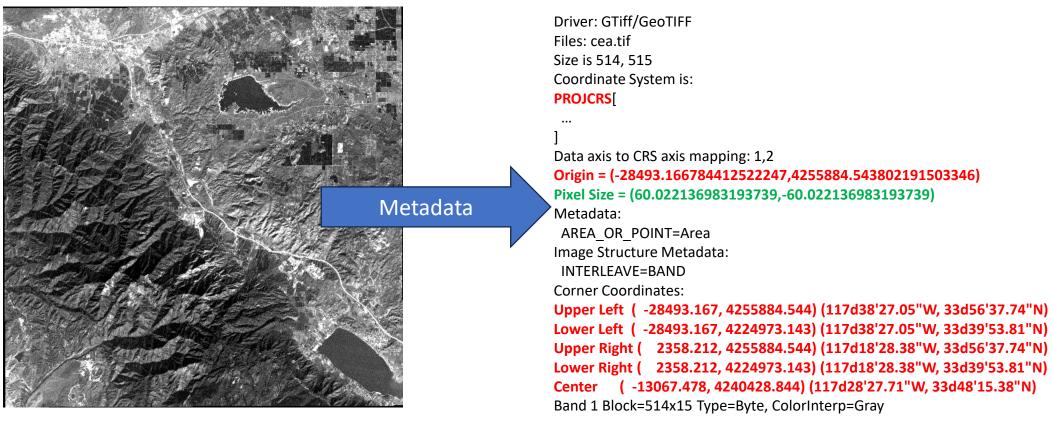
• In practice, is the client that requests the PNG for a specific geographic bounding box

• GeoTIFF is a public domain metadata standard which allows **georeferencing information** to be embedded into a TIFF file.



Driver: GTiff/GeoTIFF Coordinate System is: Data axis to CRS axis mapping: 1,2 Origin = (-28493.166784412522247,4255884.543802191503346) Pixel Size = (60.022136983193739,-60.022136983193739) AREA OR POINT=Area Image Structure Metadata: INTERLEAVE=BAND Corner Coordinates: Upper Left (-28493.167, 4255884.544) (117d38'27.05"W, 33d56'37.74"N) Lower Left (-28493.167, 4224973.143) (117d38'27.05"W, 33d39'53.81"N) Upper Right (2358.212, 4255884.544) (117d18'28.38"W, 33d56'37.74"N) Lower Right (2358.212, 4224973.143) (117d18'28.38"W, 33d39'53.81"N) Center (-13067.478, 4240428.844) (117d28'27.71"W, 33d48'15.38"N) Band 1 Block=514x15 Type=Byte, ColorInterp=Gray

• GeoTIFF is a public domain metadata standard which allows **georeferencing information** to be embedded into a TIFF file.



PROJCRS[...] Data axis to CRS axis mapping: 1,2 Origin = (-28493.166784412522247,4255884.543802191503346) Pixel Size = (60.022136983193739,-60.022136983193739) Metadata: AREA_OR_POINT=Area Image Structure Metadata: INTERLEAVE=BAND Corner Coordinates: Upper Left (-28493.167, 4255884.544) (117d38'27.05"W, 33d56'37.74"N) Lower Left (-28493.167, 4224973.143) (117d38'27.05"W, 33d56'37.74"N) Lower Left (-28493.167, 4224973.143) (117d38'27.05"W, 33d56'37.74"N) Lower Right (2358.212, 4255884.544) (117d18'28.38"W, 33d56'37.74"N) Lower Right (2358.212, 4224973.143) (117d18'28.38"W, 33d39'53.81"N) Center (-13067.478, 4240428.844) (117d28'27.71"W, 33d48'15.38"N) Band 1 Block=514x15 Type=Byte, ColorInterp=Gray

• GeoTIFF is a public domain metadata standard which allows **georeferencing information** to be embedded into a TIFF file.

• Esri grid ASCII (ASC) is a text format to represent matrix data with geographic information

- Esri grid ASCII (ASC) is a text format to represent matrix data with geographic information
- ASC is composed by two main part
 - Header with metadata

NCOLS 1640 NROWS 1240 XLLCENTER 1675980.500 YLLCENTER 4846780.500 CELLSIZE 1 NODATA_VALUE -9999.000

- Esri grid ASCII (ASC) is a text format to represent matrix data with geographic information
- ASC is composed by two main part
 - Header with metadata
 - Cell values

NCOLS 1640 NROWS 1240 XLLCENTER 1675980.500 YLLCENTER 4846780.500 CELLSIZE 1 NODATA_VALUE -9999.000 41.236 41.226 41.226 41.226 41.256 41.216 41.206 41.156 ... 41.226 41.176 41.176 41.196 41.206 41.226 41.227 ... 41.287 41.307 41.287 41.257 41.287 41.307 41.317 41.317 ... 41.307 41.397 41.367 41.397 41.407 41.427 41.487 41.467 ... 41.447 48.407 51.757 52.207 47.947 49.867 46.577 46.197 ...

