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Introduction

• Smart Mobility is a tool to achieve sustainable development of cities, including: 
technology, mobility infrastructure, mobility solutions and people.

• Mobility solutions depend on traffic status in the road network.

• The knowledge of the real-time traffic flow status in each segment of a whole road 
network in a city or area is becoming fundamental for a large number of smart services 
such as: routing, planning, dynamic tuning services, healthy walk, etc.
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Motivations

• Often, traffic flow estimation is related to a monitored area based on few fixed 
points/sensors and thus no information is provided in other connected road segments 
free of sensors.

• Traffic density measures are typically obtained by stationary sensors on fixed positions 
and they are usually of different kinds: TV cameras, road spires, etc.
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Motivations

• Due to sustainability reasons, the number of deployed sensors has to be limited. 

• Thus, it is mandatory to adopt some reconstruction algorithms to obtain the traffic flow 
condition in each road segment of the city in order to have dense traffic flows in the 
unmeasured road segments.
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Definitions

• The Traffic Flow Reconstruction, TFR, is the process to estimate dense traffic density 
(flow) – e.g., vehicle per meter (or vehicles per second) – for each road segment within 
the road network by starting from a limited number of traffic flow sensors having fixed 
positions in the network (or data providing traffic density (flow) in the roads, or velocity 
in some cases) at the same time instant. 

• It can be regarded as an extrapolation approach passing, for example, from 100 sensors 
data to 10.000 traffic flow data of road segments.
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Overview

Goal

• Obtain a traffic reconstruction in every road in real-time, at low-cost, using a general 
and self-adaptive model

How

• Exploit a fluid-dynamic model adapted for the road network

• Road graph and possible restriction obtained from KM4City Knowledge Base, using 
Open Street Map data

• Traffic measurements from IoT sensors scattered over the municipality
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Features

• Dense: the reconstruction is obtained at every location in the area of interest

• General: no or minimal simplistic assumption 

• Low-cost: the algorithm use sensors already available, not requiring specific deployment

• Real-time: the reconstruction is updated frequently, each time a new traffic 
measurement is available

• Verified: the reconstruction accuracy is rigorously evaluated

• Visual: the reconstruction can be displayed over the road graph exploiting a given color 
map

• Easy to use: the user does not need to take any action (install apps, submit data, etc.)

• Open: methods and software are made available under open licenses
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• Starting from fixed traffic sensors scattered in the city, our scope is the 
prediction/reconstruction of the real-time vehicular traffic density in the whole urban 
network.

Goal
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SPARQL Query

• The road graph can be queried from KM4City KB using SPARQL 

DISIT Lab (DINFO UNIFI) 17

PREFIX km4c: <http://www.disit.org/km4city/schema#> 

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 

PREFIX rdfsn: <http://www.w3.org/2003/01/geo/wgs84_pos#> 

PREFIX dct: <http://purl.org/dc/terms/> 

SELECT ?strada ?nomeStrada ?elementostradale ?highwaytype ?startlat ?startlong ?endlat ?endlong

?compositiontipo ?operatingstatus ?latrafficDir ?lalunghezza WHERE { 

?strada a km4c:Road. 

?strada km4c:extendName ?nomeStrada.

?strada km4c:inMunicipalityOf ?municip. 

?municip foaf:name "Firenze". 

?strada km4c:containsElement ?elementostradale. 

?elementostradale km4c:startsAtNode ?startnode. 

?elementostradale km4c:highwayType ?highwaytype. 

?elementostradale km4c:composition ?compositiontipo. 

?elementostradale km4c:operatingStatus ?operatingstatus. 

?elementostradale km4c:trafficDir ?latrafficDir. 

?elementostradale km4c:length ?lalunghezza. 

?startnode rdfsn:lat ?startlat. 

?startnode rdfsn:long ?startlong. 

?elementostradale km4c:endsAtNode 

?endnode. ?endnode rdfsn:lat ?endlat. 

?endnode rdfsn:long ?endlong. 

