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Course Outline

• Full course 12 hours
• 28/02/2023
• 02/03/2023
• 07/03/2023

• 3 CFUs

• Topics:
• Introduction to geometrical computer vision
• 3D Reconstruction: 

• Stereo, Structure from Motion, Multi-view Stereo, Structured Light, DEM Modelling, 
Shape from Shading, Photometric Stereo

• Visual odometry, SLAM, and Localization
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• Python: OpenCV, Numpy, Pillow, Scikit-Image, SciPy, Open3D, …
• Matlab: CV Toolbox, Kovesy functions (https://www.peterkovesi.com/matlabfns/), Zisserman functions 

(https://www.robots.ox.ac.uk/~vgg/hzbook/code/) 
• Deep-learning: Tensorflow, Keras, PyTorch, …
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• Cultural Heritage
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• Industrial application
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• City digital twin modelling



Applications

• City Digital Twin modelling
• Traffic congestion 

visualization

• Dispersion of pollutant

• Urban planning

• Areas for solar panel 
installation

• …



Applications

• Virtual/Augmented Reality
• Structure inspection

• 3D model visualization

• Urban planning

• Realistic environment for simulations



Applications

• Autonomous driving
• Vehicle odometry

• Environment perception

• Obstacle detection



Introduction

to 

Geometrical 
Computer 

Vision



Image projection

Slide from A. Geiger 



Camera Obscura

• A darkened room with a small hole or lens at one side through which an 
image is projected onto a wall or table opposite the hole.

• The concept was developed further into the photographic camera in the 
first half of the 19th century, when camera obscura boxes were used to 
expose light-sensitive materials to the projected image.

3D Image



Pinhole camera model

• It models the projection of a 3D point (M) to an image point (m) 
constrained by the respective position of the camera center (C) and the 
image plane p

• The projection is a function 𝑓:ℝ3 → ℝ2 (loss of information)
• p is the image principal point, the projection of C onto p

3D

Image



Camera projection



Camera projection

• To obtain the projection m of the 3D point M we can exploit the 
relation between the similar blue and green triangle
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Camera projection

• To obtain the projection m of the 3D point M we can exploit the 
relation between the similar blue and green triangle
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Homogeneous coordinate

• A 2D  or 3D point can be expressed in inhomogeous coordinates

or in homogeneous coordinates

• Note that, in homogeneous coordinate, two points are the same if the 
are equal up to a scale factor
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Camera projection

• 𝑓 is the focal length and is expressed in pixels (px)
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Projection function

• 𝑓 is the focal length and is expressed in pixels (px)
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Camera projection

• (𝑝𝑥 , 𝑝𝑦)⊺ are the coordinates of the image principal point
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Camera matrix

The first 3x3 submatrix is the calibration or intrinsic (K) matrix

• (𝑝𝑥, 𝑝𝑦)⊺ are the coordinates of the image principal point

• 𝑓 is the focal length

• 𝛿 is the aspect ratio between the x and y axis (non-square pixels)

• 𝜎 is the skew, 𝜎 ≠ 0 if the x and y axis are not perpendicular

In modern cameras, we can safely assume 𝛿 = 1 and 𝜎 = 0
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Projective reconstruction

• Without K we can obtain a 3D reconstruction affected by a projective 
transformation

• K can be recovered using auto-calibration techniques1,2 or exploiting image 
metadata (exif files)

• Global optimization (e.g., Bundle Adjustment) can be used to refine initial 
estimates



Full camera matrix

• If 𝑊𝑐𝑠 ≢ 𝐶𝑐𝑠 we have to take into account a 3D rigid transformation: 
Rotation R + Translation t

𝐦 = 𝐊 𝟎 𝐌𝑪 = 𝐊 𝟎
𝐑 𝐭
𝟎 1

𝐌𝑾 = 𝐊 𝐑 𝐭 𝐌𝑾 = 𝐏𝐌𝑾



Epipolar geometry

• Two cameras:
• P1 = K1 I 𝟎 such that 𝐱1 = P1𝐗

• P2 = K2 R 𝐭 such that 𝐱2 = P2𝐗

• Note: 𝑊𝑐𝑠 ≡ 𝐶𝑐𝑠
1



Epipolar geometry

where 

• 𝐞21is the projection of 𝐂2 onto P1
• 𝐞12is the projection of 𝐂1 onto P2
• 𝐞21 and 𝐞12 are the epipoles

• 𝐥1 and 𝐥2 are the epipolar lines
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Epipolar geometry

where 
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𝐱2 = K2 RK1
−1𝐱1 + 𝐭 ⟺ K2

−1𝐱2 = RK1
−1𝐱1 + 𝐭 ⇔

𝐭 × (K2
−1𝐱2) = 𝐭 × RK1

−1𝐱1 ⟺

(K2
−1𝐱2)

⊺ [𝐭 × (K2
−1𝐱2)] = (K2

−1𝐱2)
⊺ [𝐭 × R] (K1

−1𝐱1) = 0

              



Epipolar geometry

where 

• 𝐞21is the projection of 𝐂2 onto P1
• 𝐞12is the projection of 𝐂1 onto P2
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by substituting 𝐗 we get

𝐱2 = K2 RK1
−1𝐱1 + 𝐭 ⟺ K2

−1𝐱2 = RK1
−1𝐱1 + 𝐭 ⇔

𝐭 × (K2
−1𝐱2) = 𝐭 × RK1

−1𝐱1 ⟺

(K2
−1𝐱2)

⊺ [𝐭 × (K2
−1𝐱2)] = (K2

−1𝐱2)
⊺ [𝐭 × R] (K1

−1𝐱1) = 0

With the notation 𝐚 × 𝐛 = [𝐚]×𝐛

(K2
−1𝐱2)

⊺ 𝐭 ×R(K1
−1𝐱1) = 0

              



Essential and Fundamental Matrices

where 

• 𝐞21is the projection of 𝐂2 onto P1
• 𝐞12is the projection of 𝐂1 onto P2
• 𝐞21 and 𝐞12 are the epipoles

• 𝐥1 and 𝐥2 are the epipolar lines

E = 𝐭 ×R

is the essential matrix and encode the roto-translation
between two cameras. E can be decomposed to obtain
R and Τ𝐭 𝐭 (i.e., translation can be recovered up to a 
scale factor ambiguity)

If 𝐊1and 𝐊2are unknown, we have the fundameltal
matrix F 

(K2
−1𝐱2)

⊺E(K1
−1𝐱1) = (K2

−1𝐱2)
⊺ 𝐭 ×R(K1

−1𝐱1) =

𝐱2
⊺K2

−⊺ 𝐭 ×RK1
−1𝐱1 = 𝐱2

⊺ F𝐱1 = 0

and 

E = K2
⊺ FK1

              



Lines in homogeneous coordinates

With homogeneous coordinates 

• a line passing though two points 
is given by 

𝐥12 = 𝐱1 × 𝐱2

• and a point lies on a line iif

𝐥12
⊺ 𝐱1 = 𝐱1 × 𝐱2

⊺𝐱1 = 0



Fundamental Matrix

where 

• 𝐞21is the projection of 𝐂2 onto P1
• 𝐞12is the projection of 𝐂1 onto P2
• 𝐞21 and 𝐞12 are the epipoles

• 𝐥1 and 𝐥2 are the epipolar lines

              

We see that

𝐱2
⊺ F𝐱1 = 0

The fundamental (essetial) matrix maps points into
lines. Indeed, 

F𝐱1 = 𝐥2

and

𝐱2
⊺ 𝐥2 = 0

Also

𝐞12
⊺ 𝐥2 = 0 = 𝐞12

⊺ F𝐱 , ∀ 𝐱

so 𝐞12
⊺ F = 0, i.e., 𝐞12

⊺ is the left null-space of F (and 

similarly, 𝐞21is the right null-space)



Fundamental Matrix

Properties: 

• F maps points into lines

• If F is the fundamental matrix for (P1, P2), then F⊺ is for (P2, P1)

• 𝐞12
⊺ is the left null-space of F (and similarly, 𝐞21is the right null-space)

• F has 7 degree of freedom

• det F = 0
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• If we know the calibration K, F can be upgraded to E



Fundamental Matrix

Properties: 

• F maps points into lines

• If F is the fundamental matrix for (P1, P2), then F⊺ is for (P2, P1)

• 𝐞12
⊺ is the left null-space of F (and similarly, 𝐞21is the right null-space)

• F has 7 degree of freedom

• det F = 0

• Since 𝐱2
⊺ F𝐱1 = 0, F can be computed using image correspondences

• 7 correspondences + det F = 0
• 8 correspondences (8-point algorithm)

• Estimation of F is typically available in CV libraries

• If we know the calibration K, F can be upgraded to E

8-point algorithm

Let 𝐱𝑖 and 𝐱𝑗 be the sets of corresponding points between images I and J

1. Since 𝐱𝑗
⊺F𝐱𝑖 = 0, each pair gives rise to 

𝑥𝑗 𝑦𝑗 1

𝑓11 𝑓12 𝑓13
𝑓21 𝑓22 𝑓23
𝑓31 𝑓32 𝑓33

𝑥𝑖

𝑦𝑖
1

= 0

⟺ 𝑥𝑗 𝑥𝑖 𝑥𝑗 𝑦𝑖 𝑥𝑗 𝑦𝑗 𝑥𝑖 𝑦𝑗 𝑦𝑖 𝑦𝑗 𝑥𝑖 𝑦𝑖 1

𝑓11
𝑓12
𝑓13
𝑓21
𝑓22
𝑓23
𝑓31
𝑓32
𝑓33

= 0

2. F can be determined up to a scale factor, so we can put 𝑓33 = 1
3. Stacking at least 8 of such constraints, F can be computed solving a linear system
4. SVD decomposition can be used to solve the homogeneous system



Fundamental Matrix

Properties: 

• F maps points into lines

• If F is the fundamental matrix for (P1, P2), then F⊺ is for (P2, P1)
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• Since 𝐱2
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• Estimation of F is typically available in CV libraries

• If we know the calibration K, F can be upgraded to E
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• Parallax is the apparent shift of an object's position against a
background due to a change in the observer's point of view.
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Parallax

• Parallax is the apparent shift of an object's position against a
background due to a change in the observer's point of view.

• We have parallax if
• The scene is tridimensional

• There is a translations between the point of views



Parallax

• Parallax is absent if

• We observe a planar scene

• We observe a scene at infinity

• We have a pure rotational motion

• In these case we cannot
estimate the fundamental
matrix (neither obtain a 3D
reconstruction)

• Planar homography can model
such cases



Homographies

• Homographies are projective transformations used to obtain mapping
between planes

• It can be used to find corresponding image points related to
• 3D points belonging to a plane

• General 3D points acquired by cameras subjected to pure rotation



Homographies

• Homographies are projective transformations used to obtain mapping
between planes

• It can be used to find corresponding image points related to
• 3D points belonging to a plane

• General 3D points acquired by cameras subjected to pure rotation



Homographies

• Homographies are projective transformations used to obtain mapping
between planes

• It can be used to find corresponding image points related to
• 3D points belonging to a plane

• General 3D points acquired by cameras subjected to pure rotation



Homographies

• Given a 3D point 𝐗 and its 2D projection 𝐱 on the image plane, then
exist the following relation

𝐱 = H𝐗

where H is a 3x3 non singular matrix.