- Esri grid ASCII (ASC) is a text format to represent matrix data with geographic information
- ASC is composed by two main part
 - Header with metadata
 - Cell values
- Note that, there are not CRS information!

NCOLS 1640
NROWS 1240
XLLCENTER 1675980.500
YLLCENTER 4846780.500
CELLSIZE 1
NODATA_VALUE -9999.000
41.236 41.226 41.226 41.226 41.256 41.216 41.206 41.156
41.226 41.176 41.176 41.176 41.196 41.206 41.226 41.227
41.287 41.307 41.287 41.257 41.287 41.307 41.317 41.317
41.307 41.397 41.367 41.397 41.407 41.427 41.487 41.467
41.447 48.407 51.757 52.207 47.947 49.867 46.577 46.197

Mobility offer

- The mobility offer includes all the available public mobility services offered by public or private companies
 - Bus
 - Tram
 - Train
 - Ferry
 - Bike sharing
 - Car sharing
 - Scooter sharing
 - Taxi
 - Car hailing (e.g., Uber, Lyft)

Mobility offer – Public transport

- For the public transports (bus, tram, etc.) a mobility offer must include
 - **Routes**, that are the trajectories covered with indication of the stops
 - **Trips**, that are the specific instances of a route at given time with give schedule

Mobility offer – Public transport

- For the public transports (bus, tram, etc.) a mobility offer must include
 - **Routes**, that are the trajectories covered with indication of the stops
 - **Trips**, that are the specific instances of a route at given time with give schedule
- This and other information are distributed from the transport operator using standards like **GTFS/GTFS-RT** and **NeTEx/SIRI**

Mobility offer – GTFS Schedule (static)

- The General Transit Feed Specification (GTFS) is an Open Standard used to distribute information about transit systems
- It is composed by a list of CVS text files archived in a zip file
- The text file list includes:
 - *agency.txt*: info on the transit operator
 - *stops.txt*: stop list
 - *ruotes.txt*: route list
 - *trips.txt*: trip list for each route
 - *stop_times.txt*: arrival and departure times for each stop and each trip
 - *calendar.txt / calendar_dates.txt*: working days and exceptions
 - *shapes.txt*: lat/long coordinate to draw the routes on a map
 - *fare_attributes.txt*: prices of the service

•

Mobility offer – GTFS Schedule (static)

routes.txt

UNIVERSITÀ Degli studi

FIRENZE

DINFO

INGEGNERIA DELL'INFORMAZIONE

route_id,agency_id,route_short_name,route_long_name,route_type,route_color,route_text_color "2182839646","303","T1.3","Servizio Tramvia Firenze - Linea T1.3","0","D86018","000000" "3209345033","303","T2","Servizio Tramvia Firenze - Linea T2","0","D86018","000000"

trips.txt

route_id,service_id,trip_id,trip_headsign,trip_short_name,direction_id,shape_id "2182839646","4527_593642","4527_549189","Careggi - Ospedale","","0","2182839646" "2182839646","4527_593642","4527_549190","Villa Costanza","","1","978952710" "2182839646","4527_593642","4527_549191","Careggi - Ospedale","","0","3583783680" "2182839646","4527_593642","4527_549192","Villa Costanza","","1","978952710" "2182839646","4527_593642","4527_549193","Careggi - Ospedale","","0","3583783680" "2182839646","4527_593642","4527_549193","Careggi - Ospedale","","0","3583783680" "2182839646","4527_593642","4527_549193","Careggi - Ospedale","","0","3583783680" "2182839646","4527_593642","4527_549193","Careggi - Ospedale","","0","3583783680"

stops.txt

stop_id,stop_name,stop_lat,stop_lon,stop_code

"FM9004_103","De Andre","43.7547865043581","11.1790362683518","FM9004" "FM9005_103","Resistenza","43.7579847316209","11.1822112945389","FM9005" "FM9006_103","Resistenza","43.7580441494077","11.1822068713052","FM9006"

"FM9035_103","Vittorio Emanuele li","43.7958712112307","11.2415139153139","FM9035" "FM9036_103","Morgagni-Universita","43.7995953955465","11.2439861801234","FM9036" "FM9037_103","Careggi - Ospedale","43.8033027414408","11.2465976104274","FM9037"