}



Sensors and detections

• The traffic sensors in a municipality (e.g., spire road sensors and cameras) give the state 
of the traffic counting the number of vehicles which pass through the supervised area 

• Traffic Sensors come from Open Data and have
– Static information 

• identifier, 

• geolocation, 

• street address, 

• technical specifications

• … 

– Real-time traffic flow detections 
• timestamp, 

• detected traffic flow, 

• estimated speed

• …
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Sensors to KM4City
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• SensorSite

• TrafficObservation

– TrafficSpeed

– TrafficFlow

– TrafficHeadway

– TrafficConcentration



Smart City API

• The traffic reconstruction model implementation accesses traffic data through dedicated 
APIs

• Traffic flows are read every 10 minutes, the refresh frequency of the traffic sensors.
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Mathematical model

• The traffic sensor detections are interpreted as sources of traffic leading into the 
outcoming roads of the nodes where sensors are located.

• We consider a mathematical model for fluid dynamic flows on networks which is based 
on conservation laws.

• Road network is studied as a directed graph composed by arcs that meet at some nodes, 
corresponding to junctions.
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Mathematical model

• Roads are modelled as if they were water pipelines.

• Crossroads are modelled as if they were pipeline junctions.

• The flow of the vehicles is modelled as if it was a water flow.

• The law of conservation of the flow (of the vehicles) applies:

𝜕𝜌(𝑡, 𝑥)

𝜕𝑡
+

𝜕𝑓 𝜌 𝑡, 𝑥

𝜕𝑥
= 0

where 

– 𝜌 𝑡, 𝑥 is the vehicular density, 

– 𝑓(𝜌(𝑡, 𝑥)) = 𝜌(𝑡, 𝑥)𝑣(𝑡, 𝑥) is the vehicular flux, and 

– 𝑣(𝑡, 𝑥) is the local speed of the vehicles.
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Partial derivative of the 
density w.r.t. the time

Partial derivative of product 
of the density and the 

velocity w.r.t. the space

𝜌 𝑡, 𝑎 = 𝜌𝑎(𝑡) and 𝜌 𝑡, 𝑏 = 𝜌𝑏(𝑡)

𝜌 0, 𝑥 = 𝜌0(𝑥).



Mathematical model

• 𝜌 𝑡, 𝑥 denotes the car density which admits values from 0 to 𝜌max, where 𝜌max > 0 is the 
maximal vehicular density on the road. 

• The function 𝑓 𝜌(𝑡, 𝑥) is the vehicular flux which is defined as the product 
𝜌 𝑡, 𝑥 𝑣 𝑡, 𝑥 , where 𝑣 𝑡, 𝑥 is the local speed of the cars.

• If we assume that 𝑣 𝑡, 𝑥 is a decreasing function, only depending on the density, then 
the corresponding flux is a concave function
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Fundamental diagram

We consider the local cars’ speed as 

𝑣 𝜌 = 𝑣𝑚𝑎𝑥(1 −
𝜌

𝜌𝑚𝑎𝑥
)

obtaining that 

𝑓 𝜌 = 𝑣𝑚𝑎𝑥 1 −
𝜌

𝜌𝑚𝑎𝑥
𝜌, 

where 𝑣𝑚𝑎𝑥 is the limit speed

൞

𝜌 = 0 ⇒ 𝑣 𝜌 = 𝑣𝑚𝑎𝑥

𝜌↑ ⇒ 𝑣 𝜌 ↓ 

𝜌 = 𝜌𝑚𝑎𝑥 ⇒ 𝑣 𝜌 = 0
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Fundamental diagram: data analysis

• Observation from traffic sensors (Florence, year 2019)
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Discretization scheme
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The following discretization and simplification of the model is operated:

• Each road is partitioned in segments Δx long.

• The time is partitioned in intervals Δt long.

• Denote (ℎ,𝑚) a bounded time-space region (cell) of duration ℎ and length 𝑚. 