• H has 8 degrees of freedom



Homographies

• Homographies can be used to remove projective distortions



Homographies

• Homographies can be used to compute a bird-eye view



Homographies

• Homographies can be used to obtain photo mosaics



Homographies

• Planar homography: map a 3D plane to the image plane

𝐱 = P𝐗 = K R 𝐭 𝐗



Homographies

• Planar homography: map a 3D plane to the image plane

𝐱 = P𝐗 = K R 𝐭 𝐗

• If 𝐗 ∈ 𝜋 and suppose 𝜋: 𝑍 = 0

𝐱 = P𝐗 = K R 𝐭 𝐗 = K R 𝐭

𝑿
𝒀
𝟎
𝟏



Homographies
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Homographies

𝐱 = P𝐗 = K R 𝐭 𝐗 = K R 𝐭

𝑿
𝒀
𝟎
𝟏

𝐱 = P𝐗 = K r1r2r3𝐭

𝑿
𝒀
𝟎
𝟏

𝐱 = P𝐗 = K r1r2𝐭
𝑿
𝒀
𝟏



Homographies

• K r1r2𝐭 is a 3x3 matrix that we can call H, such that

𝐱 = P𝐗 = K r1r2𝐭
𝑋
𝑌
1

= H
𝑋
𝑌
1



Homographies

• We know that 𝐱′ = H𝐱,

•

and we can rewrite H𝐱 as



Homographies

• We know that 𝐱′ = H𝐱,

•

and we can rewrite H𝐱 as
j-th row of H



• Since 𝐱′ = H𝐱, by computing the cross-product of both side by 𝐱′ we
can obtain

𝐱′ × 𝐱′ = 𝐱′ × H𝐱 = 𝟎

or by expanding the formula

Homographies



• Such equation give rise to three costraints

of which only two are linearly independet

Homographies



• Such equation give rise to three costraints

of which only two are linearly independet

• Since H has 8 DoF, we need at least 4 corresponding points to 
estimate the homography

Homographies



Conic

• A conic (e.g., parabola, circle, ellipse, and hyperbola) in inhomogeneous coordinates has
equation

𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 + 𝑑𝑥 + 𝑒𝑦 + 𝑓 = 0

• While in homogenous coordinates, where 𝑥 = 𝑥1/𝑥3 and 𝑦 = 𝑥2/𝑥3, we get

𝑎𝑥1
2 + 𝑏𝑥1𝑥2 + 𝑐𝑥2

2 + 𝑑𝑥1𝑥3 + 𝑒𝑥2𝑥3 + 𝑓𝑥3
2 = 0



Conic

• The equation 𝑎𝑥1
2 + 𝑏𝑥1𝑥2 + 𝑐𝑥2

2 + 𝑑𝑥1𝑥3 + 𝑒𝑥2𝑥3 + 𝑓𝑥3
2 = 0 can

be put in matrix form as

𝐱⊤C𝐱 = 0

where

C =

𝑎 𝑏/2 𝑑/2
𝑏/2 𝑐 𝑒/2
𝑑/2 𝑒/2 𝑓



Conic

• The equation 𝑎𝑥1
2 + 𝑏𝑥1𝑥2 + 𝑐𝑥2

2 + 𝑑𝑥1𝑥3 + 𝑒𝑥2𝑥3 + 𝑓𝑥3
2 = 0 can

be put in matrix form as

𝐱⊤C𝐱 = 0

where

C =

𝑎 𝑏/2 𝑑/2
𝑏/2 𝑐 𝑒/2
𝑑/2 𝑒/2 𝑓

This is a symmetric matrix, defined 
by six parameters, but since we are 
in homogeneous coordinates there 
is a scale ambiguity and a conic has 
only 5 DoF



Conic

• Under a projective transformation H (i.e., an homography) where

𝐱′ = H𝐱

we get

𝐱⊤C𝐱 = [𝐱′H−1]⊤C H−1𝐱′ =

= 𝐱′⊤H−⊤CH−1𝐱′ =

𝐱′⊤ H−⊤CH−1 𝐱′ = 𝐱′⊤C′𝐱′ = 0

• So C under projection H maps to C′ = H−⊤CH−1



Absolute Conic and Plane at Infinity

• The absolute conic Ω∞ is a conic that lies on the plane at infinity 𝜋∞

𝜋∞ = 0 0 0 1 ⊤

• A point 𝐗∞ ∈ 𝜋∞ iif 𝐗∞ = 𝑋1 𝑋2 𝑋3 0
⊤, indeed

𝜋∞
⊤𝐗∞ = 0 0 0 1

𝑋1
𝑋2
𝑋3
0

= 0



Absolute Conic and Plane at Infinity

• A point 𝐗∞ ∈ Ω∞ iif

ቊ
𝑋1
2 + 𝑋2

2 + 𝑋3
2 = 0

𝑋4 = 0

• This relation can then be expressed as

𝑋1 𝑋2 𝑋3 I

𝑋1
𝑋2
𝑋3

= 0

so

Ω∞ = I =
1 0 0
0 1 0
0 0 1



Absolute Conic and Plane at Infinity

• Any 3D plane intersect the plane at infinity 𝜋∞ in a line that is called line at infinity 𝐋∞

• Any circle intersect the line at infinity 𝐋∞ in two points known as the circular points.
Indeed

𝑎𝑥1
2 + 𝑏𝑥1𝑥2 + 𝑐𝑥2

2 + 𝑑𝑥1𝑥3 + 𝑒𝑥2𝑥3 + 𝑓𝑥3
2 = 0

in the case of a circle, 𝑎 = 𝑐 and 𝑏 = 0. So setting 𝑎 = 𝑐 = 1 we get

𝑥1
2 + 𝑥2

2 + 𝑑𝑥1𝑥3 + 𝑒𝑥2𝑥3 + 𝑓𝑥3
2 = 0

and since it intersect 𝐋∞ ∈ 𝜋∞, 𝑥3 = 0, then

𝑥1
2 + 𝑥2

2 = 0

• Such equation admits two solutions 𝐈 and 𝐉



Circular Points

• The 𝐈 and 𝐉 solution of 𝑥1
2 + 𝑥2

2 = 0 are called circular points, where

𝐈 =
1
𝑖
0

and 𝐉 =
1
−𝑖
0

where 𝑖 is the imaginary unit, such as 𝑖2 = −1

• Also, since 𝐈, 𝐉 ∈ 𝐋∞

𝐋∞ = 𝐈 × 𝐉

• The projections of 𝐈 and 𝐉 are called imaged circular points

• Since any 3D plane intersect 𝜋∞ in 𝐋∞, the circular points can also be related to a plane



IAC – Image of the Absolute Conic

• To project the absolute conic on the image plane, since Ω∞ ∈ 𝜋∞we
can use the homography that exist between 𝜋∞ and the image plane,
i.e. 𝐻∞

• 𝐻∞maps any point on 𝜋∞ onto the image plane. Since 𝐗∞ ∈ 𝜋∞ iif
𝐗∞ = 𝑋1 𝑋2 𝑋3 0

⊤ we can write

𝐱 = K R 𝐭 𝐗∞ = K R 𝐭

𝑋1
𝑋2
𝑋3
0

= KR
𝑋1
𝑋2
𝑋3

= H∞ 𝐗∞

• So, H∞ = KR



IAC – Image of the Absolute Conic

• Using the conic projection we so earlier we can map Ω∞ = 𝐼 to the
image plane using H∞ = KR as

𝜔 = H∞
−⊤ΩH∞

−1 = KR −⊤I KR −1 = K−⊤R−⊤R−1K−1

• Since R is an orthonormal matrix, R−1 = R⊤ and RR−1 = I, we can
obtain

𝜔 = K−⊤R−⊤R−1K−1 = K−⊤ R−1 ⊤R−1K−1 =
= K−⊤RR−1K−1 = K−⊤K−1 = KK⊤ −1

• So, the IAC 𝜔 = KK⊤ −1 depends on the calibration matrix K



IAC – Image of the Absolute Conic

• The IAC 𝜔 = KK⊤ −1 depends on the calibration matrix K

• 𝜔 can be decomposed to obtain the calibration K using the Cholesky
factorisation since K is an upper-triangular matrix

• So, being able to estimate 𝜔 will led us to obtain the camera
calibration matrix K



Conclusions

• Camera projection

• Homogeneous coordinates

• Full camera matrix (P)

• Epipolar geometry
• Essential matrix (E)
• Fundamental matrix (F)

• Parallax effect

• Homographies

• Conics

• Absolute conic

• Plane at infinity

• Circular points

• Image of the Absolute Conic (IAC)



Camera 

Calibration



Camera calibration

• A view of three non parallel planes can be used to compute the
intrinsic matrix (i.e., the calibration matrix K)



Camera calibration

• A view of three non parallel planes can be used to compute the
intrinsic matrix (i.e., the calibration matrix K)

• For convenience we can use three planar squared pattern

• Each of the planes give rise to an homography H𝑘 with 𝑘 = 1,2,3



Camera calibration

• Such homographies can be estimated by mapping the image corners
to four points as 0,0 ⊤, 0,1 ⊤, 1,0 ⊤, 1,1 ⊤

0,0 ⊤ 1,0 ⊤

1,1 ⊤0,1 ⊤

X

Y



Camera calibration

• Such homographies can be estimated by mapping the image corners
to four points as 0,0 ⊤, 0,1 ⊤, 1,0 ⊤, 1,1 ⊤

0,0 ⊤ 1,0 ⊤

1,1 ⊤0,1 ⊤

X

Y

𝐱 = H𝐗



Camera calibration

• The obtained homography H𝑘 can then be used to map the circular
points 𝐈, 𝐉

• Remember that 𝐈, 𝐉 ∈ 𝐋∞and 𝐋∞ is the intersection of any plane 𝜋
with 𝜋∞. So 𝐈, 𝐉 also belong to 𝜋

𝐢 = H𝐈 = 𝐡1 𝐡2 𝐡3

1
𝑖
0

= 𝐡1 + 𝑖𝐡2

𝐣 = H𝐉 = 𝐡1 𝐡2 𝐡3

1
−𝑖
0

= 𝐡1 − 𝑖𝐡2
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Camera calibration

• The obtained homography H𝑘 can then be used to map the circular
points 𝐈, 𝐉

• Remember that 𝐈, 𝐉 ∈ 𝐋∞and 𝐋∞ is the intersection of any plane 𝜋
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Camera calibration

• Since 𝐈, 𝐉 ∈ Ω, then 𝐢, 𝐣 ∈ 𝜔

• We can use the imaged circular points obtained from H to estimate 𝜔

𝐡1 ± 𝑖𝐡2
⊤𝜔 𝐡1 ± 𝑖𝐡2 = 0

• Each of such equations give rise to two constraints by separating the real and imaginary
parts

𝐡1
⊤𝜔𝐡2 = 0

𝐡1
⊤𝜔𝐡1 = 𝐡2

⊤𝜔𝐡2

• Those constraints are linear equations in 𝜔

• With at least five of such constraints, 𝜔 = KK⊤ −1can be estimated and K retrieved by 
factorization
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Camera calibration

• Since 𝐈, 𝐉 ∈ Ω, then 𝐢, 𝐣 ∈ 𝜔

• We can use the imaged circular points obtained from H to estimate 𝜔
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• We use several photos of a known planar 
pattern in different orientation

• The algorithm is implemented in computer 
vision libraries, such as OpenCV

K=
536.07343019 0. 342.37038789

0. 536.01634475 235.53685636
0. 0. 1.

