
DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 1
www.i-maestro.org ver2.3, 2006-04-28

I-MAESTRO: Interactive Multimedia Environment for
Technology Enhanced Music Education and Creative

Collaborative Composition and Performance
 www.i-maestro.org, www.i-maestro.net

DE3.1.1b
I-MAESTRO Specification:
Architecture Specification

Version: 2.3
Date: 28/04/2006
Responsible: DSI (Stefano Baldini, sbaldini@dsi.unifi.it, Nicola Mitolo, mitolo@dsi.unifi.it, Paolo
Nesi, nesi@dsi.unifi.it)

Project Number: 026883
Project Title: I-MAESTRO
Deliverable Type: Public
Visible to User Groups: Yes
Visible to Affiliated: Yes
Visible to Public: Yes

Deliverable Number: DE3.1.1
Contractual Date of Delivery: M5
Actual Date of Delivery: 28/04/2006
Work-Package contributing to the Deliverable: WP3
Task contributing to the Deliverable: WP3
Nature of the Deliverable: Report
Author(s): ALL

Abstract:
This document reports the specification of the I-MAESTRO framework. The Deliverable DE3.1.1
is dichotomised into two parts: DE3.1.1a and DE3.1.1b. DE3.1.1a presents a general overview of
the architecture. DE3.1.1b reports detail considerations of the architecture specification for the I-
MAESTRO system.

Keyword List:
Requirements, use cases, test cases, content, interactive multimedia, education, music, creative,
collaborative.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 2
www.i-maestro.org ver2.3, 2006-04-28

Table of Contents

1 EXECUTIVE SUMMARY AND REPORT SCOPE .. 6
2 GENERAL OVERVIEW OF I-MAESTRO ARCHITECTURE.. 6

2.1 THE OVERVIEW .. 6
2.2 THE INTEGRATION WITH THE COOPERATIVE SUPPORT.. 7

3 I-MAESTRO PRODUCTION TOOLS .. 8
3.1 I-MAESTRO OTHER APPLICATIONS AND TOOLS .. 9

4 SPECIFICATION OF I-MAESTRO LESSON MODEL... 10
4.1 LESSON METADATA .. 11

4.1.1 Categories of the whole spectrum of musical practice and teaching.. 12
4.2 MUSIC EXERCISE FORMALISATION ... 16

4.2.1 Explanation of XML scheme for Exercise Unit Formalisation .. 16
4.2.2 XML scheme for Exercise Unit Formalisation ... 18

4.3 MPEG-4 MODEL ... 38
4.4 SMR SEGMENTS FOR EXERCISES... 38
4.5 SMR AND MULTIMEDIA .. 38
4.6 ASSESSMENT PARAMETERS... 39
4.7 CONTEXT PARAMETERS .. 42
4.8 LOGIC OF THE LESSON, THE GLUE.. 43
4.9 PACKAGING THE LESSON... 44

4.9.1 General Description of the Module ... 45
5 SPECIFICATION OF I-MAESTRO CLIENT ARCHITECTURE ... 46

5.1 I-MAESTRO CLIENT GENERAL OVERVIEW... 46
5.2 I-MAESTRO CLIENT USER INTERFACE ... 47
5.3 I-MAESTRO CLIENT ACCESSIBLE USER INTERFACE .. 47

User interface options ...47
Generic functionalities ..48
Format specific options...48
Configuration files accessible as proxy objects..49
Accessible User Interfaces..49
Text 2 speech...50
Braille Bars..51
Keyboard Shortcuts...51

6 PROFESSIONAL MUSIC EDITING... 52
6.1 USING SIBELIUS FOR MPEG SMR PRODUCTION ... 52
6.2 PLUG-INS FOR MPEG SMR ANNOTATION IN SIBELIUS... 52

7 SPECIFICATION OF I-MAESTRO MUSIC EXERCISE AUTHORING TOOL .. 54
7.1 MUSIC TRAINING EXERCISE PROCESSOR GENERAL OVERVIEW... 54
7.2 MUSIC TRAINING EXERCISE PROCESSOR PROCESSING THE LOGIC OF THE LESSON FORMAL MODEL 55
7.3 INTEGRATED OR INHERITED MULTIMEDIA RENDERING TOOLS .. 55

8 SPECIFICATION OF INTEGRATED MUSIC SCORE EDITOR AND VIEWER TOOL 56
8.1 MUSIC EDITING SERVICE... 57

8.1.1 Inlets for set methods ... 58
8.1.2 Inlets for get methods... 62
8.1.3 Inlets for other methods ... 67

8.2 MUSIC EDITOR AND SCORE FOLLOWER SUPPORT ... 71
8.2.1 Score navigation methods.. 72
8.2.2 Label Info ... 74
8.2.3 Note Info .. 74

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 3
www.i-maestro.org ver2.3, 2006-04-28

8.2.4 Rest info ... 76
8.2.5 MeasureChange info .. 77
8.2.6 Chord info .. 78
8.2.7 Refrain info .. 78
8.2.8 KeyChange info ... 79
8.2.9 ClefChange info ... 81
8.2.10 TimeSignChange info .. 82
8.2.11 Error codes description .. 82
8.2.12 Interaction with Music Editor in Max/MSP.. 83

8.3 MUSIC EDITOR AND VIEWER ASSESSMENT SUPPORT.. 84
8.3.1 Practice training ... 85
8.3.2 Symbolic training... 85

8.4 MUSIC EDITOR AND VIEWER TOOL ACCESSIBLE USER INTERFACE.. 89
The Accessible Music Notation Module within the I-MAESTRO client tool ..89
Accessible presentation of Structured music representations ..90
FileOutput..91
Cooperation between components/packages ..91

9 SPECIFICATION OF GESTURE AND POSTURE ACQUISITION AND PROCESSING TOOL 92
9.1 GESTURE AND POSTURE OVERVIEW ... 92
9.2 GESTURE AND POSTURE ACQUISITION.. 93
9.3 GESTURE-CONTROLLED CREATIVE MULTIMEDIA INTERFACE.. 94
9.4 GESTURE AND POSTURE ASSESSMENT SUPPORT .. 95
9.5 GESTURE & POSTURE ACQUISITION & PROCESSING TOOL CONNECTION WITH COOPERATIVE SUPPORT 97
9.6 GESTURE AND POSTURE ACQUISITION AND PROCESSING TOOL USER INTERFACE .. 103
9.7 GESTURE AND POSTURE ACQUISITION AND PROCESSING TOOL CONFIGURATION... 104

10 SPECIFICATION OF SENSORS ACQUISITION AND PROCESSING TOOL...................................... 105
10.1 OVERVIEW OF SENSOR PROCESSING DATA FLOW AND COMPONENTS... 105
10.2 SPECIFICATION OF SENSOR PROCESSING COMPONENTS.. 105

10.2.1 Sensor Technology... 105
10.2.2 Sensor Interface and communication .. 106
10.2.3 Sensor Processing .. 106
10.2.4 Support of Assessment, Improvisation and Performance Models.. 107

11 SPECIFICATION OF AUDIO PROCESSING TOOLS AND SCORE FOLLOWING 109
11.1 OVERVIEW OF AUDIO PROCESSING DATA FLOW AND COMPONENTS .. 109
11.2 SPECIFICATION OF AUDIO PROCESSING AND SCORE-FOLLOWING COMPONENTS ... 109

11.2.1 Implementation of audio processing modules in Max/MSP... 110
Max/MSP abstractions ..112
Max/MSP externals...112
VST plug-ins ...113

11.2.2 Audio Interface .. 113
11.2.3 Audio Feature Extraction Modules.. 114

Architecture and data flow..114
Module Definitions ...114

11.2.4 Score-following Module .. 115
Architecture and data flow..116
Module Definition...116

11.2.5 Audio Effect Modules.. 117
Architecture and data flow..118
Modules Definition ...118

11.2.6 Audio Rendering Modules... 119
Architecture and data flow..119
Module Definitions ...119

12 SPECIFICATION OF COOPERATIVE SUPPORT FOR MUSIC TRAINING....................................... 121
12.1 COOPERATIVE WORK SUPPORT OVERVIEW.. 121
12.2 CLASS DIAGRAM OF COOPERATIVE WORK SERVICE AND P2P SERVICE .. 124
12.3 SEND MESSAGE SERVICE .. 125
12.4 RECEIVE MESSAGE SERVICE ... 126

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 4
www.i-maestro.org ver2.3, 2006-04-28

12.5 SEND FILE SERVICE ... 127
12.6 RECEIVE FILE SERVICE.. 128
12.7 MESSAGE LOG SERVICE .. 128
12.8 ERROR LOG SERVICE... 129
12.9 DISCOVERY SERVICE... 130
12.10 SYNCHRONISATION SERVICE... 131

13 CLIENT MANAGER... 132
13.1 CLASS DIAGRAM OF CLIENTMANAGER AND ITS SERVICES... 137
13.2 DISTRIBUTE LESSON SERVICE ... 138
13.3 LOGIN/LOGOUT SERVICE... 138
13.4 WORKGROUP SERVICE .. 139
13.5 COOPERATIVE SESSION DATA ... 140
13.6 MUSIC EXECUTION SERVICE ... 141

14 SPECIFICATION OF ASSESSMENT SUPPORT .. 147
14.1 ASSESSMENT SUPPORT OVERVIEW ... 147
14.2 GENERAL ASSESSMENT MODEL AND INFORMATION ... 148
14.3 PUPIL PROFILE ON THE SERVER SIDE... 148
14.4 LOCAL HISTORY AND DATA ON THE CLIENT SIDE.. 150
14.5 ASSESSMENT SUPPORT FOR SYMBOLIC TRAINING.. 151
14.6 ASSESSMENT SUPPORT FOR PRACTICE TRAINING... 151
14.7 XML SCHEMA FOR SYMBOLIC AND PRACTICE TRAINING ASSESSMENT.. 152
14.8 ASSESSMENT MODEL IN CLASS ROOMS... 155
14.9 ASSESSMENT MODEL FOR SELF ASSESSMENT .. 155
14.10 ASSESSMENT MODEL FOR COOPERATIVE WORK ... 155
14.11 ASSESSMENT SUPPORT USER INTERFACE ... 156

15 SPECIFICATION OF I-MAESTRO MUSIC EXERCISE GENERATOR.. 157
15.1 MUSIC EXERCISE GENERATOR OVERVIEW.. 157
15.2 EXERCISE GENERATION WORKFLOW.. 158
15.3 TSL GENERATION ALGORITHMS... 159

15.3.1 Content Insertion.. 159
15.3.2 Exercises with Music Variations ... 159
15.3.3 Content Recombinations.. 159
15.3.4 Exercise Variations .. 160

15.4 SMR GENERATION ALGORITHMS ... 160
Generation of basic musical elements ..160
Generation of constrained musical elements ..160

15.4.1 SMR Variation ... 160
Chromatic transposition. ...160
Diatonic transposition. ..160
Change in key signature..161
Rhythmic transformation ..161
Change in tempo. ..161
Application of rhythmic patterns to melodic material..161
Application of melodic material to rhythmic patterns..161
Excerption ...161
Application of style parameters ..161

15.5 GENERATOR CONFIGURATION... 161
Material ...162
Parameters ...162
Rules..162

15.6 FORMAT FOR GENERATION CONFIGURATION ... 162
15.7 MUSIC EXERCISE GENERATOR USER INTERFACE ... 162
15.8 MUSIC EXERCISE GENERATOR TOOL PROFILE.. 163

16 SPECIFICATION OF AUDIO RECORDING TOOL .. 165
17 SPECIFICATION OF VIDEO RECORDING TOOL... 165
18 SPECIFICATION OF METRONOME TOOL .. 165

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 5
www.i-maestro.org ver2.3, 2006-04-28

19 SPECIFICATION OF TUNER TOOL .. 166
20 SPECIFICATION OF I-MAESTRO SCHOOL SERVER AND PORTAL FOR THE SCHOOL 167

20.1 LESSON DATABASE ... 168
20.1.1 General Description of the Module ... 169
20.1.2 User interface description of the tool .. 169
20.1.3 Table description for database Lesson Database... 170

20.2 STUDENT AND TEACHERS DATABASE ... 173
20.2.1 General Description of the Module ... 174

20.3 WORKGROUP DATABASE .. 176
20.4 WEB SERVICE FOR LOAD AND SAVE ... 177

20.4.1 General Description of the Module ... 178
Saver..179
Loader..179

20.5 WEB ADMINISTRATIVE INTERFACE... 179
20.5.1 Configuration tool:... 180
20.5.2 Student profile management .. 182
20.5.3 Group profile management .. 183
20.5.4 Work profile management ... 184

20.6 SCHOOL PORTAL.. 184
20.6.1 General Description of the Module ... 185

20.7 SOFTWARE AND INFORMATION DATABASE... 186
20.7.1 General Description of the Module ... 187
20.7.2 Database tables description.. 187

21 ANNEX A: PRE EXISTING KNOW – HOW .. 189
22 ACRONYMS AND SOURCES ... 193

22.1 ACRONYMS.. 193
22.2 SOURCES.. 193

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 6
www.i-maestro.org ver2.3, 2006-04-28

1 Executive Summary and Report Scope

This document reports the specification for the first 6 months of the whole project activities. It takes
information from the WP2 of user requirements, use cases and test cases and from the preliminary work
performed by project partners and summarised in this document.

The Specification takes into account the general structure of the I-MAESWTRO framework and of the
demonstrators planned in WP8. It is focused on mapping the research and development work on the real
needs provided by the requirements, use cases and test cases:

This is the second part of the document (part B). It reports detail aspects related to the architecture
specification of the I-MAESTRO system.

2 General Overview of I-MAESTRO Architecture

In this section the I-MAESTRO architecture and main components are described.

2.1 The overview

The general architecture of the I-MAESTRO is showed in the following figure:

I-MAESTRO Architecture Specification

At a high level, I-MAESTRO Architecture is composed by:

• I-MAESTRO Client Tools support Teacher and Students in following Lesson and performing
Exercises

• I-MAESTRO Production Tools are used by Teacher to create Exercises and package Lessons.
• I-MAESTRO Other Application and Tools include applications such as: a Metronome, a Tuner

for instrument tuning, the Audio Recording Tool for audio analysis, the Video Recording Tool for
gesture and posture analysis, etc.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 7
www.i-maestro.org ver2.3, 2006-04-28

• I-MAESTRO School Server and Portal. The School Server contains all available I-MAESTRO
contents used by I-MAESTRO tools and all information about registered users (Students and
Teacher profiles). The Portal provides also an external access to registered and anonymous users for
downloading I-MAESTRO tools, manuals, user guides, information etc.

• Cooperative Support for Music Training allows I-MAESTRO Tools to work in a cooperative
manner and to exchange information and contents.

2.2 The integration with the Cooperative support

The previous listed tools of I-MAESTRO can access to the cooperative support to exchange messages and
files during a cooperative session. The Client Tools are used to configure the lesson chosen for the
cooperative session and to manage user roles defined inside the lesson. The I-MAESTRO Other Application
and Tools represents instead any Max/MSP lesson with cooperative service which gives the cooperative
capability to each tool (video rendering, editor, metronome …) depending on the lesson structure defined
during authoring phase.

The I-MAESTRO School Server and the I-MAESTRO Production Tools don’t use directly the peer to peer
layer but they are available on the same network for the other tools to provide and store lessons and user
profiles. (e.g. it is possible to search and download a lesson from the School Server using a Web Browser).

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 8
www.i-maestro.org ver2.3, 2006-04-28

3 I-MAESTRO Production Tools

I-MAESTRO Production Tools
• I-MAESTRO Lesson Packager and Protection Tool
• I-MAESTRO Music Lesson Authoring (multimedia integration), as standard

authoring, including the logic
• I-MAESTRO Music Exercise Authoring Tool, integrating: posture, gesture, etc.
• I-MAESTRO Music Exercise Generator: producing the MPEG SMR plus other

information for the logic if needed
• MPEG-4 Authoring Tool
• Music Editing, producing MPEG SMR
• OMR

• other editors..

I-MAESTRO Music
Exercise Authoring

Tool

I-MAESTRO Lesson
Authoring Tool

I-MAESTRO Music
Exercise Generator

Tool

MPEG-4 Authoring Tool

Professional Music
Score Editor Tool

Loader and Saver of
MPEG SMR

«datatype»
MPEG4 WITH SMR segements

* *

Teacher

«datatype»
Music Exercise Formalisation

*

*

*

*

*

*

«datatype»
I-MAESTRO Lesson

*
*

OMR Tool

-End11

-End2*

-End11

-End2*

*

*

I-MAESTRO Lesson
Packager and
ProtectionTool

«datatype»
I-MAESTRO Package

* *
**

License producer
*

*

«datatype»
License

*

*

I-MAESTRO Lesson Model

SMR Segment

-End11
-End2*

-End11

-End2*

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 9
www.i-maestro.org ver2.3, 2006-04-28

The I-MAESTRO Production Tools allows the teacher to create manually or automatically I-MAESTRO
pedagogical contents for music education and collect them into structured music lessons.

The set of I-MAESTRO Production Tools consist in:

• The I-MAESTRO Lesson Packager and Protection Tool, that it is used to bundle lessons based on
learning modalities and the pedagogic models.

• I-MAESTRO Lesson Authoring Tool, used by Teachers to create Lesson composed by Exercises
or Units retrieved from the exercise repository. Using the Lesson Authoring Tool it is possible to
specify also the contingent flow of exercises-execution with the help of a progress monitoring and
control unit.

• I-MAESTRO Music Exercise Authoring Tool, used by Teacher to create Exercises composed by
SMR Segments and/or MPEG-4 with SMR Segments,, images, audio, video, graphics etc. It also
provides the teachers with options to select the assessment model and the input methods to be used
in the exercise.

• I-MAESTRO Music Exercise Generator Tool, used to create music Exercises automatically or
semi-automatically.

• MPEG-4 Authoring Tool , used to create MPEG-4 content with SMR Segments
• Professional Music Score Editor, used to create a scores in SMR format
• Optical Music Recognition (OMR) Tool, used to transcoding image of music sheet into SMR

format.

3.1 I-MAESTRO Other Applications and Tools

I-MAESTRO Other Applications and Tools for:

Cooperative Support for Music
Training::Metronome Tool

Cooperative Support for Music
Training::Tuner Tool

Gesture and Posture Tools::Video
Recording Tool

Audio Processing::Audio
Recording Tool

Metronome Command
Support

Tuner Command Support

Video Recording
Command Support

Audio Recording
Command Support

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 10
www.i-maestro.org ver2.3, 2006-04-28

I-MAESTRO Other Application and Tools provide a set of different applications that can be used in
different contexts:

o The Metronome tool, to mark the execution time
o The Tuner, to tuning the instrument
o The Audio Recording Tool, to acquire live music performance for online or off-line evaluation and

storage
o The Video Recording Tool, to acquire the motion for the gesture and posture evaluation and storage.

Each tool has a correspondent module that provides commands (Command Support). These modules
allow to control and monitoring the information that can be retrieve by each

4 Specification of I-MAESTRO Lesson Model

I-MAESTRO Lesson Model

SMR Segment

Assessment
Parameters

Music Exercise
Formalisation

Context
Parameters

Multimedia
commands

Assessment
Parameters

Music Exercise
Formalisation

Context
Parameters

I-MAESTRO Lesson

………………..
………………..

MPEG4

……………….
.

SMR
Segment

SMR Segment

………………..

SMR Segment

………………..

Lesson
Metadata

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 11
www.i-maestro.org ver2.3, 2006-04-28

Mainly a Lesson consists in (see User Requirements) one or more Exercises and logical information to
implement the Lesson paradigm and relationship among contents. Lessons can be packaged before
distribution. The model embeds concepts and structures coming from MPEG-4 and SMR formats.

Each Music Exercise is defined by:

• Lesson Metadata, containing the information describing the lesson
• Music Exercise Formalization, which defines the sequence of steps to perform the exercise
• MPEG-4 and SMR Segment, used to compose a multimedia files with symbolic music

representation of music scores
• SMR Segment, it represents the symbolic music representation of music scores used as exercise
• Assessment Parameters, it defines the set of parameters used to asses the correctness of exercise's

execution. They are used to compare the real performance of the pupil with the model and evaluate
the level of performance, errors, and provide a score.