• Let 𝑢𝑚
ℎ = 𝑢 𝑡ℎ, 𝑥𝑚 = 𝑢(h𝛥𝑡,𝑚𝛥𝑥) be a continuous function defined on (ℎ,𝑚).

• Denote F the numerical flux. Then, the vehicular density results from: 

𝑢𝑚
ℎ+1 = 𝑢𝑚

ℎ −
𝛥𝑡

𝛥𝑥
𝐹 𝑢𝑚

ℎ , 𝑢𝑚+1
ℎ − 𝐹 𝑢𝑚−1

ℎ , 𝑢𝑚
ℎ
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DISIT Lab (DINFO UNIFI) 33

The following discretization and simplification of the model is operated:

• Each road is partitioned in segments Δx long.

• The time is partitioned in intervals Δt long.

• Denote (ℎ,𝑚) a bounded time-space region (cell) of duration ℎ and length 𝑚. 

• Let 𝑢𝑚
ℎ = 𝑢 𝑡ℎ, 𝑥𝑚 = 𝑢(h𝛥𝑡,𝑚𝛥𝑥) be a continuous function defined on (ℎ,𝑚).

• Denote F the numerical flux. Then, the vehicular density results from: 

𝑢𝑚
ℎ+1 = 𝑢𝑚

ℎ −
𝛥𝑡

𝛥𝑥
𝐹 𝑢𝑚

ℎ , 𝑢𝑚+1
ℎ − 𝐹 𝑢𝑚−1

ℎ , 𝑢𝑚
ℎ

Density at time h+1 in 
segment m Density at time 

h in segment m

Changes due to 
neighborhood segments



Discretization scheme
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Sensors’ measurements

• The measured data sensor is interpreted as the source of traffic leading into the 
outcoming roads of the considered junction.

• Suppose to assign a condition at the incoming boundary for 𝑥 = 0 as 𝜌 𝑡, 0 = 𝜌𝑏
𝑖𝑛𝑐(𝑡).

• We proceed by inserting an incoming ghost cell and the discretization becomes

𝑢0
ℎ+1 = 𝑢0

ℎ −
𝛥𝑡

𝛥𝑥
𝐹 𝑢0

ℎ, 𝑢1
ℎ − 𝐹 𝑣(𝑖𝑛𝑐)

ℎ , 𝑢0
ℎ

where 

𝑣(𝑖𝑛𝑐)
ℎ =

1

𝛥𝑡
න

𝑡ℎ

𝑡ℎ+1

𝜌𝑏
𝑖𝑛𝑐(𝑡) 𝑑𝑡

replaces the ghost value 𝑢−1
ℎ
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Flow conservation

• The assessment has been performed verifying in real-time the conservation of the flow in the
area. Figure reports the real-time dashboard for controlling the conservation of flow
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Phisical Principle of Narrowing in roads
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Numerical meaning
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Application of the model

• The vehicular traffic flow is propagated in the network according to the fluid dynamic 
model

• The distribution of the traffic at crossroads is governed by a Traffic Distribution Matrix 
whose coefficients are based on the weights of the segments of roads that make the 
crossroad.
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Traffic Matrix Distribution (TDM)

• The TDM is a distribution matrix describing the percentage of vehicles getting out each 
outcoming road with respect to those getting in each incoming road. 

• Thus, it is defined as 𝑇𝐷𝑀 = {𝑤𝑗𝑖}𝑗=𝑛+1,…,𝑛+𝑚,𝑖=1,…,𝑛 so that 0 < 𝑤𝑗𝑖 < 1 and 

෍
𝑗=𝑛+1

𝑛+𝑚

𝑤𝑗𝑖 = 1, for 𝑖 = 1, … , 𝑛 and 𝑗 = 𝑛 + 1, … , 𝑛 + 𝑚, where 𝑤𝑗𝑖 coefficients (called 

weights) are the percentages of vehicles arriving from the 𝑖-th incoming road and taking 
the 𝑗-th outcoming road (assuming that, on each junction, the incoming flux coincides 
with the outcoming flux).
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Traffic distribution on a junction
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Weight initialization