Camera calibration



• It is an effect introduced by camera 
lenses

• Straight line becomes curves
• It can be recovered together with the 

camera calibration

Camera calibration



• It is an effect introduced by camera 
lenses

• Straight line becomes curves
• It can be recovered together with the 

camera calibration

Camera calibration



• A different calibration technique exploit a 3D 
pattern

• Each checkerboard corner can be assigned to 
a 3D coordinate (X, Y, Z)

• Knowing the 2D/3D correspondences, the 
full camera matrix 𝑃 = 𝐾[𝑅 𝑡] can be 
obtained solving a linear system

• Then, K can be retrieved by factorization

Camera calibration
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• A different calibration technique exploit a 3D 
pattern

• Each checkerboard corner can be assigned to 
a 3D coordinate (X, Y, Z)

• Knowing the 2D/3D correspondences, the 
full camera matrix 𝑃 = 𝐾[𝑅 𝑡] can be 
obtained solving a linear system
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Camera calibration

(0,0,0)



• A different calibration technique exploit a 3D 
pattern

• Each checkerboard corner can be assigned to 
a 3D coordinate (X, Y, Z)

• Knowing the 2D/3D correspondences, the 
full camera matrix 𝑃 = 𝐾[𝑅 𝑡] can be 
obtained solving a linear system

• Then, K can be retrieved by factorization

Camera calibration

(0,0,0)

(7,1,0)

(0,5,7)



• A different calibration technique exploit a 3D 
pattern

• Each checkerboard corner can be assigned to 
a 3D coordinate (X, Y, Z)

• Knowing the 2D/3D correspondences, the 
full camera matrix P = K[R 𝐭] can be 
obtained solving a linear system

• Then, K can be retrieved by factorization

Camera calibration



• A different calibration technique exploit a 3D 
pattern

• Each checkerboard corner can be assigned to 
a 3D coordinate (X, Y, Z)

• Knowing the 2D/3D correspondences, the 
full camera matrix P = K[R 𝐭] can be 
obtained solving a linear system

• Then, K can be retrieved by factorization

Camera calibration



• Using such a pattern, calibration can be 
achieved with a single image

• However
• Corners are more difficult to detect, due to 

the foreshortening of the three planes

• Factorization of the full camera matrix can 
lead to a less accurate estimation of K

Camera calibration
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• Using such a pattern, calibration can be 
achieved with a single image

• However
• Corners are more difficult to detect, due to 

the foreshortening of the three planes

• Factorization of the full camera matrix can 
lead to a less accurate estimation of K

Camera calibration



• Other partial calibration solution are

• Based on the relation between the fundamental and essential matrix

• Exploiting the vanishing points of three orthogonal directions

Camera calibration



• We know that E = K⊺FK and that F can be estimated using image correspondences (8-point 
algorithm). Then, we can exploit the properties of E

• Given the SVD decomposition of E as 

SVD E = UDV⊤

with 

D =

𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

where 𝜎1 = 𝜎2 and 𝜎3 = 0

• So we can find one of the five DoF of K (for example the focal length), by searching for the K matrix 
such that the SVD K⊺FK produce the first two singular values to be equal

Camera calibration from Fundamental matrix

Mendonça and Cipolla. "A simple technique for self-calibration." CVPR, 1999.
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• Vanishing points are images of 3D directions

Camera calibration with Vanishing Points



• Vanishing points are images of 3D directions

• A direction can be expressed as a point on the plane at infinity 𝜋∞

• Given two directions, the angle between them can be estimated by 
evaluating their normalized dot product

cos 𝜃 =
𝐝1
𝐝1

𝐝2
𝐝2

=
𝐝1

𝐝1
⊤𝐝1

𝐝2

𝐝2
⊤𝐝2
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• Since 𝐯𝑖 = K𝐝1and d𝑖 = K−1𝐯1

cos 𝜃 =
𝐝1
𝐝1

𝐝2
𝐝2

=
𝐝1
⊤𝐝2

𝐝1
⊤𝐝1 𝐝2

⊤𝐝2
=

=
𝐯1
⊤𝐾−⊤𝐾−1𝐯2

𝐯1
⊤𝐾−⊤𝐾−1𝐯1 𝐯2

⊤𝐾−⊤𝐾−1𝐯2

• Since 𝜔 = 𝐾−⊤𝐾−1 = KK⊤ −1

cos 𝜃 =
𝐯1
⊤𝜔𝐯2

𝐯1
⊤𝜔𝐯1 𝐯2

⊤𝜔𝐯2

Camera calibration with Vanishing Points
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• If 𝐯1 ⊥ 𝐯2 then cos 𝜃 = 0 and we obtain

0 =
𝐯1
⊤𝜔𝐯2

𝐯1
⊤𝜔𝐯1 𝐯2

⊤𝜔𝐯2
= 𝐯1

⊤𝜔𝐯2

• So, each pair of orthogonal directions in an image impose a linear constraints on 𝜔

• With three mutually orthogonal directions, we can fix three of five DoF of 𝜔 by 
solving a linear system

൞

𝐯1
⊤𝜔𝐯2 = 0

𝐯2
⊤𝜔𝐯3 = 0

𝐯3
⊤𝜔𝐯1 = 0

Camera calibration with Vanishing Points
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File name    : foo.jpg

File size    : 463023 bytes

File date    : 2001:08:12 21:02:04

Camera make  : Canon

Camera model : Canon PowerShot S100

Date/Time    : 2001:08:05 15:39:33

Resolution   : 1600 x 1200

Flash used   : No

Focal length :  5.4mm  

CCD Width    : 5.23mm

Exposure time: 0.100 s  (1/10)

Aperture     : f/2.8

Focus Dist.  : 1.18m

Metering Mode: center weight

Jpeg process : Baseline

Camera calibration from metadata

Exif file

• K can be (partially) recovered image 
metadata (exif files)

• Global optimization (e.g., Bundle 
Adjustment) can be used to refine 
initial estimates
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Exif file

• K can be (partially) recovered image 
metadata (exif files)

• Global optimization (e.g., Bundle 
Adjustment) can be used to refine 
initial estimates

Principal point = image resolution / 2
Focal (px) = (image width in pixels) * (focal length in mm) / (CCD width in mm)

http://phototour.cs.washington.edu/focal.html
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3D Reconstruction

• Objective: get back the 3D scene from its images 

• Image projection is not invertible
• The image projection, 𝑓:ℝ3 → ℝ2 ,is a process that reduce information

• During projection point depths are lost!

• At least two images are required to retrieve 3D information



Stereo Vision



Stereo Vision

Slide from A. Geiger 



Stereo Vision

Florence, XIX century by A. Hautmann



Stereo Vision



Stereo Vision



Stereo Reconstruction

• Goal: given two images of the same scene, compute their disparity map

• A disparity map encodes for each pixel its shift from the first to the second image
• Closer points will have higher disparity
• Further points will have lower (or zero) disparity

• Problem: occluded points cannot be estimated!

Image A Image B Disparity map



Stereo Reconstruction

• We know that between two images exist the F matrix such that

𝐱2
⊺ F𝐱1 = 0

and it holds that F𝐱1 = 𝐥2 and 𝐱2
⊺ 𝐥2 = 0

• So, matching points lies on the 
respective epipolar lines

• To find matching points, we 
can limit the search along the
epipolar lines!
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• We know that between two images exist the F matrix such that

𝐱2
⊺ F𝐱1 = 0

and it holds that F𝐱1 = 𝐥2 and 𝐱2
⊺ 𝐥2 = 0

• So, matching points lies on the 
respective epipolar lines

• To find matching points, we 
can limit the search along the
epipolar lines!

              

Baseline



Stereo Reconstruction - Rectification

• To ease the search of matching points, stereo images can be rectified



Stereo Reconstruction - Rectification

• To ease the search of matching points, stereo images can be rectified

Epipole
at infinity

Epipole
at infinity



Stereo Reconstruction - Rectification

• To rectify a stereo pair:
1. Compute E, and obtain R and Τ𝐭 𝐭
2. Define R𝑟𝑒𝑐𝑡 = 𝐫1 𝐫2 𝐫3 ⊺, where 

𝐫1 = Τ𝐭 𝐭
𝐫2 = 0 0 1 ⊺ × 𝐫1
𝐫3 = 𝐫1 × 𝐫2

3. Warp the pixels in the first image as 

𝐱1
′ = KR𝑟𝑒𝑐𝑡K1

−1𝐱1

4. Warp the pixels in the second image as 

𝐱2
′ = KRR𝑟𝑒𝑐𝑡K2

−1𝐱2

• After rectification, K is the common calibration and

R =
1 0 0
0 1 0
0 0 1

and 𝐭 =
𝑡𝑥
0
0



Stereo Reconstruction - Rectification

Slide from A. Geiger 



Stereo Reconstruction - Rectification

• Stereo rectification can be carried out together with camera 
calibration

• See for example the stereoCalibrate function in OpenCV



Stereo Reconstruction - Depth

• From the disparity we can compute the depth (i.e. the Z coordinate for 
each point)

• Let 𝑑 = 𝑥1 − 𝑥2, then

𝑍 − 𝑓

𝑏 − 𝑑
=
𝑍

𝑏

𝑍𝑏 − 𝑓𝑏 = 𝑍𝑏 − 𝑍𝑑

𝑍 =
𝑓𝑏

𝑑

• Note that, as 𝑑 → 0 we get 𝑍 → ∞ and 
the depth error on 𝑍 grows



Stereo Reconstruction – Failure cases

• Perspective distortion

Slide from S. Mattoccia
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• Perspective distortion

• Ambiguous regions
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• Ambiguous regions

• Repetitive patterns



Stereo Reconstruction – Failure cases

Slide from S. Mattoccia

• Perspective distortion

• Ambiguous regions

• Repetitive patterns

• Specular surfaces



Stereo Reconstruction – Block Matching

Slide from A. Geiger 



Stereo Reconstruction – Block Matching

• Several metrics can be used for 
such a task:
• Normalized cross correlation

• Sum of squared distances

• Sum of absolute difference

• …



Stereo Reconstruction – Block Matching

Slide from A. Geiger 



Stereo Reconstruction – Occlusions

Slide from A. Geiger 



Stereo Reconstruction – Window size

• Smaller window
+ More detail
– More noise

• Larger window
+ Smoother disparity maps
– Less detail

Slide from L. Lazebnik



Scanline optimization

• By solving stereo using Block Matching, we minimize

𝐸 𝐷 = σ𝐱∈𝐼𝑙
Δ(𝐱, 𝐷𝐱)



Scanline optimization

• By solving stereo using Block Matching, we minimize

𝐸 𝐷 = σ𝐱∈𝐼𝑙
Δ(𝐱, 𝐷𝐱)

• Since depth is generally smooth, we can add a regularization term

𝐸 𝐷 = σ𝐱∈𝐼𝑙
Δ(𝐱, 𝐷𝐱) + σ𝑥𝑖,𝑥𝑗∈𝑁

𝑅(𝐷𝑥𝑖 , 𝐷𝑥𝑗)

𝑅 𝐷𝑥𝑖 , 𝐷𝑥𝑗 =

0 𝐷𝑥𝑖 = 𝐷𝑥𝑗

𝑃1 𝐷𝑥𝑖 − 𝐷𝑥𝑗 = 1

𝑃2 𝐷𝑥𝑖 − 𝐷𝑥𝑗 > 1

with 𝑃1< 𝑃2



Scanline optimization

To solve the optimization on a single scanline we can search for the 
shortest path in the dissimilarity matrix, where each row represent 
Δ(𝐱, 𝐷𝐱) for a pixel 𝐱



Scanline optimization

This however introduce streaking artifacts



Semi-Global Matching (SGM)

By expanding the regularization on different directions, the disparity 
can be improved



Stereo Matching

Scharstein and Szeliski



Siamese network

• The matching problem is cast to a 
sort of classification problem

• The net is trained to identify 
matching and non-matching patches 

• The net output is a patch similarity 
score

Zbontar and LeCun “Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches”, JMLR, 2016.