• Context Parameters, ...
• Multimedia commands, they represent commands that are executed to run automatically

multimedia files (an audio or a video) when the pupil plays the exercise. For instance a hyperlink put
on a note or a button could be associated with the execution of a video or a live recording.

4.1 Lesson Metadata

This metadata should be applied to Lessons, Exercises, Knowledge Units, assessment models/tools, etc., in
order to classify them and to make possible links between Student profiles with different sets of Lessons or
Exercises. Rigorous taxonomy classification in branches and sub-branches of the musical knowledge must be
applied. For this reason this document should be considered as a first approach, not a definitive and closed
model. On the contrary, it must be considered as opened to further modifications to attend the demands of
each tool.

<xs:schema targetNamespace="http://purl.org/dc/elements/1.1/" elementFormDefault="qualified" attributeFormDefault="unqualified">

 <xs:annotation>
 <xs:documentation xml:lang="en">

Simple DC XML Schema, 2002-10-09 by Pete Johnston (p.johnston@ukoln.ac.uk), Carl Lagoze (lagoze@cs.cornell.edu), Andy Powell
(a.powell@ukoln.ac.uk),Herbert Van de Sompel (hvdsomp@yahoo.com). This schema defines terms for Simple Dublin Core, i.e. the 15
elements from the http://purl.org/dc/elements/1.1/ namespace, with no use of encoding schemes or element refinements. Default
content type for all elements is xs:string with xml:lang attribute available.
Supercedes version of 2002-03-12. Amended to remove namespace declaration for http://www.w3.org/XML/1998/namespace
namespace, and to reference lang attribute via built-in xml: namespace prefix. xs:appinfo also removed.
 </xs:documentation>
 </xs:annotation>
<xs:import namespace= "http://www.w3.org/XML/1998/namespace" schemaLocation="http://www.w3.org/2001/03/xml.xsd">
 </xs:import>

 <xs:element name="title" type="elementType"/>
 <xs:element name="creator" type="elementType"/>
 <xs:element name="subject" type="elementType"/>
 <xs:element name="description" type="elementType"/>
 <xs:element name="publisher" type="elementType"/>
 <xs:element name="contributor" type="elementType"/>
 <xs:element name="date" type="elementType"/>
 <xs:element name="type" type="elementType"/>
 <xs:element name="format" type="elementType"/>
 <xs:element name="identifier" type="elementType"/>
 <xs:element name="source" type="elementType"/>
 <xs:element name="language" type="elementType"/>
 <xs:element name="relation" type="elementType"/>
 <xs:element name="coverage" type="elementType"/>
 <xs:element name="rights" type="elementType"/>

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 12
www.i-maestro.org ver2.3, 2006-04-28

 <xs:group name="elementsGroup">
 <xs:sequence>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="title"/>
 <xs:element ref="creator"/>
 <xs:element ref="subject"/>
 <xs:element ref="description"/>
 <xs:element ref="publisher"/>
 <xs:element ref="contributor"/>
 <xs:element ref="date"/>
 <xs:element ref="type"/>
 <xs:element ref="format"/>
 <xs:element ref="identifier"/>
 <xs:element ref="source"/>
 <xs:element ref="language"/>
 <xs:element ref="relation"/>
 <xs:element ref="coverage"/>
 <xs:element ref="rights"/>
 </xs:choice>
 </xs:sequence>
 </xs:group>
 <xs:complexType name="elementType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute ref="xml:lang" use="optional"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:schema>

4.1.1 Categories of the whole spectrum of musical practice and teaching

Musical technique

Musical technique is divided into specific technique, when dealing with each instrument, and general
technique, when it deals with general observations that are valid for any specialty.

a) General technique:
General technique for all instruments, fragmented according to following aspects:
• General Music Theory (i.e. harmony: intervals, triad structure, chords; formal design such as

motives, phrases, periods; music history, etc.)
• Physiological and motor function aspects (i.e. gesture and posture, coordination, flexibility (i.e.

body, joints, wrist, arms, etc.), finger extension, breathing, etc.)
• Sound quality aspects (i.e. weight, evenness, preparing the sound, bow pressure, bow speed, etc.)
• Aspects regarding the performance (i.e. fingerings, glissandi, bowings, virtuosity, etc.)
• General aspects of instruments’ mechanics (i.e. care of the instruments, hair of the bow, thickness-

tension-length of the strings, mute, resonant bodies, etc.)

b) Specific technique:
Specific technique deals with each specialty’s exclusive technique. It will have as many subdivisions as
instrumental families, for example, strings, winds, singing, etc. Each one of these specialties will in turn
have three categories:
• Family (i.e. bowed string instruments. woodwinds, brass, etc.)
• Mechanics (i.e. aspects regarding materials, construction, etc.)
• Execution (i.e. tune, specific bow technique, left hand technique, etc.)
• Historical approach to early music technique (i.e. early music ornamentations/improvisation on the

basis of musicological research, basso continuo according to the insights obtained by studying
historical sources, early music’s string technique, etc.)

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 13
www.i-maestro.org ver2.3, 2006-04-28

Musical science

This section comprises, on one side, concepts regarding the six elemental aspects of music: Melody, Rhythm,
Harmony, Form, Timbre and Texture. On the other side, it includes the categories dealing with musicology
such as: Notation, History, Organology, Aesthetics, Ethnic musicology, Music psychology, Acoustics and
Hearing.

Each one of these general sections is further divided into smaller categories, reaching in the end the isolated
concept that ends each subdivision. For example, the “history” category ends with concepts such as: “the
author”, “the work” , “styles and periods”, etc. Or within the “hearing” category we first find two more
categories: “live sound” and “recorded sound”. These end with derived concepts such as: the public, sound
recording format types, etc.

Capabilities of the musician

Concepts regarding the musician’s aptitude and attitude towards music.
Attitude: the musician’s attitude towards the work, regarding his studies, towards the teacher or before the
public, etc.

Aptitude: it comprises all of the musician’s capabilities and acquired, as well as innate, abilities that allow
the development and performance of music. For example, the musician’s ability regarding flexibility,
physical motor coordination, interpretation abilities, memory capacity, etc.

Musical expression aspects

We consider that musical expression is the result of combining scientific and technical abilities with the
actions the musician carries out to achieve the goal of musical expression. Considering musical expression as
the goal and only reality that justifies the existence of all previous actions and abilities.

The section dealing with musical expression is divided into:

• Elemental aspects of musical expression: dynamics, agogycs, accentuation, articulation, etc.
• Complex aspects of musical expression, from an extra-musical point of view, in other words, outside

the boundaries of music (expressivity, character, description, etc.), as well as from a strictly musical
point of view (phrasing, musical tension, etc.)

Metadata (a few tags examples and taxonomy)

<?xml version="1.0" encoding="UTF-8"?>

<!—
 Document : iMaestroGeneric.xsd
 Author : Fundación Albéniz
 Description:
 Common Generic Types
-->

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Generic Types for I-MAESTRO project.
 Fundación Albéniz
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleType name="ValorationRange">
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="1"/>
 <xsd:maxInclusive value="5"/>

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 14
www.i-maestro.org ver2.3, 2006-04-28

 </xsd:restriction>
 </xsd:simpleType>
 </xsd:schema>

=-=-=-=-=-=-=-=-=

<!--
 Document : iMaestroMetadata.xsd
 Author : Fundación Albéniz
 Description:
 Lesson Metadata.
-->

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Metadata Schema for I-MAESTRO project.
 Fundación Albéniz
 </xsd:documentation>
 </xsd:annotation>

 <xsd:include schemaLocation="iMaestroGeneric.xsd"/>

 <xsd:element name="lessonMetadata" type="LessonMetadataType"/>

 <xsd:simpleType name="stringList">
 <xsd:list itemType="xsd:string"/>
 </xsd:simpleType>

<?xml version="1.0" encoding="UTF-8"?>

 <xsd:complexType name="InstrumentNameType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="generic bow"/>
 <xsd:enumeration value="violin"/>
 <xsd:enumeration value="viola"/>
 <xsd:enumeration value="cello"/>
 <xsd:enumeration value="double bass"/>
 <xsd:enumeration value="bow"/>
 <xsd:enumeration value="generic plucked strings"/>
 </xsd:restriction>
 </xsd:complexType>

 <xsd:complexType name="InstrumentFamilyType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="bow"/>
 </xsd:restriction>
 </xsd:complexType>

 <xsd:complexType name="InstrumentType">
 <xsd:sequence>
 <xsd:element name="name" type="InstrumentNameType"/>
 <xsd:element name="family" type="InstrumentFamilyType"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:simpleType name="instrumentList">
 <xsd:list itemType="InstrumentType"/>
 </xsd:simpleType>

 <xsd:complexType name="MechanicsKeywords">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="bowHairs"/>
 <xsd:enumeration value="strings"/>
 <xsd:enumeration value="chinRest"/>
 <xsd:enumeration value="shoulderRest"/>
 <xsd:enumeration value="bridge"/>
 <xsd:enumeration value="pegs"/>
 <xsd:enumeration value="neck"/>
 <xsd:enumeration value="fingerboard"/>
 <xsd:enumeration value="soundpost"/>
 <xsd:enumeration value="bow"/>
 <xsd:enumeration value="frogBow"/>
 <xsd:enumeration value="middleBow"/>
 <xsd:enumeration value="tipBow"/>
 <xsd:enumeration value="tailPiece"/>

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 15
www.i-maestro.org ver2.3, 2006-04-28

 <xsd:enumeration value="fret"/>
 <xsd:enumeration value="plectrum"/>
 <xsd:enumeration value="top"/>
 <xsd:enumeration value="instrumentBuilder"/>
 </xsd:restriction>
 </xsd:complexType>

 <xsd:simpleType name="mechanicsKeywordsList">
 <xsd:list itemType="MechanicsKeywords"/>
 </xsd:simpleType>

 <xsd:complexType name="ExecutionKeywords">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="plucking"/>
 <xsd:enumeration value="strumming"/>
 <xsd:enumeration value="vibrato"/>
 <xsd:enumeration value="string crossing"/>
 <xsd:enumeration value="scordatura"/>
 <xsd:enumeration value="shifts"/>
 <xsd:enumeration value="pizzicato"/>
 <xsd:enumeration value="bowings"/>
 <xsd:enumeration value="bow direction"/>
 <xsd:enumeration value="bow inclination"/>
 <xsd:enumeration value="bow distribution"/>
 <xsd:enumeration value="bow stroke"/>
 <xsd:enumeration value="collé"/>
 <xsd:enumeration value="detaché"/>
 <xsd:enumeration value="martellé"/>
 <xsd:enumeration value="ricochet"/>
 <xsd:enumeration value="sautillé"/>
 <xsd:enumeration value="spicatto"/>
 <xsd:enumeration value="stacatto"/>
 <xsd:enumeration value="generic bow stroke"/>
 <xsd:enumeration value="alla tastiera"/>
 <xsd:enumeration value="sul ponticello"/>
 <xsd:enumeration value="col legno"/>
 </xsd:restriction>
 </xsd:complexType>

 <xsd:simpleType name="executionKeywordsList">
 <xsd:list itemType="ExecutionKeywords"/>
 </xsd:simpleType>

 <xsd:complexType name="PedagogicModelType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="self-study"/>
 <xsd:enumeration value="one-to-one"/>
 <xsd:enumeration value="classroom"/>
 <xsd:enumeration value="distance-learning"/>
 <xsd:enumeration value="cooperative-work"/>
 </xsd:restriction>
 </xsd:complexType>

 <xsd:complexType name="LessonMetadataType">
 <xsd:sequence>
 <xsd:element name="author" type="xsd:string" maxOcurrs="1"/><!-- why only one
author?? -->
 <xsd:element name="date" type="xsd:date" maxOccurs="1"/>
 <xsd:element name="permissionRights" type="xsd:string"/>
 <xsd:element name="description" type="xsd:string" maxOccurs="1"/>
 <xsd:element name="targetAudience" type="xsd:string"/>
 <xsd:element name="compentencyLevel" type="xsd:string"/>
 <xsd:element name="keywords" type="stringList"/>
 <xsd:element name="executionKeywords" type="executionKeywordsList"/>
 <xsd:element name="mechanicsKeywordsList" type="mechanicsKeywordsList"/>
 <xsd:element name="targetedInstruments" type="instrumentList"/>
 <xsd:element name="difficulty" type="ValorationRange"/>
 <xsd:element name="pedagogicModel" type="PedagogicModelType"/>
 <!-- Reference to the right IMaestroExerciseUnit type should be
 changed, and the referenced schema should be included at the
 beggining -->
 <xsd:element name="exerciseUnit" type="IMaestroExerciseUnit"/>
 </xsd:sequence>
 </xsd:complexType>

</xsd:schema>

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 16
www.i-maestro.org ver2.3, 2006-04-28

4.2 Music Exercise Formalisation

4.2.1 Explanation of XML scheme for Exercise Unit Formalisation

This definition shows the structure of Exercise Units. Every possible progress, test, assessment should be
possible. So the Author can design the Exercise depending on his own preferences, the dependences to the
earlier and following units, the Level, the kind of user, the pedagogical Method and the textual classification.

1 Category
1.1 theory (Yes or No)
1.2 practice (Yes or No)
1.3 Author (Name of the Author)
1.4 Date (of doing the Exercise)
1.5 Keywords (important words, in order to easily find and identify the Exercise Unit especially for search
mechanisms)
1.5 pedagogic Model (notice, if Exercise Unit is based on a certain pedagogic Model)
1.6 Target group (Students, amateur, pupil)
1.7 Content description (a short description in plain words, what the exercise is about)

2 Systematical content coherence
Each array described in 1 to 5 words or/and predefined categories for data base search machines:

2.1 Subject (general, e.g. notes and clefs or Strings)
2.2 Themes (e. g. notes or bowing)
2.3 Details (e. g. middle C or matele)

3. Level
3.1 Level 1 (professional)
3.2 Level 2
3.3 Level 3
3.4 Level 4
3.5 Level 5 (beginner)

4. Relation and context to next exercise
The teacher could suggest more or less relevant Knowledge or Exercise Units, so the way of going on is
predefined. Another option is, that the pupil him/herself can decide which Unit he wants to do next.

4.1 Teacher suggest next exercise units
4.1.1 Subject (general, e.g. notes and clefs or Strings)
4.1.2 Themes (e. g. notes or bowing)
4.1.3 Details (e. g. middle C or matele)

4.2.1 Higher
4.2.2 Lower level
4.2.3 Same level

4.3 Pupil can decide what to do next or skip a Unit
4.3.1 Higher
4.3.2 Lower level
4.3.3 Same level (Variation)
4.3.3 Doing the same Unit

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 17
www.i-maestro.org ver2.3, 2006-04-28

5. Iterations
How many iterations the user has to do, 0 to n= 10, showed to the user.

5.1 Number of Recursive Iteration 1- 10
5.2 Number of repetitions Iteration 1- 10

6. Time slice
Time allowed to do the test or exercise (e. g. 20 sec)

6.1 Time to pass test in seconds: n sec.
6.1.2 Test-passing:
6.1.2.1 Higher Level
6.1.2.2 Variation of the same Level

6.2.2 Test-failure:
6.2.2.1 Lower Level
6.2.2.2 Variation of the same Level
6.2.2.3 Repeating the test

7. Type of test or exercise input:
7.1 Multiple Choice
7.1.1 Weighting of the boxes (e.g. 1 to 5)
7.1.2 Failure limit (e.g. min 8 of max10 scores)

7.1.2.1 Test-failure:
7.1.2.1.1 Lower Level
7.1.2.1.2 Variation of the same Level
7.1.2.1.3 Repeating the test

7.1.2.2 Test-passing:
7.1.2.2.1 Higher Level
7.1.2.2.2 Variation of the same

7.2 Written text, notes, etc.
7.2.1 Failure limit
7.2.2 Input 1- 5 (analyzed by exercise Generator)

7.2.2.1 Test-failure:
7.2.2.1.1 Lower Level
7.2.2.1.2 Variation of the same Level
7.2.2.1.3 Repeating the test

7.2.2.2 Test-passing:
7.2.2.2.1 Higher Level
7.2.2.2.2 Variation of the same

7.3 Audio, Video etc.
7.3.1 Failure limit
7.3.2 Input 1- 5 (analyzed by pitch recognition tool, gesture recognition tool, etc)

7.3.2.1 Test-failure:

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 18
www.i-maestro.org ver2.3, 2006-04-28

7.3.2.1.1 Lower Level
7.3.2.1.2 Variation of the same Level
7.3.2.1.3 Repeating the test

7.3.2.2 Test-passing:
7.3.2.2.1 Higher Level
7.3.2.2.2 Variation of the same

8. Status and progress
8.1 Number of unit
8.2 Number of all units in the lesson
8.3 Maximum score

4.2.2 XML scheme for Exercise Unit Formalisation

Elements Complex types
iMExercise Assessment
 Suggestion

 UnitDetails

element iMExercise

diagram

properties content complex

children Category Content Level nextExcercise Iterations TimeSlice Inputs Progress

annotation documentation
I-Maestro Music Exercise Formalisation

source <xs:element name="iMExercise">
 <xs:annotation>
 <xs:documentation>I-Maestro Music Exercise Formalisation</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Category">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Theory" type="xs:boolean"/>
 <xs:element name="Practical" type="xs:boolean"/>
 <xs:element name="Author" type="xs:string"/>
 <xs:element name="Date" type="xs:date"/>

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 19
www.i-maestro.org ver2.3, 2006-04-28

 <xs:element name="KeyWords" type="xs:string"/>
 <xs:element name="PedagogicalModel" type="xs:string"/>
 <xs:element name="TargetGroup" type="xs:string"/>
 <xs:element name="Description" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Content">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Subject" type="xs:string"/>
 <xs:element name="Themes" type="xs:string"/>
 <xs:element name="Details" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Level" type="xs:int"/>
 <xs:element name="nextExcercise">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="TeacherSuggestion" type="Suggestion" minOccurs="0"/>
 <xs:element name="PupilSuggestion" type="Suggestion" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Iterations" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Recursive" minOccurs="0">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:int">
 <xs:attribute name="Variable" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="Repitation" type="xs:int" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="TimeSlice" type="xs:unsignedInt"/>
 <xs:element name="Inputs">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="MultipleChoice" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="BoxWeights" type="xs:int"/>
 <xs:element name="FailureLimit" type="Assessment"/>
 </xs:sequence>
 <xs:attribute name="ToolName" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="WrittenNotes" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Weights" type="xs:int"/>
 <xs:element name="FailureLimit" type="Assessment"/>
 </xs:sequence>
 <xs:attribute name="ToolName" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="Audio" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Weight"/>
 <xs:element name="FailureLimit" type="Assessment"/>
 </xs:sequence>
 <xs:attribute name="ToolName" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="Video" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 20
www.i-maestro.org ver2.3, 2006-04-28

 <xs:element name="Weight"/>
 <xs:element name="FailureLimit" type="Assessment"/>
 </xs:sequence>
 <xs:attribute name="ToolName" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="Other" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Weight"/>
 <xs:element name="FailureLimit" type="Assessment"/>
 </xs:sequence>
 <xs:attribute name="ToolName" type="xs:int"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Progress">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="UnitNo" type="xs:int"/>
 <xs:element name="TotalUnits" type="xs:int"/>
 <xs:element name="Score" type="xs:int"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

element iMExercise/Category

diagram

properties isRef 0

content complex
children Theory Practical Author Date KeyWords PedagogicalModel TargetGroup Description

source <xs:element name="Category">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Theory" type="xs:boolean"/>
 <xs:element name="Practical" type="xs:boolean"/>
 <xs:element name="Author" type="xs:string"/>
 <xs:element name="Date" type="xs:date"/>
 <xs:element name="KeyWords" type="xs:string"/>
 <xs:element name="PedagogicalModel" type="xs:string"/>

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 21
www.i-maestro.org ver2.3, 2006-04-28