Weights are initialized based on the following:

• Road type: motorway, trunk, primary, secondary, tertiary, unclassified, residential, 
service;

• Lanes: how many lanes are drawn on the asphalt, also considering possible restrictions 
(e.g. lanes reserved to public transport);

• Traffic restrictions: examples are mandatory/forbidden directions at crossroads, speed 
limits, limited traffic zones.
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Basic computational approach of TFR
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Stochastic learning of the weights (traffic distribution)

It has been observed that:

• The way how vehicles distribute at crossroads varies depending on the day of the week, 
and of the time of the day;

• A random variation of some weights is very likely to lead to an improved accuracy;

• If no improvements are achieved after n attempts, it is reasonable to move anyway to 
the best of the last n configs.

An offline process is run, based on the above, that leads to (an optimal) time-based 
weights assignment, aimed at an improved accuracy.
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Junction distribution learning
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Junction distribution learning

DISIT Lab (DINFO UNIFI) 46



Junction distribution learning
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Junction distribution learning
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LOOCV approach

• This is performed by computing the solution which excludes data from each different sensor (all
of them), so as to estimate the deviation from the calculated traffic density 𝜌𝑐(𝑡) in the road
where the selected sensor is located, with respect to the density 𝜌𝑀(𝑡) measured by the sensor,
for each time 𝑡. (Leave-One-Out-Crossing-Validation Approach)

• At a given location the RMSE is estimated as
𝛴𝑡=1

𝑇 𝜌𝑐(𝑡)−𝜌𝑀(𝑡) ^2

𝑇
, where T is the total number of

observations

• At each iteration the RMSE for each sensor has been measured and also the so-called system
RMSE (system error), which is the average value of the measured RMSE of all the sensors.
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Stochastic learning
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Stochastic learning
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Evaluated on the real sensor measurements:
1. Use TDM to compute the vehicle flow at a given time
2. Compute the mean error for those segments where there is a sensor
3. Update the TDM weights
4. Return to step 1 



Validation approach
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The validation is conducted 
by means of LOOCV in the 
case of optimal weights 
assignments in road graph.

The system error has been 
computed to be around 30% 



Error analysis

A deeper analysis of the results to be achieved by the solution we presented can be obtained by
assessing the resulted traffic flow reconstruction during the real-time execution in order to
understand:

• Identification of the most suitable number of iterations H

• Solution accuracy

• If the error in reconstruction depends on structural parameters of the urban network (i.e.,
sensor location)
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Error analysis

• The RMSE trends with respect to the iterations number H in the traffic flow reconstruction are
shown.

• The average RMSE trend of the internal sensors is represented by the blue line, the average
RMSE trend of the external sensors is represented by the orange line.

• In grey is reported the System RMSE having its minimum when H=250.
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• Sensors on internal 
roads

• Sensors on external 
(edge) roads



Error analysis

• The distribution of RMSE for each traffic sensor using H=250

• 90% of sensors have a RMSE value less than 0.5
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90% of sensors have a RMSE < 0.5



Error analysis

• Since traffic congestion in the city is typically related to the city incoming/outcoming flow
according to the working activities of citizens, then also the RMSE value is affected to such
behavior in the day.
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Error analysis

• The RMSE is an absolute error measure with respect to the traffic density.

• The ratio between the RMSE and the traffic density (actual values) is almost constant
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Error analysis

• The RMSE has a certain non-uniform distribution and a clear dependency on traffic volume.

• The error behavior is related to the topological characteristics of the road network.

• The error behavior of sensors are related to two topological features: betweenness and
eccentricity
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The vertex betweenness is a measure of centrality in
a graph based on shortest paths. For every pair of
vertices in a connected graph, there exists at least one
shortest path between the vertices such that the
number of edges that the path passes through
(unweighted graphs) is minimized. The betweenness
for each vertex is the number of these shortest paths
that pass through the vertex
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Nodes having high betweenness may have considerable
influence within a road network by virtue of their control
over traffic data passing between others.