Siamese network

Accurate architecture

• Learn feature and similarity 
metric

Zbontar and LeCun “Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches”, JMLR, 2016.

Fast architecture

• Learn feature and eval dot 
product



Siamese network

Training set composed by positive and negative examples

𝑤𝑙 𝐱𝑙
𝑟𝑒𝑓

, 𝑤𝑟 𝐱𝑟
𝑝𝑜𝑠

and 𝑤𝑙 𝐱𝑙
𝑟𝑒𝑓

, 𝑤𝑟 𝐱𝑟
𝑛𝑒𝑔

• 𝐱𝑟
𝑝𝑜𝑠

= 𝑥𝑙
𝑟𝑒𝑓

− 𝑑 + 𝑜𝑝𝑜𝑠, 𝑦𝑙
𝑟𝑒𝑓

, where 𝑜𝑝𝑜𝑠 sampled in −𝑃,… , 𝑃

• 𝐱𝑟
𝑛𝑒𝑔

= 𝑥𝑙
𝑟𝑒𝑓

− 𝑑 + 𝑜𝑛𝑒𝑔, 𝑦𝑙
𝑟𝑒𝑓

, where 𝑜𝑛𝑒𝑔 sampled in −𝑁ℎ , … , −𝑁𝑙 , 𝑁𝑙 , … , 𝑁ℎ

• 𝑃 = 1, while 𝑁𝑙 = 3 and 𝑁ℎ = 6

Zbontar and LeCun “Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches”, JMLR, 2016.
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Siamese network

Training set composed by positive and negative examples

𝑤𝑙 𝐱𝑙
𝑟𝑒𝑓

, 𝑤𝑟 𝐱𝑟
𝑝𝑜𝑠

and 𝑤𝑙 𝐱𝑙
𝑟𝑒𝑓

, 𝑤𝑟 𝐱𝑟
𝑛𝑒𝑔

• 𝐱𝑟
𝑝𝑜𝑠

= 𝑥𝑙
𝑟𝑒𝑓

− 𝑑 + 𝑜𝑝𝑜𝑠, 𝑦𝑙
𝑟𝑒𝑓

, where 𝑜𝑝𝑜𝑠 sampled in −𝑃,… , 𝑃

• 𝐱𝑟
𝑛𝑒𝑔

= 𝑥𝑙
𝑟𝑒𝑓

− 𝑑 + 𝑜𝑛𝑒𝑔, 𝑦𝑙
𝑟𝑒𝑓

, where 𝑜𝑛𝑒𝑔 sampled in −𝑁ℎ , … , −𝑁𝑙 , 𝑁𝑙 , … , 𝑁ℎ

• 𝑃 = 1, while 𝑁𝑙 = 3 and 𝑁ℎ = 6

Zbontar and LeCun “Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches”, JMLR, 2016.

Ground truth disparity



Siamese network

• .

Slide from A. Geiger Zbontar and LeCun “Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches”, JMLR, 2016.



Siamese network

Hinge Loss

ℒ = max(0,𝑚 + 𝑠− − 𝑠+)

• 𝑠−/𝑠+ are the net score for negative/positive example

• ℒ = 0 if 𝑠+ > 𝑠− +𝑚, where m is a margin set in the paper at 0.2

Zbontar and LeCun “Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches”, JMLR, 2016.



Siamese network

• .

Zbontar and LeCun “Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches”, JMLR, 2016.



Siamese network

• These are refined disparities, 
obtained considering also
• Cross-based Cost Aggregation

• Semiglobal Matching

• Interpolation

• Subpixel Enhancement

• Refinement

• The net is used to define an initial 
disparity cost volume

Zbontar and LeCun “Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches”, JMLR, 2016.



DispNet

• Based on the FlowNet architecture

• Input: a stereo pair

• Output: the disparity map

• The net is trained evaluating the differences between the predicted and the 
ground truth disparity

Mayer et al.: A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation. CVPR, 2016.



DispNet

• Feature extraction

• Feature correlation

• U-Net like architecture with skip connections

• The net use also multi-scale losses and curriculum-learning (from easy to 
hard example)

Mayer et al.: A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation. CVPR, 2016.



DispNet

• Feature extraction

• Feature 1D-correlation

• U-Net like architecture with skip connections

• The net use also multi-scale losses and curriculum-learning (from easy to 
hard example)

Mayer et al.: A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation. CVPR, 2016.
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DispNet

• Feature extraction

• Feature 1D-correlation

• U-Net like architecture with skip connections

• The net use also multi-scale losses and curriculum-learning (from easy to 
hard example)

Mayer et al.: A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation. CVPR, 2016.



DispNet

• Train such an architecture requires an huge 
labelled dataset

• Synthetic dataset were used to train the net

• Real (few) examples was 
used to fine-tune the net 
on specific domain

Mayer et al.: A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation. CVPR, 2016.

FlyingThings3D

Monkaa



DispNet

Mayer et al.: A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation. CVPR, 2016.



Unsupervised depth learning

Godard et al., "Unsupervised monocular depth estimation with left-right consistency“, CVPR, 2017.

• Goal: given a single image, predict its depth

• During training, calibrated stereo images are used

• During inference, a single image is given in input

• Unsupervised training (i.e., no ground truth depth is 
required) is possible by enforcing left-right consistency



Unsupervised depth learning

Godard et al., "Unsupervised monocular depth estimation with left-right consistency“, CVPR, 2017.

• Goal: given a single image, predict its depth

• During training, calibrated stereo images are used

• During inference, a single image is given in input

• Unsupervised training (i.e., no ground truth depth is 
required) is possible by exploiting image resynthesis 
and enforcing left-right consistency

𝐼𝑙 𝐼𝑟

𝐱𝑙 𝐱𝑟

𝐗



Unsupervised depth learning

Godard et al., "Unsupervised monocular depth estimation with left-right consistency“, CVPR, 2017.

• The used architecture is inspired by the DispNet, with 
fully convolutional encoder and decoder 



Unsupervised depth learning

Godard et al., "Unsupervised monocular depth estimation with left-right consistency“, CVPR, 2017.

• The used architecture is inspired by the DispNet, with 
fully convolutional encoder and decoder 

• At training time, 𝐼𝑙 is used to produce both the left (𝑑𝑙) 
and right (𝑑𝑟) disparity maps

• Then the disparities are used to reconstruct the input 
images
• ሚ𝐼𝑟 = 𝐼𝑙 𝑑𝑟

• ሚ𝐼𝑙 = 𝐼𝑟 𝑑𝑙
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Unsupervised depth learning

Godard et al., "Unsupervised monocular depth estimation with left-right consistency“, CVPR, 2017.

• The used architecture is inspired by the DispNet, with 
fully convolutional encoder and decoder 

• At training time, 𝐼𝑙 is used to produce both the left (𝑑𝑙) 
and right (𝑑𝑟) disparity maps

• Then the disparities are used to reconstruct the input 
images
• ሚ𝐼𝑟 = 𝐼𝑙 𝑑𝑟

• ሚ𝐼𝑙 = 𝐼𝑟 𝑑𝑙



Unsupervised depth learning

Godard et al., "Unsupervised monocular depth estimation with left-right consistency“, CVPR, 2017.

• To train the net, the reconstructed images ( ሚ𝐼𝑙, ሚ𝐼𝑟) are compared 
with the original ones (𝐼𝑙, 𝐼𝑟)

• The loss function, evaluated at multiple scale, is composed by 
several parts

𝐶 =

𝑠=1

4

𝐶𝑠

𝐶𝑠 = 𝛼𝑎𝑝 𝐶𝑎𝑝
𝑙 + 𝐶𝑎𝑝

𝑟 + 𝛼𝑑𝑠 𝐶𝑑𝑠
𝑙 + 𝐶𝑑𝑠

𝑟 + 𝛼𝑙𝑟 𝐶𝑙𝑟
𝑙 + 𝐶𝑙𝑟

𝑟



Unsupervised depth learning

Godard et al., "Unsupervised monocular depth estimation with left-right consistency“, CVPR, 2017.

𝐶𝑠 = 𝛼𝑎𝑝 𝐶𝑎𝑝
𝑙 + 𝐶𝑎𝑝

𝑟 + 𝛼𝑑𝑠 𝐶𝑑𝑠
𝑙 + 𝐶𝑑𝑠

𝑟 + 𝛼𝑙𝑟 𝐶𝑙𝑟
𝑙 + 𝐶𝑙𝑟

𝑟

𝐶𝑎𝑝
𝑙 =

1

𝑁


𝑖,𝑗

𝛼
1 − 𝑆𝑆𝐼𝑀 𝐼𝑖𝑗

𝑙 , ሚ𝐼𝑖𝑗
𝑙

2
+ (1 − 𝛼) 𝐼𝑖𝑗

𝑙 − ሚ𝐼𝑖𝑗
𝑙

• Appearance matching loss
• Encourages the reconstructed images to appear similar to the 

input images



Unsupervised depth learning

Godard et al., "Unsupervised monocular depth estimation with left-right consistency“, CVPR, 2017.

𝐶𝑠 = 𝛼𝑎𝑝 𝐶𝑎𝑝
𝑙 + 𝐶𝑎𝑝

𝑟 + 𝛼𝑑𝑠 𝐶𝑑𝑠
𝑙 + 𝐶𝑑𝑠

𝑟 + 𝛼𝑙𝑟 𝐶𝑙𝑟
𝑙 + 𝐶𝑙𝑟

𝑟

𝐶𝑑𝑠
𝑙 =

1

𝑁


𝑖,𝑗

𝜕𝑥𝑑𝑖𝑗
𝑙 𝑒

− 𝜕𝑥𝐼𝑖𝑗
𝑙

+ 𝜕𝑦𝑑𝑖𝑗
𝑙 𝑒

− 𝜕𝑦𝐼𝑖𝑗
𝑙

• Disparity smoothness loss
• Encourages the predicted disparity maps to be smooth 

evaluating their gradients, weighted with the image gradient 
to take edges into account



Unsupervised depth learning

Godard et al., "Unsupervised monocular depth estimation with left-right consistency“, CVPR, 2017.

𝐶𝑠 = 𝛼𝑎𝑝 𝐶𝑎𝑝
𝑙 + 𝐶𝑎𝑝

𝑟 + 𝛼𝑑𝑠 𝐶𝑑𝑠
𝑙 + 𝐶𝑑𝑠

𝑟 + 𝛼𝑙𝑟 𝐶𝑙𝑟
𝑙 + 𝐶𝑙𝑟

𝑟

𝐶𝑙𝑟
𝑙 =

1

𝑁


𝑖,𝑗

𝑑𝑖𝑗
𝑙 − 𝑑

𝑖𝑗−𝑑𝑖𝑗
𝑙

𝑟

• Left-right disparity consistency loss
• To force the predicted disparity (both obtained from the left 

image only) to be consistent, i.e. have the left disparity equal 
to the projected right-view disparity



Unsupervised depth learning

Godard et al., "Unsupervised monocular depth estimation with left-right consistency“, CVPR, 2017.
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Structure from Motion

• Input: 
• Unordered image collection

• Videos

• Output:
• 3D (sparse) structure

• Camera positions



Structure from Motion - Pipeline

1. Image analysis

Keypoint extraction & matching

Image selection
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Structure from Motion - Pipeline

1. Image analysis

2. Geometric estimation

3. Local/global optimization

Keypoint extraction & matching

Image selection

Bundle Adjustment

Two-view 
reconstruction

One-view 
addition

Camera 
position

3D 
model



Point matching

• We want to find patches that are recognizable 
among different images of the same scene

• Not all patches are good
• Low texture content
• Ambiguous region

• We want patches with distinctive local 
appearance

Keypoint extraction & matching

Image selection

Bundle Adjustment

Two-view 
reconstruction

One-view 
addition

Camera 
position

3D 
model
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Point matching

• We want to find patches that are recognizable 
among different images of the same scene

• Not all patches are good
• Low texture content
• Ambiguous region

• We want patches with distinctive local 
appearance

Keypoint extraction & matching

Image selection

Bundle Adjustment

Two-view 
reconstruction

One-view 
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3D 
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SIFT – Scale Invariant Feature Transform

• First step: build a scale-space representation

Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60, 91–110 (2004).
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• First step: build a scale-space representation
• Filter the image with a Gaussian kernel with increasing Ϭ

Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60, 91–110 (2004).