 <xs:element name="TargetGroup" type="xs:string"/>
 <xs:element name="Description" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

element iMExercise/Category/Theory

diagram

type xs:boolean

properties isRef 0
content simple

source <xs:element name="Theory" type="xs:boolean"/>

element iMExercise/Category/Practical

diagram

type xs:boolean

properties isRef 0
content simple

source <xs:element name="Practical" type="xs:boolean"/>

element iMExercise/Category/Author

diagram

type xs:string

properties isRef 0
content simple

source <xs:element name="Author" type="xs:string"/>

element iMExercise/Category/Date

diagram

type xs:date

properties isRef 0
content simple

source <xs:element name="Date" type="xs:date"/>

element iMExercise/Category/KeyWords

diagram

type xs:string

properties isRef 0
content simple

source <xs:element name="KeyWords" type="xs:string"/>

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 22
www.i-maestro.org ver2.3, 2006-04-28

element iMExercise/Category/PedagogicalModel

diagram

type xs:string

properties isRef 0
content simple

source <xs:element name="PedagogicalModel" type="xs:string"/>

element iMExercise/Category/TargetGroup

diagram

type xs:string

properties isRef 0
content simple

source <xs:element name="TargetGroup" type="xs:string"/>

element iMExercise/Category/Description

diagram

type xs:string

properties isRef 0
minOcc 0
maxOcc 1
content simple

source <xs:element name="Description" type="xs:string" minOccurs="0"/>

element iMExercise/Content

diagram

properties isRef 0

content complex
children Subject Themes Details

source <xs:element name="Content">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Subject" type="xs:string"/>
 <xs:element name="Themes" type="xs:string"/>
 <xs:element name="Details" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 23
www.i-maestro.org ver2.3, 2006-04-28

element iMExercise/Content/Subject

diagram

type xs:string

properties isRef 0
content simple

source <xs:element name="Subject" type="xs:string"/>

element iMExercise/Content/Themes

diagram

type xs:string

properties isRef 0
content simple

source <xs:element name="Themes" type="xs:string"/>

element iMExercise/Content/Details

diagram

type xs:string

properties isRef 0
content simple

source <xs:element name="Details" type="xs:string"/>

element iMExercise/Level

diagram

type xs:int

properties isRef 0
content simple

source <xs:element name="Level" type="xs:int"/>

element iMExercise/nextExcercise

diagram

properties isRef 0

content complex
children TeacherSuggestion PupilSuggestion

source <xs:element name="nextExcercise">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="TeacherSuggestion" type="Suggestion" minOccurs="0"/>
 <xs:element name="PupilSuggestion" type="Suggestion" minOccurs="0"/>

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 24
www.i-maestro.org ver2.3, 2006-04-28

 </xs:sequence>
 </xs:complexType>
</xs:element>

element iMExercise/nextExcercise/TeacherSuggestion

diagram

type Suggestion

properties isRef 0
minOcc 0
maxOcc 1
content complex

children Knowledge Exercise Level

source <xs:element name="TeacherSuggestion" type="Suggestion" minOccurs="0"/>

element iMExercise/nextExcercise/PupilSuggestion

diagram

type Suggestion

properties isRef 0
minOcc 0
maxOcc 1
content complex

children Knowledge Exercise Level

source <xs:element name="PupilSuggestion" type="Suggestion" minOccurs="0"/>

element iMExercise/Iterations

diagram

properties isRef 0

minOcc 0
maxOcc 1
content complex

children Recursive Repitation

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 25
www.i-maestro.org ver2.3, 2006-04-28

source <xs:element name="Iterations" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Recursive" minOccurs="0">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:int">
 <xs:attribute name="Variable" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="Repitation" type="xs:int" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

element iMExercise/Iterations/Recursive

diagram

type extension of xs:int

properties isRef 0
minOcc 0
maxOcc 1
content complex

attributes Name Type Use Default Fixed Annotation
Variable xs:string

source <xs:element name="Recursive" minOccurs="0">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:int">
 <xs:attribute name="Variable" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:element>

element iMExercise/Iterations/Repitation

diagram

type xs:int

properties isRef 0
minOcc 0
maxOcc 1
content simple

source <xs:element name="Repitation" type="xs:int" minOccurs="0"/>

element iMExercise/TimeSlice

diagram

type xs:unsignedInt

properties isRef 0
content simple

source <xs:element name="TimeSlice" type="xs:unsignedInt"/>

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 26
www.i-maestro.org ver2.3, 2006-04-28

element iMExercise/Inputs

diagram

properties isRef 0

content complex
children MultipleChoice WrittenNotes Audio Video Other

source <xs:element name="Inputs">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="MultipleChoice" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="BoxWeights" type="xs:int"/>
 <xs:element name="FailureLimit" type="Assessment"/>
 </xs:sequence>
 <xs:attribute name="ToolName" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="WrittenNotes" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Weights" type="xs:int"/>
 <xs:element name="FailureLimit" type="Assessment"/>
 </xs:sequence>
 <xs:attribute name="ToolName" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="Audio" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Weight"/>
 <xs:element name="FailureLimit" type="Assessment"/>
 </xs:sequence>
 <xs:attribute name="ToolName" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="Video" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Weight"/>
 <xs:element name="FailureLimit" type="Assessment"/>
 </xs:sequence>
 <xs:attribute name="ToolName" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="Other" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Weight"/>

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 27
www.i-maestro.org ver2.3, 2006-04-28

 <xs:element name="FailureLimit" type="Assessment"/>
 </xs:sequence>
 <xs:attribute name="ToolName" type="xs:int"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

element iMExercise/Inputs/MultipleChoice

diagram

properties isRef 0

minOcc 0
maxOcc unbounded
content complex

children BoxWeights FailureLimit

attributes Name Type Use Default Fixed Annotation
ToolName xs:string

source <xs:element name="MultipleChoice" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="BoxWeights" type="xs:int"/>
 <xs:element name="FailureLimit" type="Assessment"/>
 </xs:sequence>
 <xs:attribute name="ToolName" type="xs:string"/>
 </xs:complexType>
</xs:element>

element iMExercise/Inputs/MultipleChoice/BoxWeights

diagram

type xs:int

properties isRef 0
content simple

source <xs:element name="BoxWeights" type="xs:int"/>

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 28
www.i-maestro.org ver2.3, 2006-04-28

element iMExercise/Inputs/MultipleChoice/FailureLimit

diagram

type Assessment

properties isRef 0
content complex

children Score TestFailure TestPassing

source <xs:element name="FailureLimit" type="Assessment"/>

element iMExercise/Inputs/WrittenNotes

diagram

properties isRef 0

minOcc 0
maxOcc unbounded
content complex

children Weights FailureLimit

attributes Name Type Use Default Fixed Annotation
ToolName xs:string

source <xs:element name="WrittenNotes" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Weights" type="xs:int"/>
 <xs:element name="FailureLimit" type="Assessment"/>
 </xs:sequence>
 <xs:attribute name="ToolName" type="xs:string"/>
 </xs:complexType>
</xs:element>

element iMExercise/Inputs/WrittenNotes/Weights

diagram

type xs:int

properties isRef 0
content simple

source <xs:element name="Weights" type="xs:int"/>

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 29
www.i-maestro.org ver2.3, 2006-04-28

element iMExercise/Inputs/WrittenNotes/FailureLimit

diagram

type Assessment

properties isRef 0
content complex

children Score TestFailure TestPassing

source <xs:element name="FailureLimit" type="Assessment"/>

element iMExercise/Inputs/Audio

diagram

properties isRef 0

minOcc 0
maxOcc unbounded
content complex

children Weight FailureLimit

attributes Name Type Use Default Fixed Annotation
ToolName xs:string

source <xs:element name="Audio" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Weight"/>
 <xs:element name="FailureLimit" type="Assessment"/>
 </xs:sequence>
 <xs:attribute name="ToolName" type="xs:string"/>
 </xs:complexType>
</xs:element>

element iMExercise/Inputs/Audio/Weight

diagram

properties isRef 0

source <xs:element name="Weight"/>

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 30
www.i-maestro.org ver2.3, 2006-04-28

element iMExercise/Inputs/Audio/FailureLimit

diagram

type Assessment

properties isRef 0
content complex

children Score TestFailure TestPassing

source <xs:element name="FailureLimit" type="Assessment"/>

element iMExercise/Inputs/Video

diagram

properties isRef 0

minOcc 0
maxOcc unbounded
content complex

children Weight FailureLimit

attributes Name Type Use Default Fixed Annotation
ToolName xs:string

source <xs:element name="Video" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Weight"/>
 <xs:element name="FailureLimit" type="Assessment"/>
 </xs:sequence>
 <xs:attribute name="ToolName" type="xs:string"/>
 </xs:complexType>
</xs:element>

element iMExercise/Inputs/Video/Weight

diagram

properties isRef 0

source <xs:element name="Weight"/>

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 31
www.i-maestro.org ver2.3, 2006-04-28

element iMExercise/Inputs/Video/FailureLimit

diagram

type Assessment

properties isRef 0
content complex

children Score TestFailure TestPassing

source <xs:element name="FailureLimit" type="Assessment"/>

element iMExercise/Inputs/Other

diagram

properties isRef 0

minOcc 0
maxOcc unbounded
content complex

children Weight FailureLimit

attributes Name Type Use Default Fixed Annotation
ToolName xs:int

source <xs:element name="Other" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Weight"/>
 <xs:element name="FailureLimit" type="Assessment"/>
 </xs:sequence>
 <xs:attribute name="ToolName" type="xs:int"/>
 </xs:complexType>
</xs:element>

element iMExercise/Inputs/Other/Weight

diagram

properties isRef 0

source <xs:element name="Weight"/>

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 32
www.i-maestro.org ver2.3, 2006-04-28

element iMExercise/Inputs/Other/FailureLimit

diagram

type Assessment

properties isRef 0
content complex

children Score TestFailure TestPassing

source <xs:element name="FailureLimit" type="Assessment"/>

element iMExercise/Progress

diagram

properties isRef 0

content complex
children UnitNo TotalUnits Score

source <xs:element name="Progress">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="UnitNo" type="xs:int"/>
 <xs:element name="TotalUnits" type="xs:int"/>
 <xs:element name="Score" type="xs:int"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

element iMExercise/Progress/UnitNo

diagram

type xs:int

properties isRef 0
content simple

source <xs:element name="UnitNo" type="xs:int"/>

element iMExercise/Progress/TotalUnits

diagram

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 33
www.i-maestro.org ver2.3, 2006-04-28

type xs:int

properties isRef 0
content simple

source <xs:element name="TotalUnits" type="xs:int"/>

element iMExercise/Progress/Score

diagram

type xs:int

properties isRef 0
content simple

source <xs:element name="Score" type="xs:int"/>

complexType Assessment

diagram

children Score TestFailure TestPassing

used by elements iMExercise/Inputs/MultipleChoice/FailureLimit iMExercise/Inputs/WrittenNotes/FailureLimit
iMExercise/Inputs/Audio/FailureLimit iMExercise/Inputs/Video/FailureLimit
iMExercise/Inputs/Other/FailureLimit

source <xs:complexType name="Assessment">
 <xs:sequence>
 <xs:element name="Score" type="xs:int"/>
 <xs:element name="TestFailure">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="LowerLevel" type="xs:boolean"/>
 <xs:element name="Variation" type="xs:boolean"/>
 <xs:element name="Repeat" type="xs:boolean"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="TestPassing">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="HigherLevel" type="xs:boolean"/>
 <xs:element name="Variation" type="xs:boolean"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
</xs:complexType>

element Assessment/Score

diagram

type xs:int

properties isRef 0
content simple

source <xs:element name="Score" type="xs:int"/>

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 34
www.i-maestro.org ver2.3, 2006-04-28

element Assessment/TestFailure

diagram

properties isRef 0

content complex
children LowerLevel Variation Repeat

source <xs:element name="TestFailure">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="LowerLevel" type="xs:boolean"/>
 <xs:element name="Variation" type="xs:boolean"/>
 <xs:element name="Repeat" type="xs:boolean"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

element Assessment/TestFailure/LowerLevel

diagram

type xs:boolean

properties isRef 0
content simple

source <xs:element name="LowerLevel" type="xs:boolean"/>

element Assessment/TestFailure/Variation

diagram

type xs:boolean

properties isRef 0
content simple

source <xs:element name="Variation" type="xs:boolean"/>

element Assessment/TestFailure/Repeat

diagram

type xs:boolean

properties isRef 0
content simple

source <xs:element name="Repeat" type="xs:boolean"/>

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 35
www.i-maestro.org ver2.3, 2006-04-28

element Assessment/TestPassing

diagram

properties isRef 0

content complex
children HigherLevel Variation

source <xs:element name="TestPassing">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="HigherLevel" type="xs:boolean"/>
 <xs:element name="Variation" type="xs:boolean"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

element Assessment/TestPassing/HigherLevel

diagram

type xs:boolean

properties isRef 0
content simple

source <xs:element name="HigherLevel" type="xs:boolean"/>

element Assessment/TestPassing/Variation

diagram

type xs:boolean

properties isRef 0
content simple

source <xs:element name="Variation" type="xs:boolean"/>

complexType Suggestion

diagram

children Knowledge Exercise Level

used by elements iMExercise/nextExcercise/PupilSuggestion iMExercise/nextExcercise/TeacherSuggestion

source <xs:complexType name="Suggestion">
 <xs:sequence>
 <xs:element name="Knowledge" type="UnitDetails" minOccurs="0"/>
 <xs:element name="Exercise" type="UnitDetails" minOccurs="0"/>
 <xs:element name="Level" type="xs:int" minOccurs="0"/>

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 36
www.i-maestro.org ver2.3, 2006-04-28

 </xs:sequence>
</xs:complexType>

element Suggestion/Knowledge

diagram

type UnitDetails

properties isRef 0
minOcc 0
maxOcc 1
content complex

children Subject Themes Details

source <xs:element name="Knowledge" type="UnitDetails" minOccurs="0"/>

element Suggestion/Exercise

diagram

type UnitDetails

properties isRef 0
minOcc 0
maxOcc 1
content complex

children Subject Themes Details

source <xs:element name="Exercise" type="UnitDetails" minOccurs="0"/>

element Suggestion/Level

diagram

type xs:int

properties isRef 0
minOcc 0
maxOcc 1
content simple

source <xs:element name="Level" type="xs:int" minOccurs="0"/>

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 37
www.i-maestro.org ver2.3, 2006-04-28

complexType UnitDetails

diagram

children Subject Themes Details

used by elements Suggestion/Exercise Suggestion/Knowledge

source <xs:complexType name="UnitDetails">
 <xs:sequence>
 <xs:element name="Subject" type="xs:string"/>
 <xs:element name="Themes" type="xs:string"/>
 <xs:element name="Details" type="xs:string"/>
 </xs:sequence>
</xs:complexType>

element UnitDetails/Subject

diagram

type xs:string

properties isRef 0
content simple

source <xs:element name="Subject" type="xs:string"/>

element UnitDetails/Themes

diagram

type xs:string

properties isRef 0
content simple

source <xs:element name="Themes" type="xs:string"/>

element UnitDetails/Details

diagram

type xs:string

properties isRef 0
content simple

source <xs:element name="Details" type="xs:string"/>

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 38
www.i-maestro.org ver2.3, 2006-04-28

4.3 MPEG-4 Model

In the MPEG-4 model, audio-visual objects have both a spatial and a temporal extent. Temporally, all AV
objects have a single dimension. Each AV object has a local coordinate system in which the object has a
fixed spatio-temporal location and scale. AV objects are positioned in a scene by specifying one or more
coordinate transformations from the object's local coordinate system into a common, global coordinate
system, or scene coordinate system.

BIFS is an abbreviation for "BInary Format for Scenes". BIFS provides a complete framework for the
presentation engine of MPEG-4 terminals. BIFS enables to mix various MPEG-4 media together with 2D
and 3D graphics, handle interactivity, and deal with the local or remote changes of the scene over time. An
audio-visual object in a BIFS scene is usually represented by one BIFS node or a sub-tree of the BIFS scene
graph.

Scene description information is a property of the scene's structure rather than of particular AV objects.
Consequently, it is transmitted as a separate stream. This is an important feature for bitstream editing and one
of the essential content based functionalities in MPEG-4. For bitstream editing, one can change the
composition of AV objects without having to decode their bitstreams and change their content. If the position
of the object were part of the object's bitstream, this would become very difficult.

The scene description can be dynamically changed at any time. An initial scene description is provided at the
beginning of an MPEG-4 stream. It can be as simple as a single node, or as complex as one wants (within
limits that are established for ensuring conformance). BIFS-Commands are used to modify a set of properties
of the scene at a given time. It is possible to insert, delete and replace nodes, fields and ROUTEs as well as
to replace the entire scene. For continuous changes of the parameters of the scene, BIFS-Anim can be used;
it specifically addresses the continuous update of the fields of a particular node. BIFS-Anim is used to
integrate different kinds of animation, including the ability to animate face models as well as meshes, 2D and
3D positions, rotations, scale factors, and colour attributes. The BIFS-Anim information is conveyed in its
own elementary stream.

4.4 SMR Segments for exercises

These are in MPEG-SMR.

4.5 SMR and Multimedia

MPEG-4 permits the encoding of multimedia content, including many different kinds of object types and a
scene description allowing precise synchronization among them and specifying object composition rules.

Symbolic representations of music have a logical structure consisting of: symbolic elements that represent
audiovisual events; the relationship between those events; and aspects of rendering those events. There are
many symbolic representations of music including different styles of Chant, Renaissance, Classic, Romantic,
Jazz, Rock, Pop, and 20th Century styles, percussion notation, as well as simplified notations for children,
Braille, etc.

Many music-related software and hardware products are currently available in the market. Some integrate
symbolic representations of music with multimedia content. Examples include:

• Interactive music tutorials
• Play training, performance training

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 39
www.i-maestro.org ver2.3, 2006-04-28

• Ear training
• Compositional and theory training
• Multimedia music publication
• Software for music management in libraries (music tools integrating multimedia for navigation and

for synchronization),
• Software for entertainment (mainly synchronization between sound, text and symbolic information),
• Piano keyboards with symbolic music representation and audiovisual capabilities,
• Mobile devices with music display and editing capabilities.

MPEG Symbolic Music Representation (SMR) enables the synchronization of symbolic music elements with
audio-visual events that are represented and rendered using existing MPEG technology.
The breadth of MPEG standards for multimedia representation, coding, and playback, when integrated with
symbolic representations of music provides content interoperability and an efficient high quality, peer
reviewed, standardized toolset for developers of these products.

4.6 Assessment Parameters

Assessment is a integral component of the teaching and learning process: is the application of information
about the student performances or learning effectiveness to make educational decisions, and in all this
process is fundamental a clear alignment between what is taught and what is learn.

EXAMPLES OF ASSESSMENT PARAMETERS:

An example of a possible type of rating scales:

- Excellent (5 points): highest category of level-work
- Adequate (4-3 points): acceptable level work
- Needs improvement (3-1 points): weak level work
- No adequate (no answer or fault) (0 points)

An example of possible level of achievement criteria:

- Level of achievement:
1. Excellent/very good
2. Adequate
3. Needs improvement

An example of the standards criteria for a particular task:

- Conceptual understanding level:
1. Excellent (demonstrate clear understanding)
2. Adequate (demonstrate a partial understanding)
3. Needs improvement (does not demonstrate understanding)

An example of skills checklist

- Pitch accuracy
Focus on concepts attributed to the development of good intonation, including test for:

Dictation (also with chords)
Intervals recognition

- Tone quality
Focus on concepts attributed to the development of good tone production, including test for:

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 40
www.i-maestro.org ver2.3, 2006-04-28

Good playing position
Appropriate bowing
Fingering
Bow techniques
Posture
Vibrato

- Rhythm
Focus on concepts attributed to the development of rhythmical skills, including test for:

Changing meter, irregular beat divisions
Polyrhythm, polymeter
Rhythms dictation
Pulse, rhythmic precision
Simple meter, subdivide
Meter identificación
Tempo markings: accelerando, meno mosso, piu mosso, retardando, etc.

- Dynamics
Focus on concepts attributed to the development of the knowledge of different dynamics,
including test for:

Bow technique
forte piano, forte, fortissimo, mezzo forte, mezzo piano, pianissimo,piano, sforzando,
sostenuto, subito, etc.

- Posture
Focus on concepts attributed to the development of good posture, including test for:

Good stand position: i.e. control of the feed position, balance of the body weight, etc.
Good sit position: i.e. keep the back straight, sit at the front of the chair, etc.
To play in a correct position i.e. check the left elbow position, correct setting of the fingers in
the fingerboard, thumb placed, etc.