stop_times.txt

trip id, arrival time, departure time, stop id, stop sequence, shape dist traveled "4527 549189","05:29:00","05:29:00","FM9004 103","1","0" "4527 549189","05:30:00","05:30:00","FM9006 103","2",".44279" "4527 549189","05:32:00","05:32:00","FM9008 103","3","1.04775" "4527 549189","05:34:00","05:34:00","FM9010 103","4","1.93364" "4527 549189","05:36:00","05:36:00","FM9012 103","5","2.96611" "4527 549189","05:37:00","05:37:00","FM9014 103","6","3.46874" "4527 549189","05:38:00","05:38:00","FM9016 103","7","4.00089" "4527 549189","05:40:00","05:40:00","FM9018 103","8","4.34465" "4527 549189","05:41:00","05:41:00","FM9020 103","9","4.66609" "4527 549189","05:42:00","05:42:00","FM9022 103","10","4.98182" "4527 549189","05:43:00","05:43:00","FM9024 103","11","5.41694" "4527 549189","05:45:00","05:45:00","FM9026 103","12","6.08557" "4527 549189","05:49:00","05:49:00","FM9027 103","13","6.92863" "4527 549189","05:51:00","05:51:00","FM9028 103","14","7.3331" "4527 549189","05:54:00","05:54:00","FM9029 103","15","7.84536" "4527 549189","05:56:00","05:56:00","FM9030 103","16","8.339" "4527 549189","05:57:00","05:57:00","FM9031 103","17","8.61417" "4527 549189","05:59:00","05:59:00","FM9032 103","18","8.9197" "4527 549189","06:00:00","06:00:00","FM9033 103","19","9.29738" "4527 549189","06:02:00","06:02:00","FM9034 103","20","9.66363" "4527 549189","06:04:00","06:04:00","FM9035 103","21","10.00552" "4527 549189","06:06:00","06:06:00","FM9036 103","22","10.53703" "4527 549189","06:08:00","06:08:00","FM9037 103","23","11.03527"

Mobility offer – GTFS Schedule (static)

routes.txt

UNIVERSITÀ Degli studi

FIRENZE

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

route_id,agency_id,route_short_name,route_long_name,route_type,route_color,route_text_color "2182839646","303","T1.3","Servizio Tramvia Firenze - Linea T1.3","0","D86018","000000" "3209345033","303","T2","Servizio Tramvia Firenze - Linea T2","0","D86018","000000"

trips.txt

ioute_id,service_id,trip_id,trip_headsign,trip_short_name,direction_id,shape_id "2182839646","4527_593642","4527_549189","Careggi - Ospedale","","0","2182839646" "2182839646","4527_593642","4527_549190","Villa Costanza","","1","978952710" "2182839646","4527_593642","4527_549191","Careggi - Ospedale",","0","3583783680" "2182839646","4527_593642","4527_549192","Villa Costanza","","1","978952710" "2182839646","4527_593642","4527_549193","Careggi - Ospedale",","0","3583783680" "2182839646","4527_593642","4527_549193","Careggi - Ospedale",","0","3583783680" "2182839646","4527_593642","4527_549193","Careggi - Ospedale",","0","3583783680" "2182839646","4527_593642","4527_549193","Careggi - Ospedale",","0","3583783680"

stops.txt

stop_id,stop_name_stop_lat,stop_lon,stop_code

"FM9004_103", De Andre", "43.7547865043581", "11.1790362683518", "FM9004" "FM9005_103", "Resistenza", "43.7579847316209", "11.1822112945389", "FM9005" "FM9006_103", "Resistenza", "43.7580441494077", "11.1822068713052", "FM9006"

"FM9035_103","Vittorio Emanuele Ii","43.7958712112307","11.2415139153139","FM9035" "FM9036_103","Morgagni-Universita","43.7995953955465","11.2439861801234","FM9036" "FM9037_103","Caroggi - Ospedale","43.8033027414408","11.2465976104274","FM9037"

stop_times.txt

trip id, arrival time, departure time, stop id, stop sequence, shape dist traveled "4527 549189","05:29:00","05:29:00" "FM9004 103","1","0" "4527 549189","05:30:00","05:30:00","FM9006 103","2",".44279" "4527 549189","05:32:00","05:32:00","FM9008 103","3","1.04775" "4527 549199", "05:34:00", "05:34:00", "FM9010 103", "4", "1.93364" "4527 549189","05:36:00","05:36:00","FM9012 103","5","2.96611" "4527 549189","05:37:00","05:37:00","FM9014 103","6","3.46874" "4527 549189","05:38:00","05:38:00","FM9016 103","7","4.00089" "4527 549189","05:40:00","05:40:00","FM9018 103","8","4.34465" "4527 549189","05:41:00","05:41:00","FM9020 103","9","4.66609" "4527 549189","05:42:00","05:42:00","FM9022 103","10","4.98182" "4527 549189","05:43:00","05:43:00","FM9024 103","11","5.41694" "4527 549189","05:45:00","05:45:00","FM9026 103","12","6.08557" "4527 549189","05:49:00","05:49:00","FM9027 103","13","6.92863" "4527 549189","05:51:00","05:51:00","FM9028 103","14","7.3331" "4527 549189","05:54:00","05:54:00","FM9029 103","15","7.84536" "4527 549189","05:56:00","05:56:00","FM9030 103","16","8.339" "4527 549189","05:57:00","05:57:00","FM9031 103","17","8.61417" "4527 549189","05:59:00","05:59:00","FM9032 103","18","8.9197" "4527 549189","06:00:00","06:00:00","FM9033 103","19","9.29738" "4527 549189","06:02:00","06:02:00","FM9034 103","20","9.66363" "4527 549189","06:04:00","06:04:00","FM9035 103","21","10.00552" "4527 549189","06:06:00","06:06:00","FM9036 103","22","10.53703" "4527 549189", "Ub:U8:UU", "U6:08:00", "FM9037 103", "23", "11.03527"