SIFT – Scale Invariant Feature Transform

• First step: build a scale-space representation
• Filter the image with a Gaussian kernel with increasing Ϭ

• Downscale the image, and repeat

Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60, 91–110 (2004).



SIFT – Scale Invariant Feature Transform

• First step: build a scale-space representation
• Filter the image with a Gaussian kernel with increasing Ϭ

• Downscale the image, and repeat

First octave

Second octave

…

Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60, 91–110 (2004).



SIFT – Scale Invariant Feature Transform

• Adjacent scale are subtracted to obtain a Difference of Gaussian (DoG)

Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60, 91–110 (2004).



SIFT – Scale Invariant Feature Transform

• Adjacent scale are subtracted to obtain a Difference of Gaussian (DoG)

• DoG extrema points are selected as keypoints (blobs)

• Blobs correspond to areas of high intensity change making them ideal for 
feature extraction tasks. 

Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60, 91–110 (2004).



SIFT – Scale Invariant Feature Transform

• To obtain a keypoint descriptor, gradients are computed in the 
surrounding pixels

• For each sub-area an histogram of the gradient orientations is obtained

• The SIFT descriptor is the concatenation of all the histograms

Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60, 91–110 (2004).
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Point matching

• Other than SIFT, there is a plethora of keypoint descriptors/detectors:
• Harris Corner

• SURF

• FAST

• BRIEF

• ORB

• …

• Also, deep-learning based solutions are available
• Superpoint

• D2-Net

• LF-Net

• …



Point matching

• Each point set {xi, desc(xi)} is compared against all 

the sets extracted

• Matches are evaluated by measuring the distance 

(e.g. L1 or L2) between the descriptor vectors. A 

match is a pair of points (xi, xj) from different images 

with minimum descriptor distance.

• By concatenating the matches among different 

images, we will obtain a track, i.e., all the 

projections of a single 3D point
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Point matching

• Matches must be validated with robust 

estimation of epipolar geometry (i.e., the 

fundamental matrix, 𝐱2
⊺ F𝐱1 = 0) to discard 

outliers.  

• The RANdom SAmple Consensus 

(RANSAC) algorithm can be used
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estimation of epipolar geometry (i.e., the 

fundamental matrix, 𝐱2
⊺ F𝐱1 = 0) to discard 

outliers.  

• The RANdom SAmple Consensus 

(RANSAC) algorithm can be used

Keypoint extraction & matching

Image selection
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reconstruction

One-view 
addition

Camera 
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3D 
model

Robust 8-point algorithm

Let 𝑥𝑖 and 𝑥𝑗 be the set of matched keypoints between images I and J

1. Randomly select 8 matches
2. Compute F with the 8-point algorithm using the selected matches

3. Validate the obtained F, using, for example, the distance 𝑑 𝐱𝑗 , 𝐥𝑗 where 𝐥𝑗 = F𝐱𝑖 for all the 

matches
4. Define the inlier and the outlier sets according to a threshold t

I. if 𝑑 𝐱𝑗 , 𝐥𝑗 ≤ 𝜏, 𝐱𝑗is an inlier

II. if 𝑑 𝐱𝑗 , 𝐥𝑗 > 𝜏, 𝐱𝑗is an outlier

5. Repeat 1 – 4 for k iterations
6. Retrieve the maximum inlier set
7. Using all the inliers compute the final F



Point matching

Inlier
Outlier



Image selection

• To avoid bad conditioning, we have to carefully search for 
the best image pair from which start the reconstruction, 
i.e., images that have:

• High number of matches

• Sufficient baseline

• After the initialization, the same heuristics are used to 
select the successive image to be included in the process

• How to check the baseline?

• Match flow measurement

• Low percentage of homography inliers

• Geometric Robust Information Criterion1 (GRIC)
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reconstruction
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Initialization – two view reconstruction

• The essential matrix is computed between the first 
image pair

E = K2
⊺ FK1 = 𝐭 ×R

• Then, by decomposing E, the first two camera matrices
can be defined as

P1 = K1 I 𝟎 and P2 = K2 R Τ𝐭 𝐭

• Finally, the initial 3D structure is computed by 
triangulating the matching points
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One-view 
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3D 
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Triangulation

• Given a match (x0,x1) the relative 3D point X is obtained 
solving AX = 0 where

• Note that low disparity matches (e.g., from images with 
low baseline, points at infinity, etc.) can produce 3D 
points with high uncertainty
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One-view addition

• Given the 3D model and the 2D tracks is possible to recover 
the 2D/3D matches

• The new camera matrix is estimated by solving an over-
constrained linear system
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One-view addition

• If K is known, we can solve an exterior 
orientation problem to find R and t

• We have to minimize 

where

• This is a non-linear problem that can be solved 
by iterative minimization
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Optimization – bundle adjustment

• Bundle Adjustment is an iterative algorithm used to 
minimize the local/global reprojection error, by 
minimizing

• Computationally expensive:

• m cameras P with 11 DoF

• n 3D points X with 3 DoF

• BA has to deal with factorization and inversion of matrices 
(3n+11m)x(3n+11m)

• To ease computation interleaving techniques can be 
used, as well as, exploiting the sparsity of the matrix

• Note: BA can’t deal with outliers!

Keypoint extraction & matching

Image selection

Bundle Adjustment

Two-view 
reconstruction

One-view 
addition

Camera 
position

3D 
model

Triggs et al., “Bundle adjustment – a modern synthesis”, 2000



SfM Results



SfM Results

Multi-view stereo can be used to obtain a denser reconstruction



SfM Softwares

• The OpenCV library (C/C++, Python) includes functions to build a SfM

pipeline

• There are also software ready to use, that do not require particular 

knowledge:

• PhotoTurism: http://phototour.cs.washington.edu/

• VisualSfM: http://ccwu.me/vsfm/

• Colmap: https://colmap.github.io/

• AliceVision: https://alicevision.org/

• …

http://phototour.cs.washington.edu/
http://ccwu.me/vsfm/
https://colmap.github.io/
https://alicevision.org/


Hierarchical SfM is based on the identification and fusion of clusters of 

images

[1] A. M.Farenzena, A.Fusiello, R. Gherardi. “Structure-and-Motion Pipeline on a Hierarchical Cluster Tree.” Workshop on 3-D Digital Imaging and Modeling, 2009.
[2] R. Gherardi, M. Farenzena,  A. Fusiello. “Improving the efficiency of hierarchical structure-and-motion.” CVPR , 2010.

Hierarchical SfM 



1. At first keypoint matches are found among all the images

2. Each image forms a cluster, and cluster distance is measured as

where S* are the keypoint sets, CH() is the convex-hull, and A* is the 

image area

3. Reconstruction starts from the leaves of the constructed 

dendrogram, and progressively climbs the tree until all images are 

included in a single model/cluster

Hierarchical SfM 



To merge two clusters A and B, we will face three different problems

I. If both A and B include a single image, we can use the 

decomposition of the essential matrix to obtains camera 

poses, and then a local 3D map

II. If A include multiple images, and B only a single image 

(or vice-versa) we can solve an exterior orientation problem 

to add the image of B in the model of A

III. If both A and B include multiple images and 

we have already built a local model for A and B, 

thighs get a little bit trickier

Hierarchical SfM 



Cluster A and B have their model expressed in different coordinate systems and 
different scale. We can exploit the 3D points to register the two models: 

• Let                    and                    be to set of n 3D points, with known 
correspondences, expressed into two different reference frames. 

• To estimate the similarity transform 
to map Y onto X we can minimize 

in order to find s, R and t. 

• Wrap the minimization into a RANSAC 
routine could help to discard possible outliers

Hierarchical SfM 



3D

Reconstruction

Multi-view stereo



• Goal: given a set of images with known camera poses obtain the depth 

maps for all the images

• As we have seen, camera poses can be obtained using Structure from 

Motion algorithms

• In order to obtain a dense 3D reconstruction, the plane-sweeping 

algorithm can be used

Multi-view stereo



Multi-view stereo



• We will consider

• N camera views with P𝑛 = K𝑛 R𝑛 𝐭𝑛 with P0 = K0 I 𝟎

• M depth planes 𝝅𝑚 = 𝐧𝑚 − 𝑑𝑚
⊤

• In case of front-to-parallel plane sweeping 

• 𝐧𝑚 = 0 0 1 ⊤ and 

• 𝑑𝑚 = 𝑑𝑛𝑒𝑎𝑟 , … , 𝑑𝑓𝑎𝑟

Multi-view stereo



• Using the defined planes, we can use planar homographies to obtain 

additional correspondences  

H𝜋𝑚,P𝑛 = K𝑛 R𝑛 +
𝐭𝑛𝐧𝑚

⊤

𝑑𝑚
K0
−1 , 

• So, a point on the first image can be matched with a point on the n image 

using

𝑥, 𝑦, 𝑤 ⊤ = H𝜋𝑚,P𝑛 𝑥, 𝑦, 1 ⊤

Plane Sweeping 



• Using the defined planes, we can use planar homographies to obtain 

additional correspondences  

H𝜋𝑚,P𝑛 = K𝑛 R𝑛 +
𝐭𝑛𝐧𝑚

⊤

𝑑𝑚
K0
−1 , 

• So, a point on the first image can be matched with a point on the n image 

using

𝑥, 𝑦, 𝑤 ⊤ = H𝜋𝑚,P𝑛 𝑥, 𝑦, 1 ⊤

Plane Sweeping 



• Obtained putative correspondences must be validated

• More exactly, we have to find which plane 𝝅𝑚 = 𝐧𝑚 − 𝑑𝑚
⊤ is the one 

that really maps a point on the reference image on the other images

Plane Sweeping 



• We can define a cost function such as

Plane Sweeping 



• By evaluating the function on the different planes, we can find which one 

minimize the cost function 

Plane Sweeping 



Plane Sweeping 

Newcombe, 2013



Colmap + Meshlab

https://www.youtube.com/watch?v=bDHJM6nAKtc

https://www.youtube.com/watch?v=bDHJM6nAKtc
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• 3D reconstruction can be achieved by using a camera

in combination with an active element, such as

a laser projector

• Intuitively, we exploit the knowledge of the structured light pattern projected 

onto the scene to estimate the depth of the pixels by observing the pattern 

deformation 

Structured Light



Structured Light

• 3D reconstruction can be achieved by using a camera

in combination with an active element, such as

a laser projector

• Intuitively, we exploit the knowledge of the structured light pattern projected 

onto the scene to estimate the depth of the pixels by observing the pattern 

deformation 



Structured Light

Laser plane calibration

• We use the camera-laser device to scan an object with known geometry, 

for example a plane 𝜋



Structured Light

Laser plane calibration

1. Firstly, we must estimate the planar homography H𝜋between the 3D plane 𝜋
and the image 

2. Then, the laser line 𝐥𝜋 on the image must detected

3. All the points 𝐱 ∈ 𝐥𝜋 can be reprojected on the points 𝐗𝜋 ∈ 𝐋𝜋 using H𝜋of 𝜋
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Structured Light