- Articulation (and diction for singers)
Focus on concepts attributed to the development of articulation, including test for:

Bow technique articulation
Accent
Legato, marcato, pizzicato, spiccato, staccato, tenuto

- Expression/ Musical Interpretation
Focus on concepts attributed to the development of expression and interpretation skills,
including test for:

Musical form
Music history, style, tempo
Melodic direction, phrase structure
Tempo and stylistic
Making tension – release
Dolce, maestoso, etc.

- Harmony
Focus on concepts attributed to the development of harmony, including test for:

Functional harmony (recognition of simple cadence patterns, all diatonic triads and
inv., etc.)
Spelling of major and minor triads
Structural and formal analysis, roman numeral realization, figured bass realization,
soprano harmonization, etc.
Simple/advanced modulations

- Score Reading
Focus on concepts attributed to the development of score reading, including test for:

Sight reading
Full score reading
Transposition

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 41
www.i-maestro.org ver2.3, 2006-04-28

- Playing/singing together/cooperative work
Focus on concepts attributed to the development of cooperative work, including test for:

Professional attitude and behaviour during rehearsals and performances
Learn leadership (by sectional rehearsals)

- Concentration and focus
Focus on concepts attributed to the development of concentration skills, including test for:

Sound projection

Schema for the assessment parameters.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Metadata Schema for I-MAESTRO project.
 Assessment parameters
 iMaestroAssessmentParams.xsd
 </xsd:documentation>
 </xsd:annotation>
 <xsd:include schemaLocation="iMaestroGeneric.xsd"/>

<xsd:simpleType name="AssessmentMethod">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Human"/>
 <xsd:enumeration value="Automatic"/>
 <xsd:enumeration value="Reflective"/>
 <xsd:enumeration value="Adaptive"/>
 <xsd:enumeration value="Static"/>
 </xsd:restriction>
</xsd:simpleType>
 <!-- The above AssessmentMethod type possibly to be moved in the overall Lesson metadata -->

 <xsd:simpleType name="AssessmentLevel">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Lenient"/>
 <xsd:enumeration value="Medium"/>
 <xsd:enumeration value="Strict"/>
 </xsd:restriction>
 </xsd:simpleType>
 <!-- The above AssessmentLevel type possibly to be moved in the overall Lesson metadata -->

 <xsd:element name="assessment">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="ID"/>
 <xsd:element name="method" type="AssessmentMethod"/>
 <xsd:element name="level" type="AssessmentLevel"/>
 <xsd:element name="date" type="xsd:date"/> <xsd:element name="assessment">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="ID"/>
 <xsd:element name="method" type="AssessmentMethod"/>
 <xsd:element name="level" type="AssessmentLevel"/>
 <xsd:element name="date" type="xsd:date"/>
 <xsd:element name="topic" maxOccurs="unbounded"/>
 <!-- could be captured from lesson/exercise. They could be limited but > 1 -->
 <xsd:element name="author"/>
 <!-- author of the assessment. -->
 <xsd:element name="student"/>
 <!-- deriving/linking with profile(s) could “catch” other information from the student’s metadata-->
 <xsd:element name="mark">
 <xsd:complexType>
 <xsd:attribute name="criteria" use="required"/>
 <xsd:attribute name="metrics" use="required"/>
 </xsd:complexType>
 </xsd:element>
 <!-- depending on criteria and metrics used the types for ‘criteria’ and ‘name’ to be defined -->
 <xsd:element name="passed" type="xsd:boolean"/>
 <xsd:element name="definitive" type="xsd:boolean"/>
 <!-- for possible partial assessments (e.g. part of a lesson/exercise) -->
 <xsd:element name="comment" minOccurs="0"/>

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 42
www.i-maestro.org ver2.3, 2006-04-28

 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

4.7 Context Parameters

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Metadata Schema for I-MAESTRO project.
 Context parameters(broad)
 iMaestroContextParams.xsd
 </xsd:documentation>
 </xsd:annotation>
 <xsd:include schemaLocation="iMaestroGeneric.xsd"/>
 <xsd:simpleType name="PedagogicModelType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="self-study"/>
 <xsd:enumeration value="one-to-one"/>
 <xsd:enumeration value="classroom"/>
 <xsd:enumeration value="distance-learning"/>
 <xsd:enumeration value="cooperative"/>
 <!-- The above type to be possibly moved up in overall lesson metadata -->
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:element name="context">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Teacher"/>
 <xsd:element name="NumberOfStudents" type="xsd:nonNegativeInteger"/>
 <xsd:element name="PedagogicModel" type="PedagogicModelType"/>
 <xsd:element name="StudentsAverageAge"/> <!-- Type to be specified -->
 <xsd:element name="StudentsAverageLevel"/> <!-- Type to be specified -->
 <xsd:element name="ImpairedStudents" type="xsd:boolean" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 43
www.i-maestro.org ver2.3, 2006-04-28

4.8 Logic of the lesson, the glue

The following pictures show the basic structure of the possibilities of progress from Unit to Unit within a
lesson:

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 44
www.i-maestro.org ver2.3, 2006-04-28

4.9 Packaging the Lesson

Module/Tool Profile
Packaging the Lesson

Responsible Name Marius Spinu
Responsible Partner Exitech
Status (proposed/approved) Proposed
Implemented/not implemented Not implemented
Status of the implementation 0%
Executable or Library/module
(Support)

library

Single Thread or Multithread
Language of Development
Platforms supported
Reference to the location of the
source code demonstrator

Reference to the location of the
demonstrator executable tool for
internal download

Reference to the location of the
demonstrator executable tool for
public download

Address for accessing to
WebServices if any, add
accession information (user and
Passwd) if any

Test cases (present/absent)
Test cases location
Major Problems not solved
Major pending requirements

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

Protocol Used Shared with Protocol name or reference to a

section

Used Database name
IMDB

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 45
www.i-maestro.org ver2.3, 2006-04-28

4.9.1 General Description of the Module

The Teacher as Course creator has to create Lessons by adding Exercises Units and Knowledge Units. More
Lessons create a course which can be considered a first level of packaging.

A package will be composed by an XML header and by one or more zipped files.

The XML header will contain general information about the Lessons include into the package as:

• Author
• Content description
• Lesson identification
• Assessment Used
• Genre
• Level of difficulty
• Targeted Audience (Age, Level of Competency)
• Order of Lessons (The possible paths of the Lesson and the decisions to follow it)
• Permission and sharing rights

Each zip file will contain several types of files including Lesson Metadata, Music Exercise Formalization,
MPEG-4 and SMR Segment, representation of music scores, SMR Segment, Assessment Parameters,
Context Parameters, Multimedia commands, material (PDF, text, flash, video, audio, etc) needed for the
Knowledge Units, etc. It is expected that the result of the authoring tool is accompanied with a SCORM
manifest file in order to link all the available resources.

I-MAESTRO package

XML
ZIP

ZIP
ZIP

SCORM
manifest

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 46
www.i-maestro.org ver2.3, 2006-04-28

5 Specification of I-MAESTRO Client Architecture

5.1 I-MAESTRO Client General Overview

I-MAESTRO Client:
• A tool in the hands of the Pupils for executing I-MAESTRO

exercises. It can be based on:
o MPEG-4 player,
o MaxMSP player, also integrating SCORM information

• The client is capable of processing a lesson in I-MAESTRO format

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 47
www.i-maestro.org ver2.3, 2006-04-28

The I-MAESTRO Client is the tool used by Teachers and Students to execute Lessons and Exercises.
It includes these modules:

• I-MAESTRO Client User Interface, used directly by Teacher and Students to interact with I-
MAESTRO Other Applications (Tuner, Metronome, etc.), the Integrated Music Score Editor and
Viewer Tool, the Multimedia Rendering Tool and Music Training Exercise Processor.

• Music Training Exercise Processor. It is the core of I-MAESTRO Client and it is able to manage
(sending and receiving commands) to the other modules of I-MAESTRO Client (i.e. Integrated
Music Score Editor and Viewer Tool, Multimedia Rendering Tool, Audio Processing and Gesture
and Posture Tools, I-MAESTRO Lesson Model). It also manages the Pupil Local History and data
and it can give assessments about performances depending on the evaluations of the Assessment
Support.

• I-MAESTRO Lesson Model. It represents the Lesson content and it is used by the Music Training
Exercise Processor to follow the correct step during the performance. It also linked to the
Assessment Support to assess Student executions.

• Audio Processing. It provides the capability to acquire sound to record a performance and/or assess
it.

• Gesture and Posture Tools. It uses a set of tools to assess the Students executions capturing data
from sensors and 3D Motion Data capturing system.

• Score Follower. It is used in some type of exercise and it gives the capability to upload the score
viewer depending on the selected Tempo. Also it can upload in real time the score viewer depending
on the speed of the execution. In both cases it is able to collect information from Audio Processing,
sends command to the Integrated Music Score Editor and Viewer Tool and pass information to the
Assessment Support for performance assessment.

• Assessment Support. It collects information from the Lesson Model, Audio Processing and Gesture
and Posture Tools and it is able to give a response about performance’s quality.

5.2 I-MAESTRO Client User Interface

Client user interface of the lesson can be created in the Max/MSP environment.

5.3 I-MAESTRO Client Accessible User Interface

User interface options

In order to launch the accessible user interface from the I-Maestro client tool the user will select one of the
converting options which results in and Accessible Music notation:

Figure: Accessible Music Conversion options

The menu bar will be accessible either by keyboard shortcuts or by screen reader assistance. Selecting one of
these options will launch one of the accessible music decoder screens. From a system architecture
perspective, these are very much the same module (See section 6.8 of this document), but from a user
perspective, they are using distinct modules. As a result there are a set of generic functionalities of these
system options and some more output specific options. These are shown below.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 48
www.i-maestro.org ver2.3, 2006-04-28

Figure: Example user preferences screen

Generic functionalities

Welcome screen: This window provides the user with options as to where they will go next. If the user
wishes to create a rendering of the I-MAESTRO lesson using generic preferences or preferences fed by the I-
MAESTRO client tool, he can click “convert”. Other wise, there are several options which are described
below. The user can enter data in None, Some or all of the fields.

General Screen: General Window you can enter information about the accessible I-MAESTRO lesson.
These relate to, output languages, save path. Many of these options will call other dialog boxes from the I-
MAESTRO client tool.

Musical Excerpt: This allows the user to choose to convert specific parts or instrument which can be picked
from a full I-MAESTRO lesson. This is important for teachers creating a lesson for a class which contains
both impaired and non-impaired students. The user can also select a section of the music, dictated by
measure/bar numbers. With this function you can make specific movements or parts of a score into separate
Accessible music lessons.

Format specific options

Talking Music Output options: Depending on the system setup, there will be a choice of several synthetic
speech voices. Once a voice has been selected, users can select bit rate for the output audio. This along with
midi playback options makes up the user preference setting for Talking Music.

Braille Printing: This dialog box allows you to choose a printer for Braille output. This could be a standard
printer or a special Braille Embosser. The printer dialog box connects to the standard printing functionality
of the I-MAESTRO client tool. This window also allows you to set the lines per page and characters per line
relevant to the Braille Standard being used.

Large Print Options: Most of the functionality for creating large print output is available elsewhere in the I-
MAESTRO client tool. This set of options brings them together and allows settings to be specified for level
of magnification, colours, fonts etc. and the printer which will be used.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 49
www.i-maestro.org ver2.3, 2006-04-28

Configuration files accessible as proxy objects

The General overview for the specifications (DE3.1.1a) highlights the need for very adaptable and scalable
user requirements, as recommended in IMS white papers.1 In order to achieve this, the Accessible User
Interface of the I-MAESTRO client tool makes extensive use of XML technologies to ensure that these
parameter controls are well structured and can be reused to provide for future user needs.

For example, the Talking Music template file containing the overall settings of the Talking Music
interpretation and production process reads as follows:

<SPOKEN_MUSIC_TEMPLATE>
 <GENERAL
 lang="English"
 interpret_level="Custom"
 default_note="Eighth"
 GUI-lang="NLD">

 <PROD_ID></PROD_ID>
 <TITLE></TITLE>
 <COMPOSER></COMPOSER>
 <CREATOR></CREATOR>
 <PUBLISHER></PUBLISHER>
 <COPYRIGHTS></COPYRIGHTS>
 <NOTES/>
 <OUT_PATH>c:\AccessibleMusic\TalkingMusic\Output</OUT_PATH>
 <OUT_FILE_NAME></OUT_FILE_NAME>
 </GENERAL>
 <MUSIC_EXCERPT
 ignore_last_measures="true"
 fragment_length="4"
 use_transposition="false"/>
 <LYRIC
 display_lyric="false"/>
 <OUTPUT_FORMAT
 format="HTML 4.0"/>
 <AUDIO_FILES_FORMAT/>
 <SPEECH
 voice=""
 rate="-2"
 pitch="0"/>
 <MIDI
 qtempo_whole="120"
 qtempo_section="120"
 instr="0"/>
 <ADDITIONAL
 skin="NoSkin">
 <WORK_PATH>c:\AccessibleMusic\TalkingMusic\Work</WORK_PATH>
 <WORK_PARAMS>TS_Additional_WorkParams_Combo</WORK_PARAMS>
 </ADDITIONAL>
</SPOKEN_MUSIC_TEMPLATE>

This process is then repeated for all user requirements which are fed to the Accessible Music decoder by the
I-MAESTRO Client tool.

Accessible User Interfaces

In order that the I-MAESTRO client tool is accessible software, several design considerations have to be
taken into account in the system architecture to ensure that standard accessibility controls and components
are included within at least the modules used for Accessibility. Guidelines for doing this are specified in
DE3.1.1a, but the system should take into account the use of:

1 http://www.imsglobal.org/accessibility/accwpv0p6/imsacc_wpv0p6.html

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 50
www.i-maestro.org ver2.3, 2006-04-28

• Textual alternative descriptions of any icons, images, access buttons, text field labels, menu item and
other components used for accessing functionality within the I-MAESTRO client tool

• Alternative means to access functionality other than with a mouse i.e. ensure that all actions can be
completed from the keyboard.

• The standard components available for the operating system or development platform, or follow
accessibility guidelines on how to create custom controls.

• Provide help files, including an orientation to the interface and its functionality.

The following should be avoided:
• Indexing or navigation systems using complex frames that do not have the title or name attribute.
• Tables of contents with expand/collapse features that are indicated with images with no text labels

(i.e., blue triangles or plus and minus signs).
• Menu bars built in non standard scripting languages.

In order to meet these requirements fully, it may be required to create several interface specific modules
within Max/MSP which can provide some of these functionalities:

Text 2 speech
If some or all of the screen reading functionalities need to be handled by the Max/MSP environment, the re is
an external available called “Flite” which may be useful for adapting as a text2speech functionality:

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 51
www.i-maestro.org ver2.3, 2006-04-28

Figure: An example of functionality which could be used to create screen reading functionality within Max/MSP

Braille Bars
In order to incorporate Braille Bars within Max/MSP environments, the functionalities for controlling midi
devices can be used. This may require different set ups depending on the manufacturer of the Braille Bar. If
this is the case, several open source drivers for Braille bars are available and functionality can be provided
for the main manufacturers. An interfacing dialog can be provided in the I-MAESTRO client tool to choose
specific setups for such devices. (Number of characters per line, Serial port, USB connecting, etc.)

Keyboard Shortcuts
Keyboard shortcuts are integral component of accessible interface design. If the system specific keyboard
shortcuts are not used by the Native OS in question, decisions will have to be made as to which keyboard
shortcuts to use. There are standards for this.2

2 http://accessibility.freestandards.org/

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 52
www.i-maestro.org ver2.3, 2006-04-28

6 Professional Music Editing

Sibelius manages notation content using a proprietary and encrypted file format optimized for efficient
storage and rendering of musical notation. It features built-in import facilities from a variety of alternative
formats, namely

• MusicXML
• Midi
• NIFF
• Score
• Finale ETF

Native file writing is confined to Sibelius formats (including formats readable by earlier versions of Sibelius)
and to MIDI output.

Sibelius implements a plug-in mechanism for scripting additions to core Sibelius functionality. This is done
by means of functions written in a scripting language – Manuscript – developed specifically for Sibelius. The
elements of the notated content are made available to Manuscript via built-in objects (in the same way as, for
example, the contents of an HTML or XML document are made available to web browser scripting via a
Document Object Model or DOM). The Manuscript language is fully documented in the Sibelius
distribution.

It is not planned to modify Sibelius to read and write SMR files directly. A Sibelius plug-in will be
developed to export MPEG SMR from Sibelius score data. In addition, plug-ins will be developed to insert
and edit aspects of MPEG SMR which are not directly supported by the Sibelius format.

 A plug-in will be developed to export MPEG SMR from the structure of a Sibelius file.

6.1 Using SIBELIUS for MPEG SMR production

The workflow for MPEG SMR production from Sibelius necessitates a number of steps:

• Author or edit content in Sibelius
o Use special text tags and/or styles to embed content for specific SMR processing

• Export MPEG SMR using Sibelius-SMR plug-in
• Perform further editing and assembly of content using the generated SMR in the other I-MAESTRO

authoring and packaging tools

SMR data and annotations not directly mapped to notation features supported in Sibelius will be
implemented using a special text style and/or tags identifying SMR content, which will be preserved in
export and processed by the conversion utility to generate the relevant SMR content.

6.2 Plug-ins for MPEG SMR annotation in Sibelius

A set of plug-ins will be developed to manage SMR content not directly represented in a Sibelius score. The
content will be represented as text, with a specific prefix scheme identifying the tag as an aspect of SMR
content, and further identifying the type of content.

For example, Sibelius does not currently support URL links in a score. While these could be added as plain
text, to support the level of annotation required to perform a mapping to an MPEG SMR link a simple plug-
in to insert and edit HTML links might be look like this:

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 53
www.i-maestro.org ver2.3, 2006-04-28

With an annotation added to the score as follows:

For all such plug-ins

• The text schema for the annotation is MPEG SMR:<type>:<content>
• The plug-in will operate on a selected passage or single score element
• A single instance of the annotation will be placed at the same position and associated with the same

bar as the selected element or at the start of the selected passage
• If any of the plug-ins is invoked when an existing SMR annotation is selected, the appropriate plug-

in for the type of annotation is loaded and the content of the annotation is made available for editing
in the plug-in

• A new text style (MPEG SMR-Annotation, that is implemented as a SMR Selection) is created to
allow MPEG SMR annotations to be distinguished graphically in the score

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 54
www.i-maestro.org ver2.3, 2006-04-28

7 Specification of I-MAESTRO Music Exercise Authoring Tool

7.1 Music Training Exercise Processor General Overview

Music Training Exercise Processor

The Music Training Exercise Processor processes/executes the Music Exercise Formalisation taking into
account the profile, history, and pupil’s results step by step. It has to be capable of synchronising and to be
synchronised by external events for the rendering and visualization of results and eventually with other tools
via Cooperative Support for Music Training.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 55
www.i-maestro.org ver2.3, 2006-04-28

Music Training Exercise Processor communicates with:
• Cooperative Support for Music Training to communicate with other Music Training Exercise

Processors. Most of the commands for the other tools of I-MAESTRO Client Tool can be issued to
them from another Music Training Exercise Processor via the middleware module of Cooperative
Support for Music Training.

• Assessment support: applying assessment models taking into account profile, exercise, context,
audio processing results, symbolic processing results, sensors, gesture and posture, etc.

• Command Support of others tool (i.e. Music and Editor and Viewer Command Support, Metronome
Command Support, Audio Video Image Doc rendering Command Support).

• Gesture and Posture acquisition and processing tool.
• Audio Recording Tool.

Also the Music Training Exercise Processor comprehends:
• Symbolic Training Processing Tools: supporting symbolic score analysis, comparison, searching,

navigation, annotation, etc.
• Practice Training Processing Tools: supporting symbolic score analysis versus audio processing

results, comparison, searching, navigation, etc.
• Exercise Processor that executes commands present in the Exercises.
• Interactive Features Support, which implement chat and file sharing.
• The Exercise Model, which provides the structure of Exercises.

7.2 Music Training Exercise Processor processing the logic of the lesson Formal
Model

Specified in Max/MSP formalism.