Such nodes are also the ones whose removal from the
network will most disrupt communications between other
vertices, because they lie on the largest number of paths
inside the network.
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The vertex eccentricity is defined as the greatest
shortest path distance between a vertex and any
other vertex in the graph



Error analysis

• In orange the node having the maximum betweenness value, while in green the node having the
maximum eccentricity value. The main restricted traffic zone is depicted in the center of the city
in white.
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Note that betweenness is
located in proximity of one of
the typical areas where traffic
congestion often occurs.
On the other hand, nodes
having high eccentricity are
located in the decentralized
zones of the urban graph
admitting more distance from
the other side of the network.



Error analysis

• A multilinear regression model has been conceived to verify the presence of an effective
relationship between the RMSE and the topological metrics.

• Results:

• The identified model is 𝑌𝑖 = 𝛽𝑥𝑖 + 𝛾𝑧𝑖 where 𝑌𝑖 , 𝑥𝑖 , 𝑧𝑖 are the RMSE, betweenness and
eccentricity, respectively
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Coefficient Estimate Std. Error t-value p-value
betweenness 𝛽 0.80224 0.13097 6.125 < 0.05
eccentricity 𝛾 0.23256 0.02657 8.752 < 0.05



Error analysis

• A general representation of the Y over the considered urban map is depicted in the 
following where locations having an intense pigmentation are affected by a greater error 
model
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The critical values of the error function are not
specifically located on segments with high traffic.

They are more related to the critical topological
points of network, which are specific nodal cross
points.



Displaying results

• Segments of road are categorized based on the road type and the number of lanes. 

• Segments of each category that have one at least of the extremities that coincide with a 
traffic sensor, are used for determining the range of the traffic flows that can be 
observed on the specific category of segments.

• For each segment category, the range is partitioned into four subranges, that correspond 
to the four colors that you can find on the map.

• The reconstruction is presented to users through colored lines traced over the road 
paths on the city map.

• The date and time when the most up-to-date values from the sensors have been 
acquired can also be seen at the top-right corner of the map.
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Displaying results

DISIT Lab (DINFO UNIFI) 67



Data structure in real-time computing

• A network area of Florence consisting of 

– 173 data sensors (   ) 

– 1532 junctions

– 1377 road-segments 

giving the estimation of the vehicular density in 31217 road-units having length 20/30

meters is considered to test the model

• Parallel computing solutions have been adopted
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The idea of parallel computing

• Density array concept

• Numerical computation with respect to the position of the units inside a density array.
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The idea of parallel computing

• Where:
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The idea of parallel computing
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The idea of parallel computing

• Density array concept: Computing a given equation in different processing units at the 
same time.

• It seems to be like a sort of WHERE construct of many parallel programming languages.

• Traffic Distribution Matrix (TDM) constitutes an input data for the estimation of density 
arrays, so they are not independent processes (their parallelization is separately 
conducted). 
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The idea of parallel computing

• Events involving the distribution at the nodes are necessarily independent one another

• Let I and O be maximal number of incoming and outcoming road-segments, then TDM 
maximizing the model and creating a 3D-structure of dimension O×I×V, where V is the 
number of junctions in the network.
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Graphical idea of parallel computing
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Density Array:

TDM 3D-structure:



Graphical idea of parallel computing

• Leave-One-Out-Crossing-Validation Approach: Parallel data structures concatenation
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General Approach
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More cities

https://www.snap4city.org/dashboardSmartCity/view/index.php?iddasboard=MTc5NQ==

https://www.snap4city.org/dashboardSmartCity/view/index.php?iddasboard=MTc5NQ==


Hybrid Model for 
Traffic 

Reconstruction
FROM DATA TO DIGITAL TWIN 

FOR SMART MOBILITY
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Hybrid model for Traffic Reconstruction

• Traffic Flow Reconstruction (TFR) approaches can be classified into three main 
categories: model-driven, data-driven and mixed approaches.