Mobility offer – GTFS-RT (RealTime)

- The **GTFS-RT** is a feed specification that allows public transportation agencies to provide real-time updates about their fleet
- Provide three types of real-time updates to users:
 - Trip updates delays, cancellations, changed routes
 - Service alerts stop moved, unforeseen events affecting a station, route or the entire network
 - Vehicle positions information about the vehicles including location and congestion level
- Feeds are served via HTTP as binary files based on Protocol Buffers

Protocol Buffers

- Protocol buffers are Google's language-neutral, platform-neutral, extensible mechanism for serializing structured data
- You define how you want your data to be structured once, then you can use special generated source code to easily write and read your structured data to and from a variety of data streams
- It is based on the definition of a *.proto* file where each structured data to serialize is described in a message

```
message Person {
   optional string name = 1;
   optional int32 id = 2;
   optional string email = 3;
}
```

- Then, you need to generate classes to read and write the defined messages
- There are compilers for different languages to generate the classes

Mobility offer – GTFS-RT (RealTime)

• Vehicle position feed example (ASCII representation)

```
header {
 gtfs_realtime_version: "2.0"
 incrementality: FULL DATASET
  timestamp: 1656230726
entity {
 id:
         "1"
 vehicle
   trip {
      trip id: "trip1"
      start time: "14:05:00"
      start date: "20220628"
      schedule relationship: SCHEDULED
      route id: "ROUTE1"
      direction id: 0
    position {
      latitude: 123.45
      longitude: 12.345
    timestamp: 1656390815
    vehicle {
      id: "vehicle1"
    occupancy status: MANY SEATS AVAILABLE
entity -
. . .
```


Mobility offer – NeTEx

- The Network Timetable Exchange standard is intended to be a general-purpose XML format designed for the exchange of transport data
- NeTEx is the first standard that also covers **multimodal fares**
- NeTEx includes
 - Schedules
 - Stops
 - Routes
 - Service days
 - Fares

Mobility offer – NeTEx

- NeTEx is described in four parts
 - Part 1: Public transport network topology exchange format
 - Part 2: Public transport **scheduled timetables** exchange format
 - Part 3: Public transport **fares** exchange format
 - Part 4: Passenger Information European Profile
- Part 5 is under development and will focus on car sharing, cycle sharing, carpooling, car/cycle rental
- More info:
 - https://netex-cen.eu/
 - <u>https://github.com/entur/profile-examples</u>

Mobility offer – SIRI

- The Service Interface for Real time Information (SIRI) allows pairs of server computers to exchange structured real-time information about transport services
- SIRI complements NeTEx for real-time data exchange
- Messages consist of XML documents, whose tags and content are exactly specified by the SIRI XML Schemas
- SIRI allow both synchronous request/response and asynchronous subscribe/publish protocols

Mobility offer – NeTEx & SIRI

- Both NeTEx and SIRI shared a common conceptual model provided by Transmodel (<u>http://www.transmodel-cen.eu/</u>), that is an abstract model of common public transport concepts and data structures
- More info:
 - https://netex-cen.eu/
 - https://www.siri-cen.eu/
 - <u>https://github.com/entur/profile-examples</u>

Mobility offer – Sharing

- In case of sharing mobility offers, static data are less relevant since there are not fixed routes or scheduled trips
- Real-time data on vehicle position and their availability are more important
- The most advanced standards covering sharing mobility are the General Bikeshare Feed Specification (GBFS) and the Mobility Data Specification (MDS)

Mobility offer – GBFS

- The **General Bikeshare Feed Specification** (GBFS) is based on a series of JSON
 - *gbfs.json* an index with links to the other files
 - *vehicle_types.json* list types of available vehicles
 - *station_information.json* list of all stations, their capacities and locations
 - *station_status.json* available vehicles and docks at each station
 - vehicle_status.json describes all vehicles that are not currently in active rental
 - ...

Mobility offer – GBFS

gbfs.json

```
"last updated": 1698165756,
"ttl": 0,
"version": "2.2",
"data": {
  "en": {
    "feeds": [
        "name": "gbfs versions",
        "url": "https://gbfs.helbiz.com/v2.2/firenze/gbfs versions.json"
        "name": "system information",
        "url": "https://qbfs.helbiz.com/v2.2/firenze/system information.json"
      },
        "name": "vehicle types",
        "url": "https://gbfs.helbiz.com/v2.2/firenze/vehicle types.json"
        "name": "station information",
        "url": "https://qbfs.helbiz.com/v2.2/firenze/station information.json/
        "name": "free bike status",
        "url": "https://qbfs.helbiz.com/v2.2/firenze/free bike status.json"
      },
```

vehicle_status.json

```
"last updated": 1698166031,
"ttl": 0,
"version": "2.2",
"data": {
  "bikes": [
      "bike id": "X8CS5R",
      "lat": 43.788457,
      "lon": 11.271341,
      "is reserved": false,
      "is disabled": true,
      "vehicle type id": "moped",
      "rental uris": {
        "android": "https://...
        "ios": "https://...
      "last reported": 1660338193,
      "current range meters": 13.5,
      "pricing plan id": "price moped"
    },
```