7.3 Integrated or inherited Multimedia Rendering Tools

There are several Multimedia rendering tools available in Max/MSP. Here we provide a list of the principal:

For video and audio rendering Max/MSP has two objects:

1. movie objects
2. imovie objects.

The movie object plays a QuickTime movie in its own window, and the imovie object plays a QuickTime
movie in a box inside a patcherwindow. They can receives from their Inlets commands such as start, stop,
pause, read, open, next movie and many others. This objects can open at least 26 different types of files that
can be managed by QuickTime, these include movie files such as MPEG, audio files including AIFF and
MP3, and graphics files including GIF and JPEG. To know all available commands it is possible to reference
to the Max/MSP manual.

As regard pictures and images, in addition to the previously objects, there are fpic, pic, pictr,l graphic that
can draw an image. The available image format are pict and pic (default format fro Max/MSP) and also
formats provided by QuickTime when it is installed.

Regarding the audio, Max/MSP provides much support and many objects to manage MIDI audio, such as
midin, midiout, midiinfo, midiparse, midiformat, midiflush…). There is also an object to play and record midi
data called seq.

There are also two type of metronome objects (metro and qmetro), but they don’t have a GUI. It is possible
to use some MIDI objects to realize the structure of a tuner albeit without GUI.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 56
www.i-maestro.org ver2.3, 2006-04-28

8 Specification of Integrated Music Score Editor and Viewer Tool
Integrated Music Score Editor and Viewer Tool

«signal»SMR content

I-MAESTRO Production
Tools::Loader and Saver of MPEG

SMR

SMR Multi Instance Model

Renderer of MPEG SMR

Music Editor and Viewer
Command Support

I-MAESTRO Client Tool::I-MAESTRO Client User Interface

Music Editor and
Viewer Assessment

Support

Music Training Exercise
Processor::Exercise

Processor

Music Editor and Viewer
Command Manager

I-MAESTRO-Architecture::Cooperative Support
for Music Training

Integrated Music Score Editor and Viewer Tool

Students Teachers

Score
Follower

Music Editing Service

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 57
www.i-maestro.org ver2.3, 2006-04-28

The Integrated Music Score Editor and Viewer Tool is a tool developed to edit and execute a score in a
cooperative and single user way.
Students and Teacher use the I-MAESTRO client interface to interact with the Integrated Music Score Editor
and Viewer Tool.
The Integrated Music Score Editor and Viewer Tool comprehends a set of functionalities that are:

• Renderer of MPEG SMR to update use GUI depending on changes made to the SMR
• Music Editor and Viewer Command Support used by Exercise Processor
• Music Editor and Viewer Command Manager, which collect commands given to manipulate SMR

Multi Instance Model
• Music Editor and Viewer Assessment Support, which provides assess support during the execution

and editing to highlight Students mistakes.
• SMR Multi Instance Model: the SMR model of the score used.

Also the Integrated Music Score Editor and Viewer Tool can receive command managed by the Music Editor
and Viewer Command Manager directly from:

• a user, through I-MAESTRO Client User Interface,
• the Exercise Processor, through the Music Editor and Viewer Command Support
• the Cooperative Support for Music Training, during a cooperative session.
• the Score Follower, during a score execution
• the SMR Multi Instance Model which represent the score loaded from the Loader and Saver of

MPEG SMR.

8.1 Music Editing Service

This module is an External Max/MSP graphic object, which gives the capability of score editing and score-
following. This module supplies the synchronisation support to edit music score between workgroup
members. The module doesn’t use the Music Execution Service to exchange information between peers; the
structures and the services used to manage the cooperative editing are embedded in the module itself.

Cooperative editing can involve mainly scores where user can insert, delete, modify notes and symbols. It
manages a commands log executed by each user to keep trace of notes and symbols modified.

Teacher or Coordinator Student can choose to save cooperative work at any time; in this case all group
members receive new document version and the change log is reset.

The API to interact with the Music Editor is defined by Max/MSP Inlets which represent the input to send to
the Music Editor.

The following methods are available to interact with the Music Editor. They can be grouped in three
principal groups:

1. “Get” methods to recover information about parameters and info of the score
2. “Set” methods to set parameters of the score
3. “other” methods

All three groups are linked to a specific inlet and there is an outlet to send info from the Music Editor to the
other objects. So, there is an inlet for each group and only one outlet as shown in the following figure:

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 58
www.i-maestro.org ver2.3, 2006-04-28

8.1.1 Inlets for set methods

The inlet for “Set” methods (the fourth from the left) receives as input the name of the method (without the
“set” prefix) and the list of the parameters. If there are more then one parameter (for example an array
string), the call to method is send as

<methodname without “set” prefix> <value1> <value2> <value3> …

For example, to set the first visible measure, the message sent to the “Set” inlet is:

FirstVisibleMeasure 9
Or to set the size of the score the message is:

Size 640 480

setArgumentOnExecute
Method setArgumentOnExecute
Description It indicates arguments for the commandOnExecute command.
Input
parameters

String array of arguments (depending on the type of command)

Output
parameters

None

setCommandOnExecute

Method setCommandOnExecute
Description It indicates the command to be executed by the user
Input
parameters

string command_id – command to execute

Output
parameters

None

List of
possible

• "ADD_TEXT_ANNOTATION"
the first value in argumentsOnExecute contains the text to be added to the score in the

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 59
www.i-maestro.org ver2.3, 2006-04-28

commands position where the user will click via the mouseOnExecute
• ”ADD_LABEL"

the first value in argumentsOnExecute contains the label text to be added to the
measure where the user will click via the mouseOnExecute if the measure already has
a label the label is substituted

• "ADD_NOTE"
the first value in argumentsOnExecute contains the note duration: D1, D1_2, D1_4,
D1_8,D1_16,D1_32,D1_64; the second value indicates the notehead type:
"CLASSIC", …
the note is inserted where the user clicks or it is added to a chord if sufficiently near to
another note/chord.

• "ADD_REST"
the first value in argumentsOnExecute contains the rest duration: D1, D1_2, D1_4,
D1_8, D1_16, D1_32, D1_64;the rest is inserted where the user clicks via the
mouseExecute.

• "SET_ALTERATION"
the first value in argumentsOnExecute contains the alteration to be set on the note, it
can be: "SHARP","DSHARP","FLAT","DFLAT","NATURAL". The alteration is set
to the note where the user clicks via the mouseExecute.

• "SET_DOTS"
the first value in argumentsOnExecute contains the number of dots to be set on the
note, it can be: "0","1","2". The dots are set to the note where the user clicks via the
mouseExecute.

• "ADD_SYMBOL"
the first value in argumentsOnExecute contains the symbol to be added on the
note/rest/measure, it can be: "STACCATO","TENUTO" or any symbol defined using
the formatting language. The symbol is added where the user clicks via the
mouseExecute.

• "ADD_MEASURE"
adds a measure to the score, the first value in argumentsOnExecute can be:
"BEFORE", "AFTER" or "APPEND", the second value in argumentsOnExecute
indicates the measure with respect to the new measure is added. The second value is
necessary only for execute eventIn and it is not necessary for mouseClickExecute in
fact in this case the measure where the user clicks indicates the measure with respect
to the new measure is added.

• "DEL_MEASURE"
removes a measure of the score; the first value in argumentsOnExecute indicates the
measure number to be removed. The value is necessary only for execute eventIn and it
is not necessary for mouseClickExecute in fact in this case the measure where the user
clicks indicates the measure to be removed.

• "CHANGE_CLEF"
changes the clef of a measure and for all the following until another clef change or to
the end. The first value in argumentsOnExecute contains the clef type, it can be:
"TREBLE", "SOPRANO", "BASS", "TENOR"…, The clef change applies to the
measure where the user clicks via the mouseExecute

• "CHANGE_KEYSIGNATURE"
changes the key signature of a measure and for all the following until another key
signature change or to the end. The first value in argumentsOnExecute contains the
key signature type, it can be: "DOdM", "FAdM", "SIM", … The key signature change
applies to the measure where the user clicks via the mouseExecute

• "CHANGE_TIME"
changes the time of a measure and for all the following until another time change or to
the end. The first value in argumentsOnExecute contains the time, it can be: "4/4",

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 60
www.i-maestro.org ver2.3, 2006-04-28

"3/4", "2/4", "C" or "C/". The time change applies to the measure where the user
clicks via the mouseClickExecute

• "SET_METRONOME"
sets the metronome for the whole piece. The first value in argumentsOnExecute
contains the reference note duration (D1, D1_2, D1_4,…) the second value contains
"TRUE" if the reference note is with augmentation dot ("FALSE" or empty
otherwise), the third value indicates the number of reference notes in one minute. For
example ["D1_4", "TRUE", "100"] sets a metronome with 100 dotted quarters in one
minute. The metronome is set using the execute eventIn.

• "DELETE"
allows deleting any symbol, note, rest, alteration, label and annotation added by the
user in the position where the user clicks via the mouseExecute

setFirstVisibleMeasure
Method setFirstVisibleMeasure
Description It sets the first measure currently visible
Input
parameters

Int number_of_measure

Output
parameters

None

setHyperlinkEnable

Method setHyperlinkEnable
Description When it is set to 1 hyperlinks are shown; when the user clicks on a link an activatedLink is

generated
Input
parameters

Int 1 to activate Hyperlink
0 otherwise

Output
parameters

None

setPartLyrics
Method setPartLyrics
Description It is an array of strings indicating for which part to view the lyrics and in which language (e.g.

["it", "en", ""] to view lyrics for part 1 in Italian and for part 2 in English)
Input
parameters

String array of language for part lyrics (the position represents the number of part, the string
represents the language)

Output
parameters

None

setPartShown

Method setPartShown
Description It is an array of integers indicating which parts have to be shown; the number is the position in

the array of parts names; if partShown is empty all parts will be visible (e.g. [] to view main
score with all parts, [2] to view single part number 2, [1,3] view main score with parts 1 and 3,
etc.).

Input
parameters

Int array (number of the parts to show)

Output
parameters

None

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 61
www.i-maestro.org ver2.3, 2006-04-28

setScoreOffset
Method setScoreOffset
Description It indicates the initial (or point 0) offset from the beginning of the score; it may be used to

change page or move inside the score before starting it, or in pause etc. scoreOffset is
indicated in seconds from the beginning of the score. scoreOffset can be used only if
synchronization information is provided or a metronome indication is present in the score.

Input
parameters

Float time

Output
parameters

None

setChronometricPosition

Method setChronometricPosition
Description It sets the chronometric position (in millisecond) in the SMR object
Input
parameters

Float position

Output
parameters

None

setComputerViewParams

Method setComputerViewParams
Description It sets params for ComputerView
Input
parameters

Short Top
Short bottom
Short left
Short right
Short staff

Output
parameters

None

setMetricPosition

Method setMetricPosition
Description It sets the position depending on a metric (a metric is a time interval defined as a specific

fraction of a minute) in the SMR object.
Input
parameters

Unsigned long int

Output
parameters

None

SetPrintViewParams

Method SetPrintViewParams
Description It sets params for PrintView
Input
parameters

Short nPage
Short top
Short bottom
Short left
Short right
Float magnify
Short linelenght
Short nStaffs
Short nSystems
Short Distance

Output None

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 62
www.i-maestro.org ver2.3, 2006-04-28

parameters

setSize
Method setSize
Description It expresses the width and height of the music score in the units of the local coordinate system.

A size of -1 in either coordinate means that the MusicScore node is not specified in size in
that dimension, and that the size is adjusted to the size of the parent node.

Input
parameters

Vec2f (array of two floats)

Output
parameters

None

setSpeed

Method setSpeed
Description It indicates how fast the score shall be played. It can be a positive tempo multiplier (>0), so a

speed of 2 indicates the score plays twice as fast the tempo metronomic indication.
Input
parameters

Float speed

Output
parameters

None

setViewType

Method setViewType
Description It indicates the kind of view to be used (one of the availableViewTypes).
Input
parameters

String view_type

Output
parameters

None

8.1.2 Inlets for get methods

The inlet for “Get” methods (the third from the left) receives as input only the name of the method (without
“get” prefix). The method is executed by the Musice Edtior and it returns from the Return outlet (the second
from the left) the name of the method (without the “get” word) and the parameters defined in the Output
Parameters. If there are more than one parameters (for example an array string), the Return outlet returns a
sequence as:
<methodname without “get” prefix> <value1> <value2> <value3> …

For example, to get the first visible measure, the message sent to the “Get” inlet is:
FirstVisibleMeasure
And the output of Return outlet is: FirstVisibleMeasure 25

getArgumentOnExecute
Method ArgumentOnExecute
Description It returns arguments for the current commandOnExecute command.
Input
parameters

None

Output
parameters

String array of arguments

getAuthor

Method getAuthor

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 63
www.i-maestro.org ver2.3, 2006-04-28

Description It returns the author of the SMR loaded
Output
parameters

String author

getAvailableCommands

Method getAvailableCommands
Description It gives an array of commands that can be performed on the score by the user when the user

clicks on the score (e.g. ["ADD_LABEL", "ADD_TEXT_ANNOTATION", "DELETE"])
Input
parameters

None

Output
parameters

String array of available commands

getAvailableLabels

Method getAvailableLabels
Description It gives an array of strings with labels (e.g. ["A", "B", "SEGNO", "CODA"]).
Input
parameters

None

Output
parameters

String array of labels

getAvailableLyricLanguages

Method getAvailableLyricLanguages
Description It gives an array of strings where for each part there is the list of languages (using the ISO

639-2 standard), separated with ";", for which the lyric is available (e.g. ["en;it", "en;it", ""])
(this field may or may not be filled by the scene author, which is supposed to know the SMR
content and thus languages that are available).

Input
parameters

None

Output
parameters

String array of LyricLanguages

getAvailableViewTypes

Method getAvailableViewTypes
Description It gives an array of strings describing which view types are available for the score and for the

decoder (e.g. ["CWMN", "braille", "neumes"]).
Input
parameters

None

Output
parameters

String array of ViewTypes

getChronometricPosition

Method getChronometricPosition
Description It provides the present chronometric position (in millisecond) in the SMR object
Input
parameters

None

Output
parameters

Float position

getCommandOnExecute

Method getCommandOnExecute
Description It returns the current command set with the setCommandOnExecute method
Input None

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 64
www.i-maestro.org ver2.3, 2006-04-28

parameters
Output
parameters

string command_id – current command set to execute

List of
possible
commands

• "ADD_TEXT_ANNOTATION"
• ”ADD_LABEL"
• "ADD_NOTE"
• "ADD_REST"
• "SET_ALTERATION"
• "SET_DOTS"
• "ADD_SYMBOL"
• "ADD_MEASURE"
• "DEL_MEASURE"
• "CHANGE_CLEF"
• "CHANGE_KEYSIGNATURE"
• "CHANGE_TIME"
• "SET_METRONOME"
• "DELETE"

getFirstVisibleMeasure
Method getFirstVisibleMeasure
Description It returns the first measure currently visible
Input
parameters

None

Output
parameters

Int number_of_measure

getHighlightPosition

Method getHighlightPosition
Description It outputs the highlight position in local coordinates.
Input
parameters

None

Output
parameters

Vecf3 (0,0,0) (array of three floats)

getHyperlinkEnable

Method getHyperlinkEnable
Description When it is set to 1 hyperlinks are shown; when the user clicks on a link an activatedLink is

generated
Input
parameters

None

Output
parameters

Int 1 if Hyperlink is activated
0 otherwise

getLastVisibleMeasure
Method getLastVisibleMeasure
Description It is the last measure currently visible
Input
parameters

None

Output Int number_of_measure

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 65
www.i-maestro.org ver2.3, 2006-04-28

parameters

getMetricPosition
Method getMetricPosition
Description It provides the position depending on a metric (a metric is a time interval defined as a specific

fraction of a minute) in the SMR object.
Input
parameters

None

Output
parameters

Unsigned long int

getMousePositionOnExecute

Method getMousePostionOnExecute
Description It is used to indicate the point where the user has clicked, the position will be considered when

the executeCommand will be issued.
Input
parameters

None

Output
parameters

Vecf3 (0,0,0) (array of three floats)

getNumMeasure

Method getNumMeasure
Description It gives the number of measures in the score.
Input
parameters

None

Output
parameters

Int number_of_measure

getPartLyrics

Method getPartLyrics
Description It is an array of strings indicating for which part to view the lyrics and in which language (e.g.

["it", "en", ""] to view lyrics for part 1 in Italian and for part 2 in English)
Input
parameters

None

Output
parameters

String array of part lyrics

getPartNames

Method getPartNames
Description It gives an array of strings with part names (instruments, e.g. ["soprano", "baritone", "piano"])
Input
parameters

None

Output
parameters

String array of part names.

getPartShown

Method getPartShown
Description It is an array of integers indicating which parts are shown; the number is the position in the

array of parts names; if partShown is empty all parts will be visible (e.g. [] to view main
score with all parts, [2] to view single part number 2, [1,3] view main score with parts 1 and 3,
etc.).

Input
parameters

None

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 66
www.i-maestro.org ver2.3, 2006-04-28

Output
parameters

Int array (number of the parts shown)

getScoreOffset
Method getScoreOffset
Description It returns the initial (or point 0) offset from the beginning of the score; it may be used to

change page or move inside the score before starting it, or in pause etc. scoreOffset is
indicated in seconds from the beginning of the score. scoreOffset can be used only if
synchronization information is provided or a metronome indication is present in the score.

Input
parameters

None

Output
parameters

Float time

getSize

Method getSize
Description It returns the width and height of the music score in the units of the local coordinate system.

A size of -1 in either coordinate means that the MusicScore node is not specified in size in
that dimension, and that the size is adjusted to the size of the parent node.

Input
parameters

None

Output
parameters

Vec2f (array of two floats)

getSpeed

Method getSpeed
Description It returns the present speed of the score. It can be a positive tempo multiplier (>0), so a speed

of 2 indicates the score plays twice as fast the tempo metronomic indication.
Input
parameters

None

Output
parameters

Float speed

getSymPartName
Method getSymPartName
Description It returns a description of a Symbolic Score
Input
parameters

None

Output
parameters

string desc – description of the score

getTitle

Method getTitle
Description It returns the title of the SMR loaded
Output
parameters

String title

getViewType

Method getViewType
Description It returns the view used (one of the availableViewTypes).
Input None

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 67
www.i-maestro.org ver2.3, 2006-04-28

parameters
Output
parameters

String view_type

8.1.3 Inlets for other methods

The inlet for “Other” methods (the fifth from the left) receives as input the name of the method following (if
required) by the parameter declared in the Input Parameters.

The method is executed by the Music Editor and, if the method has some parameters to return, it returns from
the Return outlet (the second from the left) the name of the method and the parameters defined in the Output
Parameters. If there are more than one parameters (for example an array string), the Return Outlet returns a
sequence as:

<methodname> <value1> <value2> <value3> …

For example, to load a file, the message sent to the “Other” inlet is:

Load nomefile
And the output of Return outlet could be: Load 1 (to confirm the correct file loading) or Load 0 (if there is a
problem to load the file)

Another example is the sequence of messages to execute a command to insert a note in the score (“Set” and
“Other” inlets and Return outlet are involved):

step Get Set Other Return
1 “CommandOnExecute” ADD_NOTE
2 “ArgumentOnExecute” D1_8 CLASSIC

3 “ExecuteCommand”

4 “ExecuteCommand” 1

In the first step it arrives at the “Set” Inlet the message to set the type of command to perform, then arrive
also the command to set the parameters for the command itself. In the third step is sent the message to the
“Other” inlet to execute the command previously set and at the end, from the Return Outlet, the message
arrives with the confirmation of correct execution of the command.