• TFR Model-driven approaches are generally those taking into account the physical 
model of traffic in the spatio-temporal domain, such as both agent-based and those 
solving differential equations.
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Hybrid model for Traffic Reconstruction

• TFR Data-driven approaches should derive traffic state by means of the dependences 
learned from observed data using statistical or machine learning methods. They should 
rely on real time and historical data in each road segment to extrapolate data in each 
and every segment.

• Generally, Hybrid approaches combine a model-driven method with a data-driven 
method to achieve more accurate and efficient results.
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Background and Notation

• TFR Model-driven solution via PDEs is denoted by SRA4TF

• At each timestamp, the SRA4TF solution produces a value of traffic flow density in each 
road segment of the network, typically of 20 meter, as unit, that is the TFR. The accuracy 
of SRA4TF solution mainly depends on the stochastic relaxation approach for estimating 
Traffic Distribution Matrices (TDMs), which are the traffic flow distributions at junctions. 
TDMs describe the percentage of vehicles getting out each outcoming road with respect 
to those getting in from each incoming road of a junction.
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Background and Notation

• The TDM is defined as 𝑇𝐷𝑀 = {𝑤𝑗𝑖}𝑗=𝑛+1,…,𝑛+𝑚,𝑖=1,…,𝑛 so that 0 < 𝑤𝑗𝑖 < 1 and 

෍
𝑗=𝑛+1

𝑛+𝑚

𝑤𝑗𝑖 = 1, for 𝑖 = 1, … , 𝑛 and 𝑗 = 𝑛 + 1, … , 𝑛 + 𝑚, 

• where 𝑤𝑗𝑖 is the percentage of vehicles arriving from the 𝑖-th incoming road and taking 

the 𝑗-th outcoming road (assuming that, on each junction, the incoming flux coincides 
with the outcoming flux). 

• The values of 𝑤𝑗𝑖 depend on the time of the day, on the road size, cross light settings, 

etc., and thus, it is unknown a priori.
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Background and Notation

• The computing of TFR is progressively performed on a parallel architecture. The 
estimation of traffic flow density for a city at time instant t would depend on traffic flows 
at time t-1 in the whole network, and on the new measures coming from sensors at time 
t. 

• Once 𝑇𝐷𝑀(𝑡) are estimated, the SRA4TF solution computes the TFR in the road 
network and verify the Root Mean Square Error, RMSE, (or Mean Absolute Error, MAE) 
with respect to actual values in sensor locations. 
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Background and Notation

• Error estimation is performed by computing the solution excluding data from each 
different sensor (all of them) by means of a Leave-One-Out Crossing-Validation approach 
(LOOCV), so as to estimate the deviation from the reconstructed traffic density 𝜌𝑅(𝑡), 
with respect to the observed density by the sensor 𝜌𝑂(𝑡), for each time 𝑡 in 𝑇.

• We refer to R and O to denote reconstructed and observed traffic flow densities, 
respectively. Then, in a road network having 𝑚 traffic sensors, the LOOCV approach 
consists in the application of the model to the set of the observed data at time 𝑡, that is 
𝑶(𝑡) = 𝑂1(𝑡), . . . , 𝑂𝑚(𝑡) , by excluding the k-th observation 𝑂𝑘(𝑡) from 𝑶(𝑡), for each 
𝑘 = 1, … , 𝑚.
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Background and Notation

• The model is applied to the remaining set of 𝑚 − 1 sensors’ observations and the
reconstructed density 𝑅𝑘(𝑡) in the road segment (unit) where the k-th sensor is located
can be estimated and compared with 𝑂𝑘(𝑡) via RMSE or MAE estimation as follows:

• RMSE(k) =
𝛴𝑡=1

𝑇 𝑅𝑘 𝑡 −𝑂𝑘 𝑡
2

𝑇
,

• MAE(k) =  
𝛴𝑡=1

𝑇 |𝑅𝑘(𝑡)−𝑂𝑘(𝑡)|

𝑇
. 
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Background and Notation

• For each round, the stochastic relaxation may produce a new minimum of the RMSE that
is taken as a reference status together with the produced 𝑇𝐷𝑀(𝑡), for the next
iterations.