Laser plane calibration

1. Firstly, we must estimate the planar homography H𝜋between the 3D plane 𝜋
and the image 

2. Then, the laser line 𝐥𝜋 on the image must detected

3. All the points 𝐱 ∈ 𝐥𝜋 can be reprojected on the points 𝐗𝜋 ∈ 𝐋𝜋 using H𝜋of 𝜋



Structured Light

Laser plane calibration

4. By repeating the steps 1-3 after moving the 3D plane 𝜋 and 

leaving fixed the camera-laser, we can collect a set of 3D 

points {𝐗𝜋}

5. Since if a 3D point X belong to a plane Λ with 

equation 𝐧Λ dΛ
⊤ then 

𝐧Λ dΛ
⊤𝐗 = 0

With at least three non-collinear points we can 

estimate the equation of the laser plane Λ
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Laser plane calibration

4. By repeating the steps 1-3 after moving the 3D plane 𝜋 and 

leaving fixed the camera-laser, we can collect a set of 3D 

points {𝐗𝜋}

5. Since if a 3D point X belong to a plane Λ with 

equation 𝐧Λ dΛ
⊤ then 
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Structured Light

• Now, we know the laser plane L equation in the camera coordinate plane Λ: 𝐧Λ
⊤ 𝑑Λ , such that for 

each point 𝐗 ∈ Λ we have 𝐧Λ
⊤𝐗 + 𝑑Λ = 0

• We know that 𝐗 = 𝜇K−1𝐱, where 𝜇 ∈ ℝ is the depth of 𝐗. Then 

𝐧Λ
⊤𝐗 + 𝑑Λ = 𝐧Λ

⊤ 𝜇K−1𝐱 + 𝑑Λ = 0 ⟺ 𝜇 =
−𝑑Λ

𝐧Λ
⊤K−1𝐱

and, finally

𝐗 =
−𝑑Λ

𝐧Λ
⊤K−1𝐱

K−1𝐱



Structured Light

• From each image we can extract the 3D positions of the points 

highlighted by the laser plane

• In order to build the model, the camera-laser device must be moved in 

front of the object so to accumulate different laser stripes and the related 

3D points

• To obtain a full 3D model the camera motion must be estimated, by using

• SfM-like solution

• Homography decomposition



Structured Light

• Indeed, if we have the homography H𝜋 and the camera is calibrated, the 

position of the camera can be obtained as

• So given H𝜋 = [ℎ1ℎ2ℎ3],  



Structured Light

http://cvg.dsi.unifi.it/FRATINO_BUILD.mp4

http://cvg.dsi.unifi.it/FRATINO_BUILD.mp4


Structured Light

https://www.youtube.com/watch?v=DWc9AzbrJDk&t=23s

https://www.youtube.com/watch?v=DWc9AzbrJDk&t=23s
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DEM, DTM, DSM

• DEM is obtained by aerial acquisition using

• Lidar

• Radar

• Photogrammetry

• DEM is composed by

• DTM: Digital Terrain Model

• DSM: Digital Surface Model
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DSM Modelling

• From the DSM is possible to obtain the 3D building shape



DSM Modelling

• From the DSM is possible to obtain the 3D building shape

1. Buildings cadastral maps used to segment 

the DSM

2. Region-Growing algorithm to cluster different 

building elevation

3. Small cluster aggregation

4. Step-line regression

5. HDBSCAN algorithm based on a custom weight 

matrix W= {w_ij } 

𝑤𝑖𝑗 = ቊ
∞, 𝑖𝑓 𝐿𝑖𝑗 > 6

𝑤𝑁𝑁𝑖𝑗 +𝑤𝑀𝑀𝑖𝑗 +𝑤𝐷𝐷𝑖𝑗 + 𝑤𝐿𝐿𝑖𝑗 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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DSM Modelling

• From the DSM is possible to obtain the 3D building shape

6. Hip-line regression

7. Region-Growing algorithm to cluster different 

building elevation

8. Small cluster aggregation

9. Step-line regression
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• From the DSM is possible to obtain the 3D building shape

6. Hip-line regression

7. Planar patch definition

8. Planar patch labeling and grouping to cluster different 

building elevation

9. Small cluster aggregation

10. Step-line regression

11. HDBSCAN algorithm based on a custom weight 

matrix W= {w_ij } 

𝑤𝑖𝑗 = ቊ
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• From the DSM is possible to obtain the 3D building shape

6. Hip-line regression

7. Planar patch definition

8. Planar patch labeling and grouping

9. Compute the 3D roof planes by robust 

regression for each planar patch

DSM Modelling



• From the DSM is possible to obtain the 3D building shape
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7. Planar patch definition
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• Repeating the process for all the city buildings, a complete 3D map can 

be obtained

DSM Modelling

https://www.snap4city.org/dashboardSmartCity/view/Gea-Night.php?iddasboard=MzQ5OA==

https://www.snap4city.org/dashboardSmartCity/view/Gea-Night.php?iddasboard=MzQ5OA==
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Shape from Shading

• Is it possible to estimate the 3D shape of an object exploiting the shading?

• That is: from the image intensity recover the 3D shape 

Slide from A. Geiger



Shape from Shading

• Observing the shading could give rise to different interpretations

Slide from A. Geiger



Shape from Shading

• Observing the shading could give rise to different interpretations

• For example, the 2D image (a) could be obtained by 

• (b) a 3D structure with planes in different orientations producing such shading

• (c) but it could also be a picture of a painting

• (d) or a particular 3D structure with specific illumination

Slide from A. Geiger



Shape from Shading

• Observing the shading could give rise to different interpretations

• We must use some prior knowledge to solve this problem!

Slide from A. Geiger



Shape from Shading

• Human perception

Slide from A. Geiger



Shape from Shading

• Human perception

Slide from A. Geiger



Shape from Shading

• Human perception

• We also make assumption based on our experience, for instance we assume that 

the light always came from the upward direction

Slide from A. Geiger



• Let 𝐩 ∈ ℝ3 denote a 3D surface point, 𝐯 ∈ ℝ3 the viewing direction and 𝐬 ∈ ℝ3 the 

incoming light direction. The rendering equation describes how much of the light 𝐿𝑖𝑛
with wavelength λ arriving at 𝐩 is reflected into the viewing direction 𝐯 :

Rendering equations

Slide from A. Geiger
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Light source
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Rendering equations

Slide from A. Geiger

Camera

Patch of a bigger surface

Light source

Received light Light emitted 
by the point

Bidirectional Reflectance 
Distribution Function

Strength of the 
incoming light

Incidence 
of the light



• The BRDF gives the reflectance of a target as a function of illumination geometry and 
viewing geometry. It defines how light is reflected at an opaque surface.

• 𝐿𝑒𝑚𝑖𝑡 > 0 only for light emitting surfaces (typically can be neglected) 

• −𝐧⊤𝐬 is related to the angle of incidence of the light w.r.t. the surface. If the surface 
normal 𝐧 and the light direction 𝐬 are parallel, the light intensity is maximized

• We evaluate the integral on the hemisphere Ω of all possible light directions because 
we can have multiple light sources 

Rendering equations
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• Typical BRDFs have a diffuse and a specular component

• The diffuse (=constant) component scatters light uniformly in all directions
• This leads to shading, i.e., smooth variation of intensity w.r.t. surface normal

• The specular component depends strongly on the outgoing light direction

Diffuse and specular reflections

Slide from A. Geiger



• Usually, materials are a combinations of diffuse and specular reflections

Diffuse and specular reflections
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• Usually, materials are a combinations of diffuse and specular reflections

• However, exist also (almost) purely diffuse and (almost) purely specular surfaces

• A purely diffuse surface is also known as Lambertian surface

Diffuse and specular reflections
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• Let makes some simplification on the general rendering equation

• We can drop the wavelength 𝝀 because the camera sensor already performs integrations on some 
wavelength

• We can drop the point 𝒑 for simplicity

• More importantly, we can assume to have a single light source, and so avoiding to compute the 
integral over 𝛀

Rendering equations

Slide from A. Geiger



• Let makes some simplification on the general rendering equation

• We can drop the wavelength 𝝀 because the camera sensor already performs integrations on some 
wavelength

• We can drop the point 𝒑 for simplicity

• More importantly, we can assume to have a single light source, and so avoiding to compute the 
integral over 𝛀

Rendering equations

Slide from A. Geiger



• Let makes some simplification on the general rendering equation

• We can drop the wavelength 𝜆 because the camera sensor already performs integrations on some 
wavelength

• We can drop the point 𝐩 for simplicity, and put 𝐿emit = 0

• More importantly, we can assume to have a single light source, and so avoiding to compute the 
integral over 𝛀

Rendering equations

Slide from A. Geiger



• Let makes some simplification on the general rendering equation

• We can drop the wavelength 𝜆 because the camera sensor already performs integrations on some 
wavelength

• We can drop the point 𝐩 for simplicity, and put 𝐿emit = 0

• More importantly, we can assume to have a single light source, and so avoiding to compute the 
integral over 𝛀

Rendering equations

Slide from A. Geiger



• Let makes some simplification on the general rendering equation

• We can drop the wavelength 𝜆 because the camera sensor already performs integrations on some 
wavelength

• We can drop the point 𝐩 for simplicity

• More importantly, we can assume to have a single light source, and so avoiding to compute the 
integral over 𝛀

• In the end we obtain

𝐿out 𝐯 = BDRF 𝐬, 𝐯 𝐿in(𝐬)(−𝐧
⊤𝐬)

Rendering equations
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• We can also assume to look at purely diffuse material. In this case the BRDF function 
become a constant 𝜌 (i.e., albedo) that does not depend anymore on 𝐬 and 𝐯

𝐿out = 𝜌𝐿in(−𝐧
⊤𝐬)
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• We can also assume to look at purely diffuse material. In this case the BRDF function 
become a constant 𝜌 (i.e., albedo) that does not depend anymore on 𝐬 and 𝐯

𝐿out = 𝜌𝐿in(−𝐧
⊤𝐬)

Rendering equations
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• Finally, we can remove the minus sign from (−𝐧⊤𝐬) by simply considering the reverse 
𝐬 vector

𝐿out = 𝜌𝐿in𝐧
⊤𝐬
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• Finally, we can remove the minus sign from (−𝐧⊤𝐬) by simply considering the reverse 
𝐬 vector

𝐿out = 𝜌𝐿in𝐧
⊤𝐬

• Having assumed a fixed light source (e.g., we calibrated its position), the rendering 
equation depends only on the normal orientation of the surface

𝐿out = 𝜌𝐿in𝐧
⊤𝐬 = 𝑅(𝐧)

• The 𝑅(𝐧) function is known as reflectance map

Rendering equations
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• The 𝑅(𝐧) function is known as reflectance map

𝐿out = 𝜌𝐿in𝐧
⊤𝐬 = 𝑅(𝐧)

• So the idea is to exploit the image intensities in order to obtain the surface normal 
vectors for all the object points

• From the normal vectors, the 3D shape can finally be retrieved

• This is known as Shape-from-Shading (Horn, 1970)

Shape from Shading
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• To solve Shape from Shading we assume:

• Lambertian (diffuse) material with constant albedo 
• BDRF = ρ

• 𝐿emit = 0

• Known point light source at infinity
• Light direction 𝐬 is constant for all the points

• A single light source to avoid the integral over 𝛀

• Known camera at infinity
• Viewing direction 𝐯 is constant for all the points

Shape from Shading

Slide from A. Geiger



• We have to find the 𝐧 that satisfy the simplified reflectance function 𝑅 𝐧 = 𝜌𝐿in𝐧
⊤𝐬

• 𝜌 and 𝐿in are constant number
• 𝜌 is constant if the object is composed by a single material only

• 𝜌 and 𝐿in can be assumed to be absorbed into 𝑅 𝐧 , so

𝑅 𝐧 = 𝐧⊤𝐬

• Question: how to model 𝐧? 