Mobility offer – MDS

- The Mobility Data Specification (MDS) is focused on managing shared mobility services
- MDS standardizes communication and data-sharing between cities and private mobility providers
- MDS is based on three primary APIs that allow cities and providers to communicate
 - *Provider* allows private mobility companies to report historical data to cities
 - *Policy* allows cities to set rules for how and where different vehicles can operate, how many can operate, and other high-level policy initiatives
 - Agency allows real-time updates and collaboration between city officials and providers

Mobility offer – GBFS & MDS

- GBFS is intended to provide real-time data to the final user
- MDS is designed to exchange data between the mobility operator and the public administration, including real-time and historical data
- Their adoption is still limited, in particular in Italy
- When widely deployed they can offer
 - A clear status of the shared mobility offer
 - Data to estimate the mobility patterns of the users

- IoT/IoE sensors are exploited to acquire real-time measurements and information of the mobility environment
- Such sensors can provide different kind of data:
 - traffic vehicle density
 - number of passages though specific areas
 - number of vehicles in a parking
 - environmental information on whether, pressure, pollutant

• ...

- Messages from IoT Sensors depend on the specific sensor setup
- Typically, text format as JSON or XML are used

- Data transmission follows a client/server architecture, with push or pull modalities
- Most common **pull protocols** are
 - REST call over HTTP/HTTPS
 - FTP
- Push protocols (data-driven with subscriptions) are
 - WebSocket (WS)
 - Constrained Application Protocol (CoAP)
 - Message Queue Telemetry Transport (MQTT)
 - Advanced Message Queuing Protocol (AMQP)
 - FIWARE NGSI and NGSI-V2

- Camera sensors are a more particular case: video transmission usually requires a continuous data flow
- Different **codec** and **video container** can be used (for example the H.264 codec with mp4 container)
- Several protocols are available, such as
 - HTTP Live Streaming (HLS)
 - Real-Time Messaging Protocol (RTMP)
 - Web Real-Time Communications (WebRTC)
 - Real-Time Streaming Protocol (RTSP)
 - Dynamic Adaptive Streaming over HTTP (MPEG-DASH)

Sensor data

- Camera sensors are a more particular case: video transmission usually requires a continuous data flow
- Different **codec** and **video container** can be used (for example the H.264 codec with mp4 container)
- Several protocols are available, such as
 - HTTP Live Streaming (HLS)
 - Real-Time Messaging Protocol (RTMP)
 - Web Real-Time Communications (WebRTC)
 - Real-Time Streaming Protocol (RTSP)
 - Dynamic Adaptive Streaming over HTTP (MPEG-DASH)
- More recently cameras with processing units (CPU and GPU) are available to elaborate the video feed on-the-edge and extracted information can be transmitted with text messages

Sensor data

- Among the information provided from sensors, traffic data are very important for smart mobility application
- Not all the cities deployed enough sensors to capture traffic information, or you may not have access to the sensors' data
- Alternative solution are available
 - **Paid solutions**: companies like Waze or Here offer API to retrieve data feed, that can include information also on events such as road accidents
 - Open data: for some areas* traffic data are released freely. These data are sent with different formats. One of the possible format (in particular from European providers) is the DATEX-II standard.

DATEX-II

- DATEX-II is a data exchange standard for exchanging traffic information
- DATEX-II contains
 - Road and traffic related events (called "Traffic elements"): abnormal traffic, accidents, public event, driving conditions, obstructions, ...
 - Operator actions: network management, traffic control, roadworks, ...
 - Impacts: information on lane availability and on delays
 - Measured or elaborated data: travel times, traffic speed, traffic status, weather measurements, ...
 - Messages displayed on Variable Message Signs (VMS)
 - Service information: closed rest area, information about other transport means (e.g., delays on trains), ...
- Data is presented in **XML**

IoT Actuators

 In smart mobility systems include also actuators, i.e., devices that can be used to implement Adaptive Traffic Signal Control (ATSC), that are dynamic traffic management strategies

IoT Actuators

- In smart mobility systems include also actuators, i.e., devices that can be used to implement Adaptive Traffic Signal Control (ATSC), that are dynamic traffic management strategies
- Such devices include for example
 - Variable Message Signs (VMSs)

IoT Actuators

- In smart mobility systems include also actuators, i.e., devices that can be used to implement Adaptive Traffic Signal Control (ATSC), that are dynamic traffic management strategies
- Such devices include for example
 - Variable Message Signs (VMSs)
 - Smart traffic lights

LIVE UPDATE

KR CIRCI

IoT Actuators

- In smart mobility systems include also actuators, i.e., devices that can be used to implement **Adaptive Traffic Signal Control (ATSC)**, that are dynamic traffic management strategies
- Such devices include for example
 - Variable Message Signs (VMSs)
 - Smart traffic lights