• At each timestamp, the RMSE(k) for each sensor in the LOOCV is measured and the
RMSE(system) is considered:

• RMSE(system) = 
1

𝑚
σ𝑘=1

𝑚 𝑅𝑀𝑆𝐸 (𝑘).
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Hybrid Architecture for improving precision

GOALS:

• improvement of precision in dense traffic flow estimation, reduction of RMSE(system).

• reduction of execution time.

• usage of ML together with the exploitation of knowledge about the road network traffic
and the SRA4TF solution.
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Summary for SRA4TF

• In the following, with 𝑶(𝑡) is denoted the vector of the observations (measures) from 
the sensors at time t, while 𝑹(𝑡) is the vector of the traffic density reconstructed in the 
other segments of the road network at time t. The SRA4TF produces a traffic density for 
the whole road network which can be regarded a vector 𝑹(𝑡) as follows: 

• Having m traffic sensors in a road network, we obtain that the total road segments 
(units) in the road network is m+n considering 𝑶(𝑡) = 𝑂1(𝑡), . . . , 𝑂𝑚(𝑡) and 𝑹(𝑡) =
𝑅1(𝑡), . . . , 𝑅𝑛(𝑡) .
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Hybrid Architecture
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The training data flows are 
reported as dashed lines, 
while the execution data 
flows are represented
as dotted lines.

The training phase is fed 
by using data produced 
by both observation and 
SRA4TF solution (green
lines).



Hybrid Architecture

• ML approach learns a Model able to produce a full set of traffic flow densities on the 
basis of observations, that is the TFR, at each time instant, disregarding its temporal

evolution (case (i)).
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Hybrid Architecture

Description:

• The SRA4TF is used for generating dense traffic flow training data with respect to observed values, for the 

ML function መ𝑓(.)

• function መ𝑓(.) learns how to compute the TFR according with 𝑹(𝑡) on the basis of the observed values 𝑶(𝑡)

• Once trained the ML solution, it could be used at run time to produce the dense traffic flow results in 
faster manner (with respect to the PDE iterative solution)

• the results can be compared with the measured values obtained by sensors by using the LOOCV approach 
and estimating the RMSE
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The case of study
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The considered area is constituted 
by 735 road segments (units) and 
103 intersections/junctions or
nodes, thus TDMs for SRA4TF.

7 traffic sensors



The case of study

• The training set is based on traffic sensor data updates every (about) 10 minutes and 144 
measures are observed per day per sensor. 

• Period: 24 (hours) per 121 (days).

• The entire dataset is composed by 13208 observations O(.) from the 7 sensors, while the 
13208 reconstructions R(.) of the traffic density can be computed in the 728 units that 
compose the selected subnet of 735. 
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The case of study (SRA4TF)
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The assessment reported in reports 
the MAE and RMSE (at level of sensor 
location using LOOCV), over 3500 
timestamps (which constituted about 
the 30% of the above-described 
dataset). 



The case of study (ML)

• Different ML solutions have been compared according to the proposed architecture, 
with the aim of identifying the best solution to learn and compute TFR. 

• To this end, we have considered ensemble learning techniques such as Adaboost, 
Random Forest, RF, and Xgboost

• However, we took into considerations also more concise and interpretable models such 
as a Bayesian regressor, a Decision Tree, DT, ExtraTree, and multi-layer perceptron, MLP.

• validation data set is constituted of about 30% of the entire dataset and the remaining 
70% is devoted to the training phase
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Results
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MAE(system) RMSE(system)

For STR4FT:
MAE(system) = 0.4 
RMSE(system) = 0.53



Results
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Results
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Advanced Approaches

• Coding Temporal Information

• addressing problems related to discontinuous input data (missing data)

•  data seasonality: festive, pre-festive and working days (clustering)

• Typical trends
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. . .



Thanks for the attention
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