Shape from Shading
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• Question: how to model 𝐧? 

• Being a 3D normal vector, 𝐧 has 2 DoF

• Instead of 𝐧, we can represent the same information by using the negative gradients 

of the depth-map

𝑝, 𝑞 = −
𝜕𝑧

𝜕𝑥
, −

𝜕𝑧

𝜕𝑦

and then, 𝐧 can be obtained as

𝐧 =
𝑝, 𝑞, 1 ⊤

𝑝2 + 𝑞2 + 1

• Finally, we obtain

𝑅 𝐧 =
𝑝𝑠𝑥,𝑞𝑠𝑦,𝑠𝑧

𝑝2+𝑞2+1
= 𝑅(𝑝, 𝑞)
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• Visualization of the gradient space
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• Visualization of the gradient space

Shape from Shading
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Gradient space (plane Z = 1)

The normal vector intersect the 
gradient space in (p,q,1)

To obtain 𝐧 from the (p,q,1) vector, 
we have to normalize it, i.e. 

𝐧 =
𝑝, 𝑞, 1 ⊤

𝑝2 + 𝑞2 + 1



• Visualization of the gradient space
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Gradient space (plane Z = 1)

The normal vector intersect the 
gradient space in (p,q,1)

To obtain 𝐧 from the (p,q,1) vector, 
we have to normalize it, i.e. 

𝐧 =
𝑝, 𝑞, 1 ⊤

𝑝2 + 𝑞2 + 1

We cannot map 𝐧 with negative z, 
but those vector are not important 
to this problem, since they do not 
reflect light 



• Visualization of the gradient space
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Gradient space (plane Z = 1)

The normal vector intersect the 
gradient space in (p,q,1)

To obtain 𝐧 from the (p,q,1) vector, 
we have to normalize it, i.e. 

𝐧 =
𝑝, 𝑞, 1 ⊤

𝑝2 + 𝑞2 + 1

Differently, 𝐧 vector lying on the xy-plane 
(or close to it) can pose a problem! 



• Also the light source vector s can be represented in the gradient space

Shape from Shading
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• Since both 𝐧 and 𝐬 are unit vectors                

𝑅 𝐧 = 𝐧⊤𝐬 = cos 𝜽

Shape from Shading
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𝜃



• Since both 𝐧 and 𝐬 are unit vectors                

𝑅 𝐧 = 𝐧⊤𝐬 = cos 𝜽

• All 𝐧 that form an angle 
equal to 𝜽 with 𝐬 are 
valid solutions for 𝑅 𝐧

• The set of 𝐧 solutions
are a circle around 𝐬

• Projecting the circle on the Z=1 plane yield a conic section 
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• Since both 𝐧 and 𝐬 are unit vectors                

𝑅 𝐧 = 𝐧⊤𝐬 = cos 𝜽

• All 𝐧 that form an angle 
equal to 𝜽 with 𝐬 are 
valid solutions for 𝑅 𝐧

• The set of 𝐧 solutions
are a circle around 𝐬

• Projecting the circle on the Z=1 plane yield a conic section 

Shape from Shading
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Solution is 
not unique!

Indeed, we want to estimate 
2 DoF with a single equation: 
the problem is ill posed!



• There is only one exception: when the light source direction is coincident with the 
normal direction

• In this case the conic section collapses to a point

Shape from Shading
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• Another particular case is when the light source direction and the normal direction 
are orthogonal

• In this case the conic section become a line

Shape from Shading
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• Shape from Shading tries to solve this problem imposing additional constraints

• A sort of regularization is used in order to find an unique solution

Shape from Shading
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• Before we noticed that if n lies in the xy-plane we cannot map it to the gradient space 

• To solve this problem, we can change the representation to the stereographic 
mapping
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• Before we noticed that if n lies in the xy-plane we cannot map it to the gradient space 

• To solve this problem, we can change the representation to the stereographic 
mapping

• And we can still move back to the (p,q) 
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• Shape from Shading tries to minimize

and to obtain unique solutions, impose this additional constraints

• Smoothness, to penalize rapid changes in surface gradients

• Occluding boundaries, to constraint normal at occluding boundaries since are known
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• Shape from Shading tries to minimize

and to obtain unique solutions, impose this additional constraints

• Smoothness, to penalize rapid changes in surface gradients

• Occluding boundaries, to constraint normal at occluding boundaries since are known

Shape from Shading
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Viewing direction

Boundary 
direction



• To obtain the depth from its gradient, we can minimize over Z

where, as we know, (p, q) are

Shape from Shading
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Shape from Shading

Frankot and Chellappa: A Method for enforcing integrability in shape from shading algorithms. TPAMI, 1988.



Shape from Shading

Frankot and Chellappa: A Method for enforcing integrability in shape from shading algorithms. TPAMI, 1988.

Light source 
position can 
introduce 
some bias



3D 

Reconstruction

Photometric Stereo



• To address the ambiguity in the 
Shape from Shading problem, 
instead of imposing strong 
smoothness constraints, 
we can use multiple 
measurements for a single pixel

• Idea: take multiple images from 
a fixed point of view by 
changing the light source position

• The light source positions must 
be known (we can use some 
calibration procedures)

Photometric Stereo

Woodham: Analysing images of curved surfaces. Artificial Intelligence, 1981.



• We can also estimate the albedo
(𝜌) of the surface

• So we have
• 2 DoF for the normal vector

• 1 DoF for the albedo

• We need at lest three 
observation

Photometric Stereo

Woodham: Analysing images of curved surfaces. Artificial Intelligence, 1981.
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• So we have
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observation

• We assume that the 
light source is far away

Photometric Stereo

Woodham: Analysing images of curved surfaces. Artificial Intelligence, 1981.

This is a non-Lambertian surface, 
so we require additional images



• We can also estimate the albedo
(𝜌) of the surface

• So we have
• 2 DoF for the normal vector

• 1 DoF for the albedo

• We need at lest three 
observation

• We assume that the 
light source is far away

Photometric Stereo

Woodham: Analysing images of curved surfaces. Artificial Intelligence, 1981.

This is a non-Lambertian surface, 
so we require additional images



• Light stage

Photometric Stereo

https://www.esperhq.com/product/lightcage-scanning-rig/

https://www.esperhq.com/product/lightcage-scanning-rig/


• Capturing K images is possible to obtain an unique solution

Photometric Stereo
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• Capturing K images is possible to obtain an unique solution
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• Given the reflectance function 𝑅 𝐧 = 𝜌𝐧⊤𝐬 = I(𝑥, 𝑦) where 𝐿in = 1 we can define 
the following linear system considering three observations

• Then, the solution can be obtained as

𝐧 = S−1I, 𝜌 = 𝐧 2 and so 𝐧 = 𝐧/𝜌

• Note that, we do not use the gradient space, but we 
parametrized 𝐧 as a 3D vector and using 𝜌 as its norm
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• In order to work, the S matrix must have full rank to be invertible

• This does not happen if the light sources and the points lies on the same 3D plane

• In that case, one of the light direction vector 𝐬 become linearly dependent from the 
other two, and S is rank deficient 
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• If you have more than three observations, you can solve an over-constrained system

• And the solution can be obtained with
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• If you have more than three observations, you can solve an over-constrained system

• And the solution can be obtained with

Photometric Stereo
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Note that, we still suppose to have a 
Lambertian surface. To work with non 
Lambertian surfaces we have 
• to relax some hypothesis on the 

rendering equation, 
or 
• to impose some regularization



Calibration of light source directions

• To obtain the position of the light sources in a controlled 
setup we can use a sphere with specular surface

• Its geometry (i.e., the normal vectors) it is known

• By detecting the specular reflection over the sphere, 
the light source direction can be estimated

Photometric Stereo

Slide from A. Geiger



Photometric Stereo

Input Normal map Albedo Integrated normal Image of the 
relighted object

(with uniform albedo)

Woodham: Analysing images of curved surfaces. Artificial Intelligence, 1981.



• In case of coloured images, we work separately for each single R, G, or B channel

Photometric Stereo

Woodham: Analysing images of curved surfaces. Artificial Intelligence, 1981.



• In case of coloured images, we work separately for each single R, G, or B channel

Photometric Stereo

Color albedoWoodham: Analysing images of curved surfaces. Artificial Intelligence, 1981.



• In case of coloured images, we work separately for each single R, G, or B channel

Photometric Stereo

Deviating from the Lambertian assumption leads to errors, e.g., artifacts in the albedo map
Woodham: Analysing images of curved surfaces. Artificial Intelligence, 1981.



Photometric Stereo

Woodham: Analysing images of curved surfaces. Artificial Intelligence, 1981.



Photometric Stereo

Verbiest and Van Gool. "Photometric stereo with coherent outlier handling and confidence estimation." CVPR 2008



Photometric Stereo



Photometric Stereo

Ackermann, Langguth, Fuhrmann and Goesele: Photometric stereo for outdoor webcams. CVPR, 2012.

• Photometric stereo can also be used in outdoor scenarios

• Sun is a perfect light source

• Multiple images can be acquired during different times of the day or in different days



Visual Odometry

&

SLAM



Visual Odometry & SLAM

• Visual odometry is a method focused on finding the system/camera 
position in an unknown environment

• Camera positions (i.e., trajectory) and structure are estimated 
simultaneously and incrementally

• Images are temporally ordered, typically we use (live) videos

• All image are acquired by the same camera, usually with known 
calibration

• Real time constraint



Visual Odometry & SLAM

• SLAM, Simultaneous Localization and Mapping, is used for the same 
task

• We talk about SLAM when we impose global consistency, 
implemented typically using loop-closure solutions



Visual Odometry & SLAM

• The capability of localizing the camera in real-time is key functionality 
for several application, e.g., self-driving vehicle, augmented reality, 
etc.

https://www.youtube.com/watch?v=F3s3M0mokNchttps://www.youtube.com/watch?v=LbbY3M4nt68

https://www.youtube.com/watch?v=F3s3M0mokNc
https://www.youtube.com/watch?v=LbbY3M4nt68


Bayesian Solution

• Usually implemented with Kalman filter

• Camera position and 3D structure as random 
variables

• Simultaneous update of structure and trajectory

• Non-linear observation model

• Strong limit on landmark (3D point) number

STATE

PREVISION

UPDATE

+

+

MOTION
MODEL

NEW 
OBSERVATION

A. J. Davison, “Real-time simultaneous localization and mapping with a single camera,” ICCV, 2003



Bayesian Solution

STATE

PREVISION

UPDATE

+

+

MOTION
MODEL

NEW 
OBSERVATION

A. J. Davison, “Real-time simultaneous localization and mapping with a single camera,” ICCV, 2003

Global state = Position + Landmark



Bayesian Solution

STATE
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A. J. Davison, “Real-time simultaneous localization and mapping with a single camera,” ICCV, 2003

3D landmark

Robot position

Global state = Position + Landmark



Bayesian Solution
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Bayesian Solution
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Bayesian Solution

• The state of the system include 
• State of the camera (camera position + motion model)

• The position of the 3D landmarks
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A. J. Davison, “Real-time simultaneous localization and mapping with a single camera,” ICCV, 2003
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Bayesian Solution