- DATEX-II
- National Transportation Communications for Intelligent Transportation System Protocol (NTCIP) standards, a family of standards designed for enable interoperability and interchangeability between computers and electronic traffic control equipment

Vehicle and People data

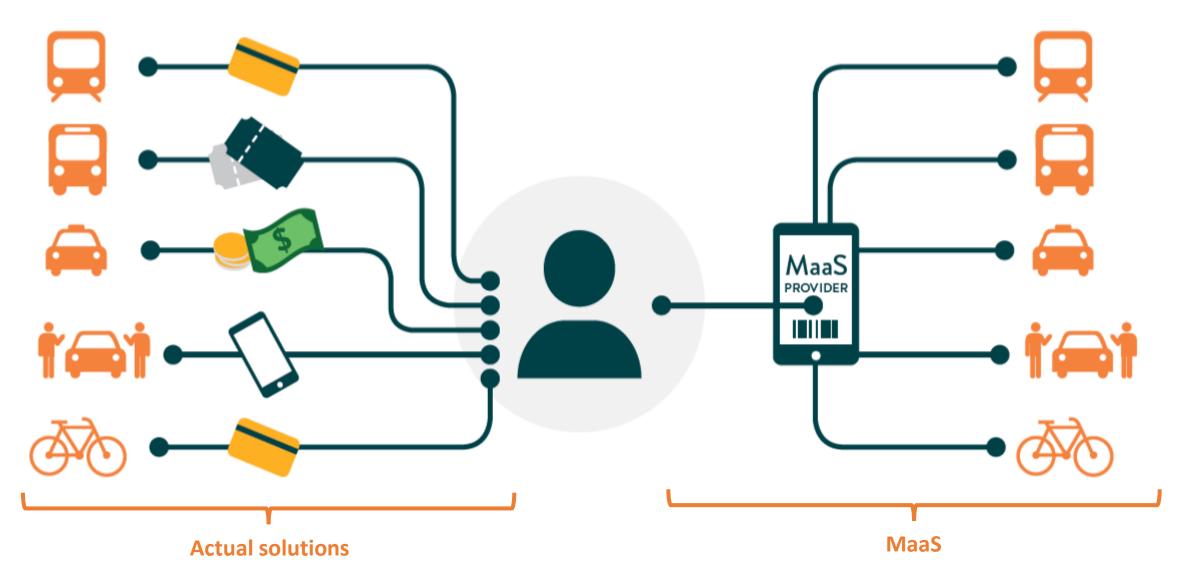
- In this group we consider data produced directly from vehicles or persons
- These data are a relevant source to estimate the **demand of mobility**
- These are typically the most difficult data to acquire, mainly due to privacy issues

• Smartphones, tables, etc., can be used to observe the mobility pattern of the users

- Smartphones, tables, etc., can be used to observe the mobility pattern of the users
- A coarse information, useful for extra-urban travels, can be obtained from the **connection to cell towers** of telecommunication operators

- Smartphones, tables, etc., can be used to observe the mobility pattern of the users
- A coarse information, useful for extra-urban travels, can be obtained from the **connection to cell towers** of telecommunication operators
- A finer representation can be obtained from geo-localization (i.e., GPS position) of **mobile apps** as for example routing and travel planning apps like Google Maps, Waze, Moovit, etc.

- Both data from telecommunication operators and app vendors are not released freely but require to be purchased
- Data are provided in an anonymized and aggregated modality
- Even if acquired in real-time, are released as **historical data**
- Data retrieval is done using vendors' APIs, without specific standard



- **Mobility-as-a-Service** technologies could provide in the near future a valuable source of information
- MaaS integrates the whole mobility offer, and constitute the main interface (via dedicated apps) for the user to access to the transport services
 - Integrates public and private mobility services
 - Provide multimodal urban and extra-urban travel solutions
 - Offers service to plan, book, pay, and use mobility solutions

SNAP4city

MaaS

Level 0: No integration

Each mobility operator provide to the user his specific offer, using his app/website. The user must provide for himself to plan, book, and pay his travels

Level 1: Multimodal travel planning, Fare information

Level 0: No integration

A first level of integration. A single app/website can provide the user with a multimodal travel solution and give to the user information on pricing (maybe link to the mobility operator payment service). The user still must book/pay his travels independently.

Level 2: Booking and payment integration (includes function to search, book, and pay single travels)

Level 1: Multimodal travel planning, Fare information

Level 0: No integration

At this level the system provides an integrated travel solution that the user can book or pay directly from the MaaS app/website. The MaaS acts as a fare collector and then redistributes the payments to the involved mobility operator. The MaaS handle ticketing and vehicle access.