ExecuteCommand
Method ExecuteCommand
Description It is an input event indicating that the command set in commandOnExecute has to be

performed.
Input
parameters

None

Output
parameters

Int 1 if the command is correctly performed
0 otherwise

GoBackward
Method GoBackward
Description It shows previous score page
Input None

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 68
www.i-maestro.org ver2.3, 2006-04-28

parameters
Output
parameters

None

GoForward

Method GoForward
Description It shows next score page
Input
parameters

None

Output
parameters

None

GoBottom

Method GoBottom
Description It shows the bottom of the score
Input
parameters

None

Output
parameters

None

GoTop

Method GoTop
Description It shows the top of the score
Input
parameters

None

Output
parameters

None

GotoLabel

Method GotoLabel
Description It positions the score on the page containing the specified label (one of the availableLabels).
Input
parameters

String label

Output
parameters

None

GotoMeasure

Method GotoMeasure
Description positions the score on the page containing the specified measure
Input
parameters

Int32 number of measure

Output
parameters

None

HighlightTimePosition

Method HighlightTimePosition
Description It highlights the time position indicated relative to the scoreOffset field
Input
parameters

None

Output
parameters

None

Justify

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 69
www.i-maestro.org ver2.3, 2006-04-28

Method Justify
Description It justifies (logarithmic or linear) the current score depending on entry parameters
Input
parameters

Short fromMeasure
Short toMeasure
int logarithmic (1 is logarithmic, 0 is linear)

Output
parameters

None

Load
Method Load
Description Load a file from disk or from a URL
Input
parameters

string file – name or path of the file to load

Output
parameters

Int 1 if the file is correctly loaded, 0 otherwise

Pause
Method Pause
Description It pauses the current file execution
Input
parameters

None

Output
parameters

None

Play

Method Play
Description It plays the file previously loaded
Input
parameters

None

Output
parameters

None

PlaySync
Method PlaySync
Description It plays a synchronous file
Input
parameters

None

Output
parameters

None

PlaySyncFromTo

Method PlaySyncFromTo
Description It executes an synchronous file from the measure x to the measure y
Input
parameters

long startMeasure
long endMeasure

Output
parameters

None

Print

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 70
www.i-maestro.org ver2.3, 2006-04-28

Method Print
Description Print the current score
Input
parameters

None

Output
parameters

None

Stop
Method Stop
Description It stops the execution of a file loaded
Input
parameters

None

Output
parameters

None

Transpose
Method Transpose
Description It transposes notes in the score.
Input
parameters

Short daBat – start measure to execute transposition
Short aBat – final measure to execute transposition
Short partnumber – number of the part to transpose
Short clef – number of the clef to change
Short translation – it point how much the note have to be tranlated
Short interval – type of interval
Short up – it points if the translation is up or down
Short numofstaff – it gives the capability to transpose using more then one staff
Short sharps
Short adjust

Output
parameters

None

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 71
www.i-maestro.org ver2.3, 2006-04-28

8.2 Music editor and Score Follower Support

The following is the schema of the structure of a score. Score is made by single parts (from one to n) and
each part is made by voices. Each voice can contain one ore more events. There are various type of events:
Note, Chord made by notes, MeasureChange, Rest, Refrain, KeyChange, ClefChange and TimeSignChange.

Event 2

Note

Rest

Chord

KeyChange

ClefChange

TimeSignChange

MeasureChange

Refrain

Note 1

Note 2

Note n

Part 2

Voice 2

Voice n
Voice 1

Score

Part n
Part 1

Event 1 Event n

Label

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 72
www.i-maestro.org ver2.3, 2006-04-28

The following methods represent the interface provided by the Musisc Editor to the Score Follower to
interact with the score.

Score

Part

Voice

Voice

TimeSignChange Label KeyChange

Chord

Part
Name

Note (tied)

ClefChange RestMeasureChange

An example of access to the score viewed in the figure above can be the access to the duration of each note
of lower voice in the “Violin” part.

SetPart(3)
SetVoice(1)
For i=1,i<getNumEvents(),i++
{
 setCurrentEvent(i)
 event_type=getEventType()
 if (event_type==1) //the event is a note
 {
 currenteNoteDuration=getDuration()

}
}

8.2.1 Score navigation methods

getNumParts
Method getNumParts
Description It returns the total parts number inside the score ordered bottom-up. There are at least one part

in a score ordered from the lower to the higher.
Input
parameters

None

Output
parameters

Int total_parts_number

setPart

Method setPart
Description It selects the part inside the score
Input Int part_number

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 73
www.i-maestro.org ver2.3, 2006-04-28

parameters
Output
parameters

Int 0 if no error
-1 otherwise

getScoreName

Method getScoreName
Description It returns the name of the score (if present)
Input
parameters

None

Output
parameters

String score_name

getNumVoices

Method getNumVoices
Description It returns the total voices number inside the part. There are from 1 to 4 voices in a part ordered

from the lower to the higher.
Input
parameters

None

Output
parameters

Int total_voices_number if no error
-2 otherwise

setVoice

Method setVoice
Description It selects the voice inside the part
Input
parameters

Int voice_number

Output
parameters

Int 0 if no error
-1 otherwise

getPartName

Method getPartName
Description It returns the name of the part (if present)
Input
parameters

None

Output
parameters

String part_name

getNumEvents

Method getNumEvents
Description It returns the total events number inside the voice. There is atleast one event in a voice.
Input
parameters

None

Output
parameters

Int total_events_number if no error
-3 otherwise

setCurrentEvent

Method setCurrentEvent
Description It selects an event inside the voice
Input
parameters

Int event_number

Output
parameters

Int 0 if no error
-1 otherwise

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 74
www.i-maestro.org ver2.3, 2006-04-28

getEventType
Method getEventType
Description It returns the type of the event selected
Input
parameters

None

Output
parameters

int event_type if no error
-4 otherwise

eventType Int
Label 0
Note 1
Rest 2
MeasureChange 3
Chord 4
Refrain 5
KeyChange 6
ClefChange 7
TimeSignatureChange 8

8.2.2 Label Info

getLabel
Method getLabel
Description It returns the label code (ASCII code if alfanumeric)
Input
parameters

None

Output
parameters

int label_type if no error
-5 otherwise

refrainType Int Example

CODA 0

SEGNO 1

FINE 2 Fine

Letter label ASCII(…) A…Z, 0...9

8.2.3 Note Info

getPitch
Method getPitch
Description It returns the pitch of note
Input
parameters

None

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 75
www.i-maestro.org ver2.3, 2006-04-28

Output
parameters

String pitch_value (Format: XYZ; X is the char representing the basic pitch, Y is the optional
sharp or flat, Z is the octave number – E.g. A#3, Bb4, E1, C3 = middle C) if no error
Empty string otherwise

getDuration

Method getDuration
Description It retuns the symbolic positive note duration calculated depending on the duration of a whole

note. (whole note duration = 4096)
Input
parameters

None

Output
parameters

Unsigned Int duration if no error
-5 otherwise

Unsigned int Example

8192

4096

2048

1024

512

256

128

64

32

getIsTied

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 76
www.i-maestro.org ver2.3, 2006-04-28

Method getIsTied
Description It returns 1 if the note is tied with the previous one (with the same pitch).
Input
parameters

None

Output
parameters

int 1 if the note is tied
0 if not and
-5 otherwise

8.2.4 Rest info

getDuration
Method getDuration
Description It retuns the symbolic positive rest duration calculated depending on the duration of a whole

rest. (whole rest duration = 4096)
Input
parameters

None

Output
parameters

Unsigned Int duration if no error
-5 otherwise

Unsigned int Example

16384

8192

4096

2048

1024

512

256

128

64

32

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 77
www.i-maestro.org ver2.3, 2006-04-28

8.2.5 MeasureChange info

getBPM
Method getBPM
Description It define the metronome speed of the current measure
Input
parameters

None

Output
parameters

Unsigned int beat_per_minute if no error
-5 otherwise

getDurationRef

Method getDurationRef
Description It retuns the symbolic positive note duration (whole note duration = 4096) used as unit of

measurement for the metronome speed set using getBPM method
Input
parameters

None

Output
parameters

Unsigned Int duration if no error
-5 otherwise

getBarType

Method getBarType
Description It returns the type of the barline of the measure
Input
parameters

None

Output
parameters

int bar_type if no error
-5 otherwise

barType Int Example

SINGLE 0

DOUBLE 1

START_REFRAIN 2

END_REFRAIN 3

START_END_REFRAIN 4

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 78
www.i-maestro.org ver2.3, 2006-04-28

END 5

INVISIBLE 6

8.2.6 Chord info

getNumNotes
Method getNumNotes
Description It returns the total number of note inside the chord ordered from the lower to the higher pitch.
Input
parameters

None

Output
parameters

Int total_note_number. if no error
-5 otherwise

setNote

Method setNote
Description It selects a note inside the chord.
Input
parameters

Int note_number

Output
parameters

Int 0 if no error
-1 otherwise

8.2.7 Refrain info

getRefrain
Method getRefrain
Description It returns the type of refrain.
Input
parameters

None

Output
parameters

int refrain_type if no error
-5 otherwise

refrainType Int Example

DC 0 D.C. - Da Capo

DCAF 1
D.C. al Fine

Da Capo al Fine

DS 2 D.S. - Dal Segno

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 79
www.i-maestro.org ver2.3, 2006-04-28

DSAF 3
D.S. al Fine

Dal Segno al Fine

DCAS 4
D.C. al Segno

Da Capo al Segno

DSAC 5
D.S. al Coda

Dal Segno al Coda

FIRSTTIME 6

SECONDTIME 7

THIRDTIME 8

ENDTIME 9

8.2.8 KeyChange info

getKey
Method getKey
Description It returns the key signature type.
Input
parameters

None

Output
parameters

int keychange_type if no error
-5 otherwise

KeyChangeType Example
Major Int Minor Int

DOdM 7 LAdm 22

FAdM 6 REdm 21

SIM 5 SOLdm 20

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 80
www.i-maestro.org ver2.3, 2006-04-28

MIM 4 DOdm 19

LAM 3 FAdm 18

REM 2 SIm 17

SOLM 1 MIm 16

DOM 0 Lam 15

FAM 8 REm 23

SIbM 9 SOLm 24

MIbM 10 Dom 25

LAbM 11 FAm 26

REbM 12 SIbm 27

SOLbM 13 MIbm 28

DObM 14 LAbm 29

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 81
www.i-maestro.org ver2.3, 2006-04-28

8.2.9 ClefChange info

getClef
Method getClef
Description It returns the clef signature type.
Input
parameters

None

Output
parameters

int clef_type if no error
-5 otherwise

clefType Int Example

BARITONE 0

BASS 1

BASSOLD 2

ALTO 3

MEZZOSOPRANO 4

SOPRANO 5

TENOR 6

TENOR8 7

TREBLE 8

TREBLE8 9

8TREBLE 10

BASS8 11

8BASS 12

EMPTY(questo non
è un cambio chiave) 13

PERCUSBOX 14

PERCUS2LINES 15

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 82
www.i-maestro.org ver2.3, 2006-04-28

TAB 16

8.2.10 TimeSignChange info

getTimeNum
Method getTimeNum
Description It returns the numerator part of the time signature
Input
parameters

None

Output
parameters

Int numerator if no error
-5 otherwise

getTimeDen

Method getTimeDen
Description It returns the denominator part of the time signature
Input
parameters

None

Output
parameters

Int denominator if no error
-5 otherwise

8.2.11 Error codes description

The following table shows the correspondence between error code number and their description.

Description Code (Int)
Out of bounds -1
Part not set -2
Voice not set -3
Current event not set -4
Wrong type event -5

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 83
www.i-maestro.org ver2.3, 2006-04-28

8.2.12 Interaction with Music Editor in Max/MSP

The Music Editor Max module provides two specific inlets and one specific outlet, available for score
exploring. The first inlet receives string commands corresponding to each ‘get’ methods and the second
receives string commands corresponding to the ‘set’ methods previously desribed. The outlet returns a
couple containing the name of the command sent and a value that can be also an error code if fault occurred.

Music Editor

Get Set

Return

Scorename
NumParts
Partname
NumVoices
NumEvents
Eventype
Label
Pitch
Duration
isTied
BPM
DurationRef
Bartype
NumNotes
Refrain
Key
Clef
TimeNum
TimeDen

Part int
Voice int
CurrentEvent int
Note int

(string_type, value)

The following command sequence is an example of interaction with Music Editor using the previously
methods. The example score is made of 3 parts containing each a single voice, there are 10 figures (only
notes and rests) per voice.

The table below presents the sequence of command to recover the duration of a note; the steps are explained
to give an idea of the sequence progress. In the first step it is selected the part 3 of the score, and Return
Outlet sends the method name with number of the part. Then in the step 3, it is selected the voice two (of the
part 3 previously set). But now Return Outlet returns the name of the method with the number -1 which
represents the presence of the error “Out of bounds” because there isn’t the voice number 2 in the part 3. In
the step 5 the voice 1 is set and now the return value is correct.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 84
www.i-maestro.org ver2.3, 2006-04-28

The sequence continues with the step 7 where the command setCurrentEvent selects the event number 5 in
the voice 1. The event type is get calling the Eventype method in the step 9. The return value from the Return
outlet is “Eventype 1”. Looking at the event type code, the number 1 corresponds to the Note type.
Then in step 11, the method Label is called to the current event (Note); the return value is an error (the
number -5) because the note doesn’t have a label. In the end, the last method called is Duration which returns
the duration of the note (step 14).

step Get Set Return
1 “Part” 3
2 “Part” 3
3 “Voice” 2
4 “Voice” -1
5 “Voice” 1
6 “Voice” 1
7 “CurrentEvent” 5
8 “CurrentEvent” 5
9 “Eventype”
10 “Eventype” 1
11 “Label”
12 “Label” -5
13 “Duration”
14 “Duration” 256
15
16
17

8.3 Music editor and Viewer Assessment Support

The main goal of assessment for theory exercises is to check/test the student’s understanding of musical
structure and compositional procedures thought recorded and notated examples, with emphasis on the
listening abilities (recognition and understanding of melodic and rhythmic patterns, compositional
techniques, harmonic functions, etc).

Assessment support for theory exercises will be done through:

• written exercises (multiple choice questions, essays, etc.)
• written musical assignments (dictation, harmony etc.)
• listening exercises
• performance exercises
•

Key points

• Number of exercises classified in different topics
o Music history, styles, etc.
o Notation (rhythms and meters, scales, modes, intervals, chords, clefs, key signatures,

transposition, etc.)
o Elementary theory: identify intervals, scales, chords, cadences, rhythms, etc
o Harmony/composition: composition of a bass line for a given melody, realization of a

figured bass, four voices realization, write down chord progressions, etc.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 85
www.i-maestro.org ver2.3, 2006-04-28

o Dictation: pitch training, rhythms,
o Score analysis (identification of types of cadences, roman-numeral and figured-bass

analysis, modulations, etc.
o Formal procedures analysis (phrase structure, small forms etc.)

• Suitable for different ages and knowledge/levels
• Assessment structure organized in levels of increasing difficulty
• Monitors student progress: Possibility to get feedback/reply to the actions identifying strengths and

weaknesses
• Exercises to test the student’s ability to develop or organise different material, ideas, etc.
• Possibility of interactive testing.
• Different designed test for classical, electronic, jazz, specific twentieth-century techniques, etc.
• Exercises under timed conditions
• Suitable in different scenarios: classroom setting, self training, cooperative work, etc.
• Possibility to the teachers to create the assessment tests.

8.3.1 Practice training

Evaluation and assessment of practice training is supported by other I-MAESTRO features. In the music
editor particular annotations could be used. Nevertheless some characteristics of symbolic training
assessment could apply to practice training as well.

8.3.2 Symbolic training

In the assessment of a symbolic training two levels should be distinguished.

1. Error detection
2. Evaluation and assessment

1. Error detection is strongly connected to the kind of exercise and the model used. In the case of binary
(e.g. yes/no) exercise or simple unique possibility answers error detection is quite easy. E.g. ear training,
intervals. The exercise consists in writing the note at a given interval:

In this case there is only one possible answer. An algorithm which “knows” intervals will check if the answer
is correct and detect a possible mistake:

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 86
www.i-maestro.org ver2.3, 2006-04-28

+7 semitones = perfect fith above: correct! 1+5 semitones= perfect fourth: wrong!

Furthermore this kind of exercise could be generated automatically by the exercise generator, once the model
has been defined, relieving the teacher from a tedious and repetitive work.

Adding just a slight complexity to the exercise adds complexity to the detection of possible error,
nevertheless an algorithm can still be used in many cases:

For tonal harmony exercises, although some algorithms have been implemented3 the final and main
supervision by the teacher is necessary; furthermore tonal harmony rules have changed and change
continuously.

3 A good example is the harmony training software ‘Harmony Practice’: http://membres.lycos.fr/mbaron/hp.htm.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 87
www.i-maestro.org ver2.3, 2006-04-28

In such cases, especially where issues which are not strictly technical are involved (like aesthetics), the
teacher will want to decide the exact answer according to her/his pedagogical model and conventions: so in
the authoring process s/he will have the possibility to set the answer(s).

Student’s view

Teacher’s view in the authoring tool

Of course if the right answers have been set by the teacher, the error detection will be quite simple.

For some kind of exercise the teacher may also decide to detect manually the mistakes, for example through
annotations.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 88
www.i-maestro.org ver2.3, 2006-04-28

2. Evaluation and assessment

Once errors have somehow been detected, the teacher has to decide what will be the consequences especially
in terms of assessment. Some parameters could be entered during the authoring process to assist in the
assessment where error detection algorithms are present.

The final decision for theory training assessment should be left to the teacher, although in some cases (such
as the simple interval exercise) some form of automatic calculation would be provided.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 89
www.i-maestro.org ver2.3, 2006-04-28

8.4 Music editor and Viewer Tool Accessible User Interface

The Accessible Music Notation Module within the I-MAESTRO client tool
Document DE3.1.1a provides an overview of the general design requirements behind designing a tools and
systems for including Accessible Notation decoders within the I-MAESTRO framework. The overall
structure of such an Accessible Music decoder is shown below:

The I-MAESTRO framework sends an I-MAESTRO lesson (in the SMR format) to the Accessible Music
Processing module. This along with parameter values and user preferences sent by the I-MAESTRO client

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 90
www.i-maestro.org ver2.3, 2006-04-28

tool are used to create a user personalised accessible notation in the required format (Talking Music, SVG,
Braille).

Accessible presentation of Structured music representations

The accessibility component of the I-MAESTRO client tool essentially provides an accessible presentation
of the SMR based content within I-MAESTRO lessons. In order to provide this accessible presentation of the
musical information, the main adaptations take place in a presentation layer.

In order to keep the possibility of flexibility in formatting and cooperation with other components, a Object
Oriented Document Model is used. The purpose of such a model is the possibility of domain independent
presentation modelling. In other words: The content of the Music Model does not effect its presentation
directly, but it can be changed by the presentation layer. Also the behaviour of the separate document classes
can be specialised by means of inheritance, to provide the more specialised features required by the different
output formats. In the figure below, a class tree is shown:

Figure: A class diagram representing a document model

Again, a well-balanced class tree is preferred, since it enables us to reuse general behaviour in document
management in a more intuitive way. More specialised formatting tasks can be catered for by means of
inheritance.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 91
www.i-maestro.org ver2.3, 2006-04-28

FileOutput

To be able to model the different requirements for outputting the transcribed music, the relevant entities
involved in output modelling should be represented as classes. In this stage all additionally required
procedures that are specific for the possible output formats can be designed.

Figure: FileOutput Classes

Cooperation between components/packages

Note that not all components for interpreting Braille Music and Talking Music have to be present in one
plugin. Both output formats merely share the same codebase, making it possible to combine both modules in
one decoder.

All resources from the I-MAESTRO client tool can be used, such as: font dialogs, ornament dialogs, printing
dialogs, MIDI playback and file manipulation. Specific procedures for calling such resources must be
followed. The protocols and procedures for interfacing with these elements are made clear else where in this
specification document (DE3.1.1)

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 92
www.i-maestro.org ver2.3, 2006-04-28

9 Specification of Gesture and Posture Acquisition and Processing
Tool

9.1 Gesture and Posture Overview

Gesture and Posture Tools

Figure: Gesture and Posture Tools

Gesture and Posture Tools use a set of modules to assess the Students performance. They include Cameras
with Video Recording Tool, Motion Capture Systems with Gesture and Posture Acquisition and Processing
Tool, Sensors with Sensor and Actuators Management Tools.

The Sensor and Actuators Management Tools, Gesture and Posture Acquisition and Processing Tool and
Video Recording Tool are linked to the Posture Assessment Support and to the Gesture Assessment Support
to send Students’ evaluations for assessment through the Cooperative Support for Music Training.

The Exercise Processor is connected to the Gesture Assessment Support and the Posture Assessment Support
for provision and execution of exercises, the performance for which is to be assessed.