• The state of the system include 
• State of the camera (camera position + motion model)

• The position of the 3D landmarks

• Uncertainties are described with covariance matrices

STATE

PREVISION

UPDATE

+

+

MOTION
MODEL

NEW 
OBSERVATION

A. J. Davison, “Real-time simultaneous localization and mapping with a single camera,” ICCV, 2003

Σ: 13+3N x 13+3N



Bayesian Solution

• During the prediction step, the state of the camera is 
updated (using a constant velocity model) STATE

PREVISION
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A. J. Davison, “Real-time simultaneous localization and mapping with a single camera,” ICCV, 2003



Bayesian Solution

• During the prediction step, the state of the camera is 
updated (using a constant velocity model)

• And covariances are modified also
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Bayesian Solution

• During the prediction step, the state of the camera is 
updated (using a constant velocity model)

• And covariances are modified also

• Then, during the update step, both the state and 
the covariance are updated exploiting the new 
measurements
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A. J. Davison, “Real-time simultaneous localization and mapping with a single camera,” ICCV, 2003



Bayesian Solution

• The main problem of this kind of approaches is the 
dimension of the covariance matrix

• By progressively adding new landmark, the 
covariance matrix grows and become difficult
to respect the real-time constraints

• For this reason, the number of used landmark
must be kept limited, but this can lower the 
estimation precision of the camera pose
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UPDATE

+

+

MOTION
MODEL

NEW 
OBSERVATION

A. J. Davison, “Real-time simultaneous localization and mapping with a single camera,” ICCV, 2003
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A. J. Davison, “Real-time simultaneous localization and mapping with a single camera,” ICCV, 2003



Keyframe-based Solution

• Based on SfM

• Update of structure and trajectory may 
happen at different time
• The scene is static, no need to update the

3D model for each new observation

• Bundle Adjustment on 3D map and 
keyframe poses

New 
observation

MOTION ESTIMATION

STRUCTURE ESTIMATION

Camera 
positions

3D 
model

New 
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G. Klein and D. Murray, “Parallel tracking and mapping for small AR workspaces,” ISMAR, 2007.



Keyframe-based Solution

• Based on SfM

• Update of structure and trajectory may 
happen at different time
• The scene is static, no need to update the

3D model for each new observation

• Bundle Adjustment on 3D map and 
keyframe poses

New 
observation

MOTION ESTIMATION

STRUCTURE ESTIMATION

Camera 
positions

3D 
model

New 
keyframe?

NO

YES

G. Klein and D. Murray, “Parallel tracking and mapping for small AR workspaces,” ISMAR, 2007.



Keyframe-based Solution

• Based on SfM

• Update of structure and trajectory may 
happen at different time
• The scene is static, no need to update the

3D model for each new observation

• Bundle Adjustment on 3D map and 
keyframe poses

New 
observation

MOTION ESTIMATION

STRUCTURE ESTIMATION

Camera 
positions

3D 
model

New 
keyframe?

NO

YES

G. Klein and D. Murray, “Parallel tracking and mapping for small AR workspaces,” ISMAR, 2007.



Indirect vs Direct Methods

Slide Credits: Jorg Stuckler



Stereo Visual Odometry

• Input: sequence of rectified stereo images, with known calibration

• No global optimization (no BA)

• Keyframe selection to maintain low estimation error

M. Fanfani, F. Bellavia, and C. Colombo, "Accurate keyframe selection and keypoint tracking for robust visual odometry". MVA, 2016
F. Bellavia, M. Fanfani, and C. Colombo, "Selective visual odometry for accurate AUV localization". Aut. Rob., 2017



Stereo Visual Odometry

• Keypoints extracted and described with SIFT-like HarrisZ detector1

and sGLOH descriptor2

• Stereo matching constrained by epipolar line

• Temporal matching constrained by flow motion restriction

• Matching loop chain 
construction

• Outlier removal with 
four distinct RANSAC

[1] Bellavia et al., “Improving Harris corner selection strategy”, IET Computer Vision, 2011
[2] Bellavia et al., “Improving SIFT-based descriptors stability to rotations”, ICPR , 2010
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Stereo Visual Odometry

• Keypoints 𝐱𝑖
𝑙 , 𝐱𝑖

𝑟 of previous keyframe-pair are put in 3D by triangulation, 
obtaining a local map 𝐗𝑖𝑗

• The incremental roto-translation between the previous  and the current 
pose is estimated minimizing

where

• Estimation is carried out in a 
RANSAC framework

• Global poses are obtained by 

concatenation
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Stereo Visual Odometry

• The incremental roto-translations are computed for each frame w.r.t.
the last keyframe

• A frame is selected as keyframe if an appreciable motion is found. 
Given the match-chain        , the fixed points are selected

If                         , a new keyframe is selected.



Stereo Visual Odometry

• The incremental roto-translations are computed for each frame w.r.t.
the last keyframe

• A frame is selected as keyframe if an appreciable motion is found. 
Given the match-chain        , the fixed points are selected

If                         , a new keyframe is selected.



Stereo Visual Odometry

http://cvg.dsi.unifi.it/SSLAM_KITTI.mp4

http://cvg.dsi.unifi.it/SSLAM_KITTI.mp4


Direct methods

• Direct methods skip the keypoint
detection/matching step

• Subsequent images are densely put in 
correspondences

• PRO: higher precision due to the greater 
number of matches

• CON: computationally more demanding



Direct methods

• Based on the idea of image resynthesis, 
i.e., obtain a new image from a different 
point of view by knowing the scene 
structure

• Given two subsequent images 𝐼𝑡 and 𝐼𝑡+1

R𝑡 →𝑡+1
∗ , 𝐭𝑡 →𝑡+1

∗ , 𝐷∗ = argminR𝑡→𝑡+1,𝐭𝑡→𝑡+1,𝐷 

𝐱∈ 𝐼𝑡

𝐼𝑡 𝐱 − 𝐼𝑡+1 𝜋 𝐱; R𝑡→𝑡+1, 𝐭𝑡→𝑡+1, 𝐷
2

• Easier if we know D, or some approximation, e.g., using RGBD cameras
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Direct methods

• There are some problem when dealing 
with

• Occlusions

• No-texture/saturated areas

• Reflections

• Changes in illumination

• Direct method can be used together 
with indirect feature-based methods

J. Engel et al., “Direct Sparse Odometry”, PAMI, 2018. 



Loop closure

• Problem: by incrementally estimates poses and 3D, the error increases with 
time

• This leads to an ever-increasing divergence between the estimated and real 
trajectory

Clemente, et al., “Mapping Large Loops with a Single Hand-Held Camera”, RSS, 2007.



Loop closure

• When revisiting already seen scenes, additional constraints can be put into 
place

• It require to find correspondences between the new image and previously 
viewed ones

Clemente, et al., “Mapping Large Loops with a Single Hand-Held Camera”, RSS, 2007.



Loop closure

• It requires two main step
1. Recognize already seen scenes

2. Optimize the camera poses and the 3D map with the new constraints (using 
for example the bundle adjustment)

Clemente, et al., “Mapping Large Loops with a Single Hand-Held Camera”, RSS, 2007.



Loop closure

https://www.youtube.com/watch?v=O4xRdzUYAQs

https://www.youtube.com/watch?v=O4xRdzUYAQs


ORB-SLAM

• Ready to use indirect SLAM 
implementation

• Integrated also in the ROS framework

• Works with mono, stereo, and RGBD
cameras

• Implement loop-closure detection and 
global consistency with bundle 
adjustment

• Recently, ORB-SLAM 3 was made 
available (https://github.com/UZ-
SLAMLab/ORB_SLAM3) 

https://github.com/UZ-SLAMLab/ORB_SLAM3
https://github.com/UZ-SLAMLab/ORB_SLAM3


DepthNet

PoseNet

Encoder Decoder

Hidden
representation

{R, t}It

It-1

Learning based

N. Yang, et al., “D3VO: Deep Depth, Deep Pose and Deep Uncertainty for Monocular Visual Odometry” CVPR 2020.



DepthNet

PoseNet

Encoder Decoder

Hidden
representation

{R, t} + {a,b}It

It-1

Depth uncertainty map

Brightness parameters

Learning based

N. Yang, et al., “D3VO: Deep Depth, Deep Pose and Deep Uncertainty for Monocular Visual Odometry” CVPR 2020.



Full net

{R, t} + {a,b}

It

It-1 O
P

TI
M

IZ
AT

IO
N

Learning based

N. Yang, et al., “D3VO: Deep Depth, Deep Pose and Deep Uncertainty for Monocular Visual Odometry” CVPR 2020.



• To train the net, stereo pairs are required

• At first the loss function try to minimize the photometric re-projection 
error

where                                              , and             is the warping of       using the 
transformation          predicted by the PoseNet, and         , i.e. the depth 
map predicted by the DepthNet. Note that         is known and fixed.

Time

Left

Right

Learning based

N. Yang, et al., “D3VO: Deep Depth, Deep Pose and Deep Uncertainty for Monocular Visual Odometry” CVPR 2020.



• The function r in the loss is

where SSIM is the Structural Similarity Index. r is based on the brightness 

constancy assumption (BCA), that can be violated by changes in illumination.

• To better guarantee to satisfy the BCA, brightness transformation parameter are 

learned and used to adapt the illumination of       with        extending the loss as

where 

Learning based

N. Yang, et al., “D3VO: Deep Depth, Deep Pose and Deep Uncertainty for Monocular Visual Odometry” CVPR 2020.



• Example result of brightness adaptation

Learning based

N. Yang, et al., “D3VO: Deep Depth, Deep Pose and Deep Uncertainty for Monocular Visual Odometry” CVPR 2020.



• To further improve the robustness of the system w.r.t. noisy data, the loss function 

is expanded to include an uncertainty map 

Bounduaries

High frequency areas

High reflecting areas

Moving objects

Learning based

N. Yang, et al., “D3VO: Deep Depth, Deep Pose and Deep Uncertainty for Monocular Visual Odometry” CVPR 2020.



• Finally, in order to avoid degenerate solution, a regularization term is introduced, 

considering both the brightness parameters and the uncertainty map 

Learning based

N. Yang, et al., “D3VO: Deep Depth, Deep Pose and Deep Uncertainty for Monocular Visual Odometry” CVPR 2020.



• Suppose to have a database of maps with associated features

• Goal: localize a vehicle on the known maps using images

• At localization time we should try to find features extracted from the current 

image in the known map

Localization



• Obviously, there are some challenges

Localization

Slide from A. Geiger



Localization

Slide from T. Sattler



Localization

Slide from T. Sattler

• In practice, we have a 3D sparse point cloud (SLAM, SfM)

• Each 3D point have one or more associated descriptor

• We have to find matches among the 3D point descriptors and those extracted from the input image



Localization

Slide from T. Sattler

• Once the 2D/3D correspondences are known, the pose of the input image can be 

estimated by minimizing



Map-based Localization

Brubaker, Geiger and Urtasun: Map-Based Probabilistic Visual Self-Localization. PAMI, 2016.

• A different way to localize a vehicle 

• The system tries to match the trajectory estimated by visual odometry with a 

street map (from OSM)



Map-based Localization

Brubaker, Geiger and Urtasun: Map-Based Probabilistic Visual Self-Localization. PAMI, 2016.

• Idea: to exploit the characteristics of a trajectory (e.g., straight segment length, 

curves, etc.) to find a matching pattern in a 2D street map



Map-based Localization

Brubaker, Geiger and Urtasun: Map-Based Probabilistic Visual Self-Localization. PAMI, 2016.
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