CSNAP4city

Level 3: Full integration of services, including subscriptions, passes, best-fares, bundled offers

Level 2: Booking and payment integration (includes function to search, book, and pay single travels)

Level 1: Multimodal travel planning, Fare information

Level 0: No integration

With the full MaaS integration, the system is able to provide the user with bundled offers, including subscriptions and best-fares

Level 4: Integration of social goals though public-private cooperation, rewards, and incentives

Level 3: Full integration of services, including subscriptions, passes, best-fares, bundled offers

Level 2: Booking and payment integration (includes function to search, book, and pay single travels)

Level 1: Multimodal travel planning, Fare information

Level 0: No integration

Finally, using rewards and incentives the Public Administrations can drive the change towards more sustainable and green mobility solutions with the aim to avoid the use of private cars

MaaS (usage data)

- A MaaS system can then be able to collect the mobility patterns of the users, and, if managed by public organization such data could be released and used in smart mobility platforms
- MaaS are new technologies under development. Possible standards and formats are yet to be defined or under development.
- The Transport Operator to Mobility Provider (TOMP) API is a standardized interface for data exchange between transport operators and MaaS providers. It encompasses the entire user trip, from planning to booking, execution, and payment.

Vehicle data

- **On-Board Units** (OBUs) are an electronic devices installed in vehicles able to record traffic and driving data and connect to roadside and satellite systems to transmit and collect data for various applications
- These are the fundamental device to enable vehicle-to-everything (V2X, including V2V, V2I, V2P, V2N) communications and to develop CAV (Connected autonomous vehicle) and CCAM (Cooperative, connected and automated mobility)
- OBUs communication happen with dedicated protocol stacks, and data are exchanged in XML or JSON formats, or using specific standards

Vehicle data

- Abstract Syntax Notation 1 (ASN.1) is a standard interface description language (IDL) for defining data structures that can be serialized and deserialized in a cross-platform way, more recently adopted for V2X communications
- SENSORIS is a global standardized interface to exchange information between in-vehicle sensors and a dedicated cloud, as well as between clouds. It enables real-time, cloud-based information services that support mobility and automated driving
- Extended Vehicle (ExVe) is a concept that allows external service providers to access vehicle data and functions via a standardized interface
- Open Diagnostic Data Exchange (ODX) is a standard that defines a common data format for exchanging diagnostic data between vehicle manufacturers, suppliers, and service providers

Smartcard data

- Smartcards are a physical electronic authentication device used in mobility to access and pay public transport services
- Smartcards can be used as
 - Entry-only
 - Entry-exit
- Smartcard data acquired by mobility operators can be released using text formats like CSV, JSON, XML, or Keyhole Markup Language (KML) an XML notation used to represent geographic annotations

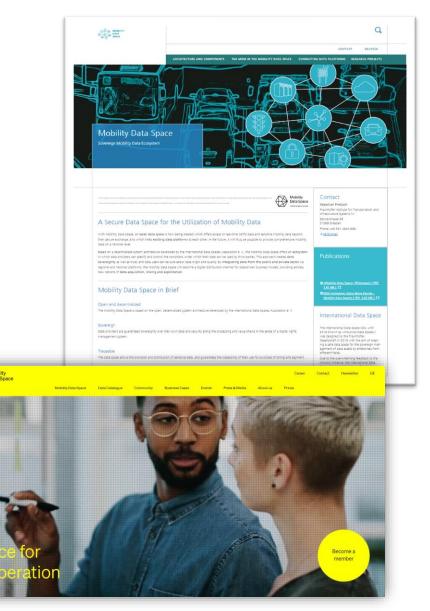
Social media data

- Social media can also be used to acquire data on mobility
- Most of the posts contains check-in data including location information
- Web-scraping tools are available to extract data from social media and deliver them in JSON, CVS, HTML, Excel

NAP & Data Spaces

- Mobility data, in particular real-time data, are not easy to acquire, due to different data provides, that can use different distribution modalities
- Data provides are sometimes also difficult to find requiring timeconsuming research activities
- There is a strong need to increase interoperability among different provides and to realize centralized access point where to find and retrieve the data

NAP & Data Spaces


- National Access Points (NAPs) and Regional Access Points (RAPs) are the solution proposed by the European Union to facilitate access, easy exchange and reuse of transport related data as
 - EU-wide real-time traffic information services
 - EU-wide Multimodal Travel Information Services
 - Road safety-related traffic information
 - Safe and secure parking places for trucks and commercial vehicles
- Data Spaces for mobility have also been proposed to brings together companies, organizations and institutions who want to monetize their data or need data for innovative mobility solutions
- NAPs and Data Spaces are still in development

Mobility Data Spaces

- A first attempt to build a data space for mobility was started in 2019 from a German consortium realizing the Mobility Data Space
 - <u>https://mobility-data.space</u>
 - <u>https://mobility-dataspace.eu</u>
- They proposed
 - decentralized and distributed system with a central directory to publish available data sources and services (i.e., a data marketplace)
 - a vocabulary provider that gives information on standards and APIs (e.g., DATEX-II, NeTEx, SIRI)

NAPCORE & PrepDSpace4Mobility

To extend such a solution to the whole European area, the European Commission started in 2022 two main actions

- The National Access Point Coordination Organisation for Europe (NAPCORE) project
- The PrepDSpace4Mobility project

NAPCORE

- NAPCORE project was kicked off to promote and coordinate the creation of NAPs in all the EU Member States to fulfil the European Intelligent Transport System directive (2010/40/EU)
- See https://napcore.eu/

The world's largest cooperation of mobility data platforms

NAPCORE (National Access Point Coordination Organisation for Europe) is the name of the formed organisation to coordinate and harmonise more than 30 mobility data platforms across Europe.