The Integrated Music Score Editor and Viewer Tool is connected to the Gesture and Posture Acquisition and
Processing Tool and the Video Recording Tool in order to perform Annotations using motion or video data.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 93
www.i-maestro.org ver2.3, 2006-04-28

Gesture and Posture Acquisition and Processing Tool and Video Recording Tool are also connected to the
Gesture-controlled creative multimedia interface to allow mapping of motion (2D or 3D) into sound
(sonification).

Each tool is connected directly to Cooperative support for Music Training to send and receive commands
and information through the P2P Network.

9.2 Gesture and Posture Acquisition

I-MAESTRO-Architecture::Cooperative Support for Music Trainin

Gesture and Posture
Acquisition

Gesture and Posture Reporting
and Visualisation

Gesture and Posture Analysis

Gesture and Posture Acquisition and Processing
Tool

Motion Data Repository

Motion Data

Figure: Gesture and Posture Acquisition and Processing Tool

Gesture and Posture Acquisition and Processing Tool consists of Gesture and Posture Acquisition module
that takes as input 3D Motion Data from the Motion Capture System. The Motion Data is used for Gesture
and Posture analysis of the Actor. The Motion Data can be saved, loaded, deleted etc. using Motion Data
Repository. The Gesture and Posture Reporting and Visualisation module outputs the Motion Data on the
screen or sends it to a remote user through the Cooperative Support for Music Training. The Motion Data
may also be passed directly from Acquisition module to Reporting and Visualisation module without
analysis by the Gesture and Posture Analysis module. This functionality is useful for “enhanced mirror”

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 94
www.i-maestro.org ver2.3, 2006-04-28

capability. Each tool is connected directly to Cooperative support for Music Training to send and receive
commands and information through the P2P Network.

9.3 Gesture-controlled Creative Multimedia Interface

I-MAESTRO-Architecture::Cooperative Support for Music Training

Gesture-controlled Creative Multimedia Interface

«subsystem»
Gesture Feature Extraction

«subsystem»
Audiovisual Feedback

«subsystem»
Data conditioning

«subsystem»
Gesture Analysis and Recognition

Gesture and Posture acquisition and processing
Tool

«subsystem»
Mapping Strategy

GUI

Figure: Gesture-controlled Creative Multimedia Interface

Gesture-controlled Creative Multimedia Interface performs transformation of data into audio and visual
feedbacks to allow different forms of interpretations, with a user configurable mapping strategies interface.

As shown in Figure, the Creative Multimedia Interface receives input data of performance from the Gesture
and Posture acquisition and processing tool. This data is conditioned by the Data conditioning module and is
passed on to the Gesture Analysis and Recognition module. This module extracts Gesture features from the
Motion data (with the help of Gesture Feature extraction module), which are then mapped on to multimedia
output using a mapping strategy (as defined by the Mapping Strategy module).

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 95
www.i-maestro.org ver2.3, 2006-04-28

Audiovisual Feedback module outputs the results of mapping in accordance to the input data. It is also
connected to the Cooperative Support for Music Training to send and receive commands and information
through the P2P network. Both the Mapping Strategy module and Audiovisual Feedback modules are
connected to a local GUI module, using which the user can change parameters for mapping strategy as well
as for interactive multimedia rendering.

9.4 Gesture and Posture Assessment Support

Gesture and Posture Assessment Support provides the Teacher with facilities for assessment of a Student’s
performance in terms of Gesture and Posture, using 3D Motion Data of the performance.

Gesture Assessment Feedback

«datatype»
Gesture Models

I-MAESTRO-Architecture::Cooperative Support for Music Training

Cooperative Support for Music Training::Gesture and Posture
acquisition and processing

Tool

Gesture Assessment Support

I-MAESTRO Client
Tool::Music Training
Exercise Processor

«subsystem»
Moton Data Comparison

«subsystem»
Sensor Data Comparison

«subsystem»
Consistency Analysis

Cooperative Support for Music
Training::Integrated Music
Score Editor and Viewer

Tool

GUI

Figure: Gesture Assessment Support

As can be seen in Figure “Gesture Assessment Support”, 3D Motion Data of a performance is acquired using
the Gesture and Posture acquisition and processing Tool. This Motion Data can either be of a Student’s
performance or of a Gesture Model (by teacher). The Motion Data for a Student’s performance is used by the

• Consistency Analysis, for monitoring the consistency of Bow gestures of Student using graphs and

charts. The analysis for these graphs/charts is done in this module and the results are fed to the Gesture
Assessment feedback for visualisation and output.

• Motion Data Comparison, for comparing a Student’s performance with either (a) a Gesture model or (b)
with another Student’s performance.

• Sensor Data Comparison, for comparing a Student’s performance with either (a) a Gesture model or (b)
with another Student’s performance.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 96
www.i-maestro.org ver2.3, 2006-04-28

All aforementioned modules are connected to the Gesture Assessment Feedback module which outputs the
assessment results and visualisation through a local GUI module. Additionally profile history of the usage
may be sent via the Cooperative Support for Music Training (P2P) to the School Server or the Teacher. The
Gesture Assessment Feedback module is also connected to the Integrated Music Score Editor and Viewer
tool for Annotation functionalities.

The exercises, for which the performance is to be assessed are provided and executed by the Music Training
Exercise Processor.

Each tool is connected directly to Cooperative support for Music Training to send and receive commands
and information through the P2P Network.

Posture Assessment Support

Posture Assessment Feedback

«subsystem»
Mean/Average Posture

«subsystem»
Posture Comparison

«datatype»
Posture Model

Cooperative Support for Music
Training::Integrated Music Score

Editor and Viewer
Tool

I-MAESTRO-Architecture::Cooperative Support for Music Training

Cooperative Support for Music Training::Gesture and Posture
acquisition and processing

Tool

I-MAESTRO Client
Tool::Music Training
Exercise Processor

GUI

Figure: Posture Assessment Support

For Posture Assessment (see Figure “Posture Assessment Support”) 3D Motion Data of a performance is
acquired using the Gesture and Posture acquisition and processing Tool. This Motion Data can either be of a
Student’s performance or of a Posture Model (by teacher). The Motion Data for a Student’s performance is
used by the Mean/Average Posture module, which provides a static posture by taking mean/average of the
varying Posture for comparison with a Posture Model (or a mean/average posture from another Student’s
performance Motion Data). This comparison is carried out by the Posture Comparison module. Posture
Assessment Feedback outputs the assessment results and visualisation through a local GUI module.
Additionally profile history of the usage may be sent via the Cooperative Support for Music Training (P2P)
to the School Server or the Teacher. The Posture Assessment Feedback module is also connected to the
Integrated Music Score Editor and Viewer tool for annotation functionalities.

The exercises, for which the performance is to be assessed are provided and executed by the Music Training
Exercise Processor.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 97
www.i-maestro.org ver2.3, 2006-04-28

Each tool is connected directly to Cooperative support for Music Training to send and receive commands
and information through the P2P Network.

9.5 Gesture & Posture Acquisition & Processing Tool Connection with Cooperative
Support

These are the class diagrams for the Gesture and Posture tools.

Figure: Class Diagram for Gesture and Posture Acquisition and Processing Tool

Figure: Class Diagram for Gesture Assessment Support

Figure: Class Diagram for Posture Assessment Support

For each method of the classes illustrated above, a table is specified that describes the functionality, input &
output parameters and request & response sample messages for the method.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 98
www.i-maestro.org ver2.3, 2006-04-28

im_mocap_open()
Method im_mocap_open()
Description Open a connection with the Motion Capture System to capture Motion Data of a performance
Input
parameters

Output
parameters

I-MAESTRO Object containing the Motion Data

Request
Sample
Message

<message>
 <request>
 Request to open a connection with the Mocap System
 </request>
</message>

Response
Sample
Message

<message>
 <response>
 Motion Data in c3d format
 </response>
</message>

im_mocap_close()
Method im_mocap_close()
Description Close a previously opened connection with the Motion Capture System
Input
parameters

Output
parameters

Acknowledgement

Request
Sample
Message

<message>
 <request>
 Request to close connection with the Mocap System
 </request>
</message>

Response
Sample
Message

<message>
 <response>
 Connection closed successfully
 </response>
</message>

im_mocap_start_recording()
Method im_mocap_start_recording()
Description Start recording Motion Data of a performance
Input
parameters

Output
parameters

I-MAESTRO Object with Motion Data recording of a performance

Request
Sample
Message

Response
Sample
Message

im_mocap_stop_recording()
Method im_mocap_stop_recording()
Description Stop recording Motion Data of a performance

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 99
www.i-maestro.org ver2.3, 2006-04-28

Input
parameters

Output
parameters

Request
Sample
Message

Response
Sample
Message

im_mocap_save_recording()
Method im_mocap_save_recording()
Description Save Motion Data of a performance to a file
Input
parameters

I-MAESTRO Object with Motion Data of performance

Output
parameters

File Object

Request
Sample
Message

Response
Sample
Message

im_mocap_load_recording()
Method im_mocap_load_recording()
Description Load Motion Data of a performance from a file
Input
parameters

File Object

Output
parameters

I-MAESTRO Object with Motion Data of performance

Request
Sample
Message

Response
Sample
Message

im_mocap_delete_recording()
Method im_mocap_delete_recording()
Description Delete Motion Data of a performance
Input
parameters

I-MAESTRO Object with Motion Data of performance

Output
parameters

Request
Sample

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 100
www.i-maestro.org ver2.3, 2006-04-28

Message
Response
Sample
Message

im_mocap_play_recording()
Method im_mocap_play_recording()
Description Play recorded Motion Data of a performance
Input
parameters

I-MAESTRO Object with Motion Data of performance

Output
parameters

3D Visualisation of Motion Data

Request
Sample
Message

Response
Sample
Message

im_mocap_process_data()
Method im_mocap_process_data()
Description Process the 3D Motion Data to create a wire-frame representation of Actor in 3D space
Input
parameters

I-MAESTRO Object containing the 3D Motion Data

Output
parameters

I-MAESTRO Object containing the processed 3D Motion Data

Request
Sample
Message

Response
Sample
Message

im_mocap_3denv_setup()
Method im_mocap_3denv_setup()
Description Set up 3D environment i.e. lighting etc.
Input
parameters

I-MAESTRO Object containing the 3D Motion Data

Output
parameters

I-MAESTRO Object containing the processed 3D Motion Data

Request
Sample
Message

Response
Sample
Message

im_mocap_load_ges_model()
Method im_mocap_load_ges_model()
Description Load Bow Gesture Model
Input
parameters

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 101
www.i-maestro.org ver2.3, 2006-04-28

Output
parameters

I-MAESTRO Object containing Gesture Model (loaded from File or Cooperative Support for
Music Training)

Request
Sample
Message

Response
Sample
Message

im_mocap_load_ges()
Method im_mocap_load_ges()
Description Load a previously saved Gesture of Student’s performance
Input
parameters

Output
parameters

I-MAESTRO Object containing Gesture

Request
Sample
Message

Response
Sample
Message

im_mocap_compare_ges()
Method im_mocap_compare_ges()
Description Compare Gestures of two performances (one of which could be a Bow Gesture Model)
Input
parameters

 I-MAESTRO Object
 I-MAESTRO Object

Output
parameters

I-MAESTRO Object containing Gesture comparison results (visualisation)

Request
Sample
Message

Response
Sample
Message

im_mocap_save_ges_result()
Method im_mocap_save_ges_result()
Description Save I-MAESTRO Object containing Gesture comparison results (visualisation) in a File
Input
parameters

I-MAESTRO Object containing Gesture comparison results (visualisation)

Output
parameters

File Object

Request
Sample
Message

Response
Sample
Message

im_mocap_load_psr_model()
Method im_mocap_load_psr_model()

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 102
www.i-maestro.org ver2.3, 2006-04-28

Description Load Posture Model
Input
parameters

Output
parameters

I-MAESTRO Object containing Posture Model (loaded from File or Cooperative Support for
Music Training)

Request
Sample
Message

Response
Sample
Message

im_mocap_load_psr()
Method im_mocap_load_psr()
Description Load a previously saved Posture of Student’s performance
Input
parameters

Output
parameters

I-MAESTRO Object containing Posture

Request
Sample
Message

Response
Sample
Message

im_mocap_compare_psr()
Method im_mocap_compare_psr()
Description Compare Postures of two performances (one of which could be a Posture Model)
Input
parameters

 I-MAESTRO Object
 I-MAESTRO Object

Output
parameters

I-MAESTRO Object containing Posture comparison results (visualisation)

Request
Sample
Message

Response
Sample
Message

im_mocap_save_psr_result()
Method im_mocap_save_psr_result()
Description Save I-MAESTRO Object containing Posture comparison results (visualisation) in a File
Input
parameters

I-MAESTRO Object containing Posture comparison results (visualisation)

Output
parameters

File Object

Request
Sample
Message

Response
Sample
Message

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 103
www.i-maestro.org ver2.3, 2006-04-28

im_mocap_send_data()
Method im_mocap_send_data()
Description
Input
parameters

Output
parameters

Request
Sample
Message

Response
Sample
Message

im_mocap_recv_data()
Method im_mocap_recv_data()
Description
Input
parameters

Output
parameters

Request
Sample
Message

Response
Sample
Message

9.6 Gesture and Posture Acquisition and Processing Tool User Interface

The User Interface for Gesture and Posture Acquisition and Processing Tool will provide connection with the
Motion capture system to record, 3D Motion data, process 3D Motion data, save, load, play and delete
recordings etc.

I-MAESTRO Gesture and Posture Acquisition and ProcessingI-MAESTRO Gesture and Posture Acquisition and Processing

Figure: Gesture and Posture Acquisition and Processing Tool User Interface

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 104
www.i-maestro.org ver2.3, 2006-04-28

9.7 Gesture and Posture Acquisition and Processing Tool Configuration

The Gesture and Posture Acquisition and Processing Tool requires a number of configuration parameters
such as
• Sampling frequency
• Number of markers used in the capture session
• Length (time) of the capture session
• Etc.

These configuration data are important to allow the data to be render, reconstructed and analysed correctly.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 105
www.i-maestro.org ver2.3, 2006-04-28

10 Specification of Sensors Acquisition and Processing Tool

10.1 Overview of Sensor Processing data flow and components

The Sensor technology and Sensor Processing Modules developed in WP5.2 are summarized in the
following data flow diagram (for an overview of the Practice Training environment see the General
Overview document of the I-MAESTRO Specification).

Specific components supporting Assessment and Performance Models based on sensor input will use
simultaneously the sensor and audio performance parameters.

10.2 Specification of Sensor Processing components

All modules are implemented as autonomous Max/MSP modules. Max/MSP modules in general can have
multiple control inputs and outputs (passing of messages and values using an event model). Messages and
values sent to an inlet of a Max/MSP module correspond to methods implemented by the module.

10.2.1 Sensor Technology

For the violin bow, the sensor technology will be primarily based on accelerometers. Prototype of the
wireless bow measurement system will be composed of a small electronic board with a microcontroller,

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 106
www.i-maestro.org ver2.3, 2006-04-28

accelerometers (example ADXL202 accelerometers from Analog Devices). Digital radio transmitter can be
also added, but is optional. The use of Bluetooth Technology is possible and will be evaluated. Other sensor
such as FSR (Force Sensitive Sensor), optical sensor, bending sensors can be also used, especially of body
movement such as arm are captured.

10.2.2 Sensor Interface and communication

The sensor interface depends whether wireless communication is used. Concerning hardware, the sensor
interface can be either directly integrated in the board containing the sensors, or it can be a separate box,
containing an A/D conversion system, or in the case of wireless transmission, containing the radio receiver
element. The communication protocol will be based on Ethernet communication protocol on a local network.

The software will integrate a module allowing for the handling of the communication protocol, primarily
based on the OpenSoundControl protocol4. OpenSoundControl ("OSC") is a protocol for communication
among computers, sound synthesizers, and other multimedia devices that is optimized for modern
networking technology.

Initialization module
Description Initialize all parameters, recall presets, start/stop sensor data stream.
Instantiation
Arguments

arg 1: preset number (integer corresponding to a particular type of experiment, sensor set,
version, etc.)

Attributes none
Methods Messages to set parameters for the setup, initialization, and start/stop.

Preset number: recall a given preset of parameterization
Read/Write: read and write presets
Reset OSC: reset communication
OSCparam: set OSC parameters (Host IP, Interface IP, port)
InterfaceParam : set interface parameters
DSP parameters

Inlets inlet 1: messages
Outlets outlet 1: messages

OSC communication module
Description Module managing OSC communication
Instantiation
Arguments

arg 1: IP address
arg 2: Port number
arg 3: Device list

Attributes none
Methods Messages to set parameters of the OSC communication module

IPhost: IP of the host computer
IPinterface IP of the interface
Port: port number
Devicelist: parameters of a given interface

Inlets inlet 1: Gesture features or characteristics
Outlets outlet 1: message

outlet 2: sensor data stream

10.2.3 Sensor Processing

The sensor processing includes various prepossessing such as filtering, scaling, downsampling of the sensor
data stream. A second stage of processing concerns segmentation and feature extractions. This stage will also

4 see http://www.cnmat.berkeley.edu/OpenSoundControl

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 107
www.i-maestro.org ver2.3, 2006-04-28

require the use of the audio stream and/or communication with Audio Feature Extraction module, in order to
disambiguate sensor segmentation and sensor feature extraction algorithms.

Sensor analysis module
Description Module estimating an arbitrary sensor descriptor from an sensor data stream
Instantiation
Arguments

static parameters of the extraction algorithm (e.g. output control rate)

Attributes not defined
Methods messages to set parameters of the analysis algorithm
Inlets inlet 1: Sensor data stream (gesture data stream)
Outlets outlet 1: stream of floating-point values (descriptors)

Acceleration peaks extractor module
Description Extract maximum and minimum in data stream form accelerometers and perform basic

segmentation
Instantiation
Arguments

arg 1: minimum time between peaks
arg 2: maximum time between peaks
arg 3: threshold for peak analysis

Attributes not defined
Methods Messages to set parameters of the extraction algorithm

MinTime: minimum time between peaks
MaxTime: maximum time between peaks
Threshold: threshold for peak analysis

Inlets inlet 1: accelerometer data stream
Outlets outlet 1: vector with maximum and minimum

10.2.4 Support of Assessment, Improvisation and Performance Models

WP 5.4 integrates various developments related to Sensor Processing to support Assessment Models as well
as Improvisation and Performance models defined in the following.

Gesture recognition and follower module
Description Perform gesture recognition and/or gesture following.
Instantiation
Arguments

arg 1: algorithm used

Attributes not defined
Methods Messages to set parameters of the extraction algorithm

algo : algorithm used
learn: set in training mode
process: process training examples
play: analyse continuously data stream
import: import training data from a file
export: export processed training data into a file
clear: clear training examples

Inlets inlet 1: sensors features stream
Outlets outlet 1: likelihood vector (for recognition)

outlet 2: time index vector (for following)

Recoding and retrieval of sensor and performance data module
Description Read/Write sensor data and sensor feature data into files
Instantiation
Arguments

none

Attributes not defined

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 108
www.i-maestro.org ver2.3, 2006-04-28

Methods Messages to read/write files and set parameters.
read ‘filename’ ‘parameters’:
write ‘filename’ ‘parameters’

Inlets inlet 1: message, sensor data
Outlets outlet 1: message

outlet 2: sensor data

Sensor to sound mapping patch
Description Performs the mapping between gesture and sound
Instantiation
Arguments

none

Attributes not defined
Methods Messages to set parameters

start
stop

Inlets inlet 1: sensor data stream
inlet 2 : sensor features data stream

Outlets outlet 1: audio signal
outlet 2: audio signal

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 109
www.i-maestro.org ver2.3, 2006-04-28

11 Specification of Audio Processing Tools and Score Following

11.1 Overview of Audio Processing data flow and components

The Audio Processing Modules assembled and partly developed in WP5.4 are summarized in the following
data flow diagram (for an overview of the Practice Training environment see the General Overview
document of the I-MAESTRO Specification).