PrepDSpace4Mobility

- PrepDSpace4Mobility lays the foundation for a secured and controlled way of pooling and sharing mobility data across Europe
- The project contributes to the development of the **common European mobility data space** by
 - mapping existing data ecosystems
 - identifying gaps and overlaps within
 - proposing common building blocks and governance frameworks
- See <u>https://mobilitydataspace-csa.eu/</u>

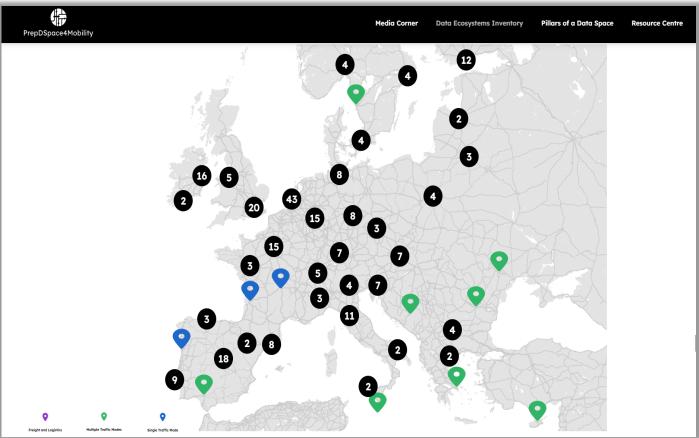
About the project

PrepDSpace4Mobility lays the foundation for a secured and controlled way of pooling and sharing mobility data across Europe. The 12-month Coordination and Support Action (CSA) contributes to the development of the common European mobility data space by mapping existing data ecosystems, identifying gaps and overlaps within, and proposing common building blocks and governance frameworks found in existing data space architectures. The actions are carried out by a project team comprised of leading experts from the private and public mobility sectors, with key competencies in mobility, economics, and digital technologies. Jointly, they are supporting a new European era of mobility data sharing, centred around the principles of trust, interoperability, and sovereignty, where data can be made available, accessed, and securely exchanged across Europe. PrepDSpace4Mobility represents a vital pillar for the future deployment of a single market for mobility data.

Key Objectives

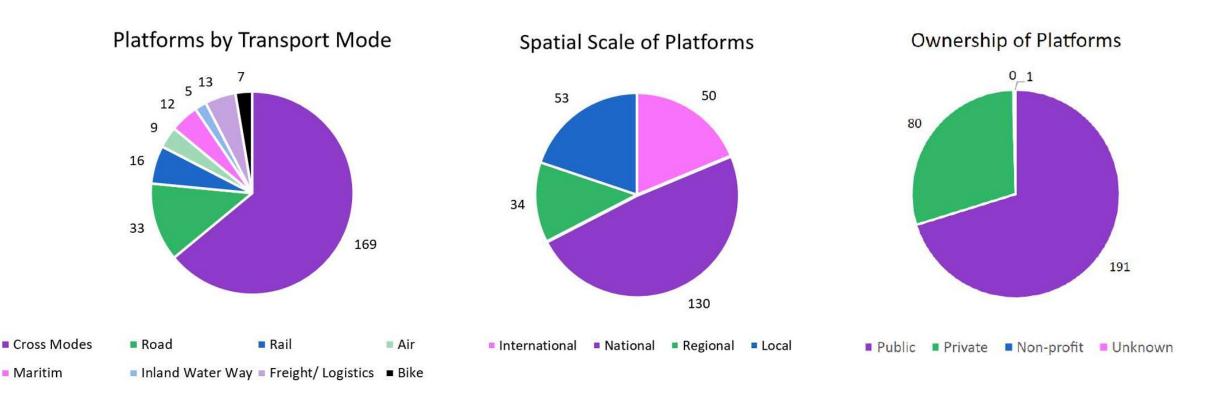
MAPPING WHAT EXISTS

Existing data ecosystems can be found all over Europe, yet their characteristics might vary heavily. PrepDSpace4Mobility creates an extensive understanding of the current landscape by


- Identifying existing European data ecosystems in the mobility and logistics sector
- Creating a catalogue summarising all

PrepDSpace4Mobility EU Project

• 272 data ecosystems included in the inventory



PrepDSpace4Mobility EU Project

• 272 data ecosystems included in the inventory

PrepDSpace4Mobility EU Project

- Observed over 18 sectoral mobility domains, each with their own standards, data models and protocols
- Observed over 60 different standards
- Even in each mobility domain, several (overlapping) standards are in use