11.2 Specification of Audio Processing and Score-following components

All modules are implemented as autonomous Max/MSP modules. Max/MSP modules in general can have
multiple audio inputs and outputs (block-wise processed audio data flow) as well as multiple control inputs
and outputs (passing of messages and values using an event model). Connections between modules are
clearly distinguished in these two categories. Messages and values sent to an inlet of a Max/MSP module
correspond to methods implemented by the module (see Max/MPS documentation for further information on
Max/MSP).
As a convention audio processing modules in Max/MSP have a name ending with “~” (tilde) as the modules
sogs~ in the following screen shot of a simple Max/MSP patch.5

5 Max/MSP documents are referred to as patches and an open window containing the modules and connections in the
Max/MSP editor is called a patcher.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 110
www.i-maestro.org ver2.3, 2006-04-28

A part of the components such as the Score-following module are based on the FTM6 extension for
Max/MSP developed at IRCAM. FTM introduces the possibility to send references to complex data
structures (matrices, sequences, dictionaries, etc.) between Max/MSP objects and to further modulize
Max/MSP applications.

11.2.1 Implementation of audio processing modules in Max/MSP

Various ways to implement Max/MSP audio modules within WP5.4 are envisaged:

• Max/MSP abstractions using Max/MSP standard modules and the Gabor7 module library based on
IRCAM’s FTM extension

• Max/MSP externals written in C using the Max/MSP API published within the Max/MSP SDK
• Modules compliant to the VST plug-in standard8 supported by Max/MSP

In either case a Max/MSP module is completely defined by the following elements:

• Module Name
• Instantiation Arguments (a list of numbers and symbols to further define and initialize the module

following the module name in a module box)
• Attributes (named instantiation arguments given with a name prefixed by “@” followed by a single

value given after the positional instantiation arguments)
• Methods (functions bound to messages accepted by the module)
• Inlets
• Outlets

6 Schnell Norbert, Borghesi Riccardo, Schwarz Diemo, Bevilacqua Frédéric, Müller Remy, FTM — Complex data
structures for Max. International Computer Music Conference (ICMC). Barcelona : Septembre 2005
Also see http://www.ircam.fr/ftm/ for further documentation concerning FTM.
7 Schnell Norbert, Schwarz Diemo, Gabor, Multi-Representation Real-Time Analysis/Synthesis. COST-G6 Conference
on Digital Audio Effects (DAFx). Madrid : Septembre 2005, p. 122-126
8 Virtual Studio Technology, see www.steinberg.net

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 111
www.i-maestro.org ver2.3, 2006-04-28

The following table will be used for the definition and documentation of Max/MSP modules within the
specification related to WP5.4:

Module Name
Description Description of the module’s functionalities
Instantiation
Arguments

Description of the module’s positional instantiation arguments in a list:
arg 1 (type of first arg1): description of the first instantiation argument
arg 2 (type of first arg1): description of the second instantiation argument
…

Attributes Description of the module’s named instantiation arguments in a list:
attrA (type of first attrA): Description of the attribute attrA
attrB (type of first attrB): Description of the attribute attrB
…

Methods Description of the messages accepted by the module in a list:
messageA: Description of the message messageA

arg 1 (type of first arg1): Description of the first argument of messageA
arg 2 (type of second arg2): Description of the second argument of messageA
…

messageB: Description of the message messageB
arg 1 (type of first arg1): Description of the first argument of messageB
arg 2 (type of second arg2): Description of the second argument of messageB
…

…

Messages with a single argument can be described more compactly as
messageC (number): Description of the message messageB

Messages without arguments can be described as
messageD: Description of the message messageB

Inlets Description of the module’s inlets in a list:
inlet 1 (type of inlet 1): Description of first inlet
inlet 2 (type of inlet 2): Description of second inlet
…

Outlets Description of the module’s outlets in a list:
outlet 1 (type of outlet 1): Description of the first outlet
outlet 2 (type of outlet 2): Description of the second outlet
…

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 112
www.i-maestro.org ver2.3, 2006-04-28

Max/MSP abstractions
Max/MSP abstractions are defined by an ordinary Max/MSP patch (a Max/MSP document) and can be used
in other Max/MSP patches in the same way as any other Max/MSP module. The inlet and outlet objects used
in the definition of the abstraction are showing up as the inlets and outlets of the abstraction in the
surrounding patch.

The following images show the implementation of the harmv2~ module of the Jimmies library (see section
Audio Effect modules below) based on standard Max/MSP modules and an extract from simple audio
application patch using the harmv2~ module:

The used abstraction’s module name (here harmv2~) is the filename of the Max/MSP patch document, by
which it is defined (here harmv2~.pat).

Max/MSP externals
Max/MSP provides the possibility to implement modules in C. The Max/MSP community refers to C these
modules as Max/MSP externals. The API for the implementation is defined in the Max/MSP SDK provided
for Windows XP as well as Mac OS X.
An external has to implement the following elements in form of C functions compliant to the SDK:

• The modules (class) definition function with the following declarations
o basic module declaration including the constructor and deconstructor methods (C functions)

as well as a declaration of the module as audio (DSP) module
o method declarations for messages (binding a message name to a C function)
o method declarations for inlets (binding a message name to a C function)

• Implementation of the constructor method (accessing the instantiation arguments), including module
initialisation and the creation of inlets and outlets

• Implementation of the deconstructor method (accessing the instantiation arguments)
• Implementation of the methods bound to messages and inlets
• Implementation of an audio processing initialisation method (called when Max/MSP audio

processing is started)
• Implementation of the audio processing method called for each block audio samples

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 113
www.i-maestro.org ver2.3, 2006-04-28

The module psych~ developed at IRCAM is an example of a C written Max/MSP external. The following
images shows a screen shot of the help patch of the psych~ module explaining its functionality and
providing a simple application for trying the module. This help patch together with the modules definition is
a full example of the specification and basic documentation of a Max/MSP module within WP 5.4.

VST plug-ins
VST is a wide spread audio plug-in standard by Steinberg AG. VST plug-ins can be embedded to Max/MSP
patches using the Max/MSP module vst~ implementing a VST host. The module is instantiated with the
name of the plug-in as an argument and provides audio inlets and outlets as well as messages mapped to the
control parameters defined by the VST plug-in.
For the development of VST plug-ins, an SDK including detailed documentation is available from
Steinberg9.

11.2.2 Audio Interface

The (software) audio interface is provided within the Max/MSP environment. Max/MSP modules are
provided representing audio inputs (adc~) and outputs (dac~). The module adstatus permits to set and get
the values of various parameters of the audio interface such as the sample rate and the audio input/output
buffer size (see Max/MSP documentation for further description).

9 VST-SDK, Steinberg’s Virtual Studio Technology Software Development Kit, see www.steinberg.net.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 114
www.i-maestro.org ver2.3, 2006-04-28

11.2.3 Audio Feature Extraction Modules

In the following, the Audio Feature Extraction modules are defined by the audio and control input/output
data flow as well by a detailed specification of the modules’ parameters and functionalities. Generic
specifications and examples are given.

Architecture and data flow
The Audio Feature Extraction Modules in general are Max/MSP modules accepting an audio stream at the
input and providing a stream of scalar values at the output. In Max/MSP these modules are implemented
with an audio inlet and a control outlet outputting a floating-point value. Since many feature extraction
modules use a Short Time Fourier Transform (SFFT) processing scheme, it is desirable to share the FFT
computation by multiple of such modules especially if they are used in parallel as shown in the figure on
right. The two types of modules can be distinguished as Time Domain Audio Feature Extraction Modules
and Frequency Domain Audio Feature Extraction Modules.

Module Definitions
Generic specifications are given for Time Domain Audio Feature Extraction Modules and Frequency
Domain Audio Feature Extraction Modules as well as for the SFFT pre-processing stage.
A concrete example for the specification of a Time Domain Audio Feature Extraction Module is given by the
module yin~ of the IRCAM-ATR modules (see table below).
Frequency Domain Audio Feature Extraction Modules following the given scheme are implemented using
the FTM extension for Max/MSP allowing sending vectors and matrices between Max/MSP objects (see
http://www.ircam.fr/ftm/). Complex (frequency domain) vectors are implemented as floating-point matrices,
FTM fmat objects with two columns containing the real and imaginary values.

Time Domain Audio Feature Extraction Module
Description Module estimating an arbitrary audio descriptor from an audio stream
Instantiation
Arguments

static parameters of the extraction algorithm (e.g. output control rate)

Attributes dynamic parameters of the extraction algorithm
Methods messages to set parameters of the extraction algorithm
Inlets inlet 1 (audio): audio stream
Outlets outlet 1 (number): stream of floating-point values

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 115
www.i-maestro.org ver2.3, 2006-04-28

yin~
Description Fundamental frequency extractor using the YIN algorithm. The module provides also a

periodicity factor and an estimation of the instantaneous signal energy.
Instantiation
Arguments

arg 1: input down-sampling factor (0 = off, 1 | 2 | 3 = downsampling by 2 | 4 | 8)
arg 2: lowest estimated frequency
arg 3: output period in msec

Attributes threshold (number 0…1): initialize estimation threshold for yin algorithm
Methods threshold (number 0…1): set the estimation threshold for yin algorithm
Inlets inlet 1 (audio): audio input stream
Outlets outlet 1 (number): estimates frequency in Hz

outlet 2 (number): estimated energy as a linear factor
outlet 3 (number): estimated periodicity/harmonicity factor between 0 and 1 (0 =
inharmonic/noisy, 1 = harmonic/periodic)

Frequency Domain Audio Feature Extraction Module

Description Module estimating an arbitrary audio descriptor from an SFFT input stream
Instantiation
Arguments

arg 1: FFT size
additional args: static parameters of the extraction algorithm

Attributes dynamic parameters of the extraction algorithm
Methods messages to set parameters of the extraction algorithm
Inlets inlet 1 (FTM fmat): stream of FFT frames, N x 2 matrices with N complex values

corresponding to the lower half of a complex DFT spectrum (N = FFT size / 2 + 1)
Outlets outlet 1 (number): values of the estimated descriptor (unit to be given)

SFFT preprocessing module
Description Module calculating a stream of SFFT frames from an audio stream input
Instantiation
Arguments

arg 1: FFT size
arg 2: SFFT hop size

Attributes wind: set window type (hann | hamming | Blackman | blackman-harris)
Methods None
Inlets inlet 1 (audio): audio input stream
Outlets outlet 1 (FTM fmat): stream of FFT frames, N x 2 matrices with N complex values

corresponding to the lower half of a complex DFT spectrum (N = FFT size / 2 + 1)

11.2.4 Score-following Module

IRCAM has been on Score-following technology since its very beginning. The development of the latest
generation of Score-following tools based on Hidden Markov modules has been started at IRCAM in 200010.

10 Nicola Orio and Diemo Schwarz. Alignment of Monophonic and Polypophonic Music to a Score. In Proceedings of
the ICMC, Havana, Cuba, 2001.
Nicola Orio and F. Déchelle. Score Following Using Spectral Analysis and Hidden Markov Models. In Proceedings of
the ICMC, Havana, Cuba, 2001.
Nicola Orio, Serge Lemouton, Diemo Schwarz, and Norbert Schnell. Score Following: State of the Art and New
Developments. In Proceedings of the International Conference on New Interfaces for Musical Expression (NIME),
Montreal, Canada, May 2003.
Diemo Schwarz, Nicola Orio, and Norbert Schnell. Robust Polyphonic Midi Score Following with Hidden Markov
Models. In Proceedings of the ICMC, Miami, Florida, November 2004.
Diemo Schwarz, Arshia Cont, and Norbert Schnell. From boulez to ballads: Training ircam's score follower. In
Proceedings of International Computer Music Conference (ICMC). Barcelona, September 2005.
Arshia Cont, Diemo Schwarz, and Norbert Schnell. Training ircam's score follower. In IEEE International Conference
on Acoustics and Speech Signal Processing (ICASSP). Philadelphia, March 2005.
Arshia Cont, Diemo Schwarz, and Norbert Schnell. Training ircam's score follower. In AAAI Fall Symposium on Style

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 116
www.i-maestro.org ver2.3, 2006-04-28

In the following the architecture and functionalities of the components being developed in the framework of
WP5.4 based on the current Score-following technology are specified.

Architecture and data flow
The Score-following module references a symbolic score representation. It requires an audio stream at the
input and provides at run-time references to the recognized score positions at the output.
The score-following module is based on Hidden-Markov Models (HMM). The algorithm can be described
with three distinguished processing stages as shown in the following figure:

A first implementation of the module will incorporate all three steps in one integrated component. A future
modulized version of the Score-following algorithm will be available as a set of modules and give the
possibility to flexibly adapt the Score-following technology to different instruments, playing styles and score
models.
The Score Format Adapter is a sub-component permitting to easily adapt the Score-following module to
different symbolic score representations. The current Score-following module developed at IRCAM uses an
FTM track object containing sccob objects represented by an independent Max/MSP module to represent the
symbolic score to follow. The reference to the track object containing the score can be given as instantiation
argument (as named FTM reference) or set by a message to the Score-following module with an appropriate
FTM track object as argument. The adapter translates dynamically (on-the-fly) the given score representation
of the currently considered temporal window around the current estimated position into its internal score
representation.

Module Definition
The score following module receives the audio input from the performer and continuously estimates and
outputs the current position in the performed score. The score can be given at initialisation or set at runtime
with a message. Various option messages change the way the score is parsed into the internal score model.
The principal follower output is in the form of an abstract score position, depending on the score
representation front-end, which can also contain a direct reference to an object in the score and to its
properties (e.g. cue number). For some applications, inspection data can be output, which is internal data
such as the analysed signal parameters, observation likelihoods, and HMM state. These can serve for testing
the setup (is the signal coming in), recording new instrument data, or debugging.

and Meaning in Language, Art and Music. Washington DC, 2004.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 117
www.i-maestro.org ver2.3, 2006-04-28

Score-following module

Description Recognition of the current position in the performed score according to audio input from the
performer

Instantiation
Arguments

reference to the symbolic score

Attributes inspect: configure additional inspection outputs (on|off), switch inspection on
Methods set (score ref.): set score to follow

start (number): start follower at given position (default: beginning of score) with given
time scaling factor (default 1)

stop: stop follower
maxdiff (number): quantisation time (ms) for fusing notes into chords and suppressing short

rests in the score (default 30 ms)
rests (0|1): modeling of rests on/off
tune (number): reference tuning frequency for A4 (default 440 Hz)
setpdf (symbol): set preset training data / choose preset
verbose (0-5): verbosity of debug output (0–5)
inspect (0|1): switch inspection output on or off

Inlets inlet 1: audio stream (performance) and message input
Outlets outlet 1: recognised current score position

outlet 2: signal for score-performance mismatch (performer error)
outlet 3: signal for end-of-score
outlet 4: inspection data (only when inspection option is set)

11.2.5 Audio Effect Modules

The Audio Effect modules require one or multiple audio streams at the input and provide one or multiple
audio stream at the output. Max/MSP provides building blocks to create Effect Modules within the standard
libraries. The modules of the Jimmies library developed at IRCAM, a set of classical Audio Effect modules,
are examples of modules created in form of Max/MSP abstractions using the standard Max/MSP modules.
The library contains the following modules:

“Jimmies” Classical effects
stchorus1~ stereo chorus
delay2~ delay line
flange1~ flanger
fshift1~ frequency shifter
harmv2~ hamonizers
phaseshift1~ phase shifter
rev4~ reverberation
rmod1~ ring modulator
“Jimmies” Filters
bpass1~ band-pass filter
comb2~ comb filters
hpass1~, hpass2~ 1st and 2nd order high-pass

filters
lpass1~, lpass2~ 1st and 2nd order low-pass

filters
bstop1~ notch filter

An example of an advanced Audio Effect module is given by the module psych~ mentioned above.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 118
www.i-maestro.org ver2.3, 2006-04-28

In the following a generic definition for Audio Processing modules is given as well as an example definition
of the psych~ module.

Architecture and data flow
In general modules are mono (one input, one output) or stereo (two inputs, two outputs). Stereo effects such
as chorus or reverberation may have mono input (one input, two outputs) and modules for multi-channel
spatialisation have multiple outputs (one or two inputs, typically 4, 6 or 8 outputs).

Within a Max/MSP patch multiple Audio Effect modules can easily used in series or in parallel.

Modules Definition

Audio Effect module
Description Generic Audio Effect module
Instantiation
Arguments

static parameters of the audio processing algorithm (e.g. gain)

Attributes named static parameters of the extraction algorithm
Methods messages to set parameters of the extraction algorithm
Inlets inlet 1, 2, … (audio): audio input stream
Outlets outlet 1, 2, … (audio): transformed audio output stream

psych~
Description Pitch transposition module for monophonic sounds using a PSOLA algorithm
Instantiation
Arguments

arg 1: lowest transposed frequency

Attributes none
Methods pitch (list of floats): force one or multiple output pitches in MIDI cent

freq (list of floats): force one or multiple output pitches in Hz
trans (list of floats): set one or multiple transpositions MIDI cent
respect (float): set spectral resampling amount in MIDI cent

Inlets inlet 1 (audio): audio input stream
Outlets outlet 1 (audio): pitch transposed audio output stream

See above for the Max/MSP help patch of the psych~ module.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 119
www.i-maestro.org ver2.3, 2006-04-28

11.2.6 Audio Rendering Modules

The Practice Training environment includes audio rendering facilities such as sound file playing, rendering
of Standard MIDI files using the General MIDI specification and various synthesis algorithms.

Architecture and data flow
Audio Rendering modules produce mono or stereo audio streams driven in real-time by control events and
synthesis parameters. Player modules or resynthesis modules access rendering media such as sound or MIDI
files in real-time (files based) or before starting the rendering process (RAM based).

The Max/MSP standard modules as well as the FTM module libraries give the possibility of separating data
modules from synthesis/player modules, which refer to the rendering data (by name or reference). This
allows for a modular and clearer definition of modules managing data (import/export, visualisation editing,
etc.) and modules performing the actual rendering.

Module Definitions
The following modules are defined in the following:

• A generic audio file player module
• A generic MIDI file player module
• A generic General MIDI based synthesizer
• A generic synthesis module

Audio player

Description Generic integrated audio file player module
Instantiation
Arguments

arg 1: number of output channels
arg 2 (optional): file name

Attributes none
Methods open: open audio file through file chooser

open (symbol): open audio file with a the given files name
start: start or restart playing
startat (number): start or start playing at position given in msec
stop: stop playing and reset position to beginning
pause: pause playing
locate (number): set or jump to position given in msec
speed: change playing speed

Inlets no input apart from the defined messages
Outlets outlet 1: audio stream (left channel for stereo files)

outlet 2: audio stream right channel (for stereo files only)

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 120
www.i-maestro.org ver2.3, 2006-04-28

MIDI player
Description Generic integrated MIDI file player module
Instantiation
Arguments

arg 1 (optional): file name

Attributes none
Methods open: open MIDI file through file chooser

open (symbol): open MIDI file with a the given files name
start: start or restart playing
startat (number): start or start playing at position given in msec
stop: stop playing and reset position to beginning
pause: pause playing
locate (number): set or jump to position given in msec
speed: change playing speed

Inlets no input apart from the defined messages
Outlets outlet 1: stream of MIDI events

GM MIDI synthesizer
Description Generic MIDI based synthesizer module
Instantiation
Arguments

none

Attributes none
Methods gain (number): level control in dB
Inlets input 1: stream of MIDI events
Outlets outlet 1: audio stream left channel

outlet 2: audio stream right channel

Synthesis module
Description Generic synthesis module
Instantiation
Arguments

static parameters of the synthesis algorithm

Attributes dynamic parameters of the synthesis algorithm
Methods messages to set parameters of the extraction algorithm
Inlets input 1, 2, …: synthesis control parameters
Outlets outlet 1, 2, …: audio output streams

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 121
www.i-maestro.org ver2.3, 2006-04-28

12 Specification of Cooperative Support for Music Training

12.1 Cooperative work support overview

Cooperative Support for Music Training

Tuner Tool

Metronome
Tool

Gesture and
Posture acquisition

and processing
Tool

Music Training
Exercise

Processor::Exerci
se Processor

Multimedia
Rendering Tool

API for Connecting Cooperative Work Tools

Cooperative work services

P2P Services

Integrated Music
Score Editor and

Viewer
Tool

Accessible interface

Students Teachers

Network services

I-MAESTRO Client Tool::I-MAESTRO Client User Interface

Client
Manager

Sensors and
Actuators

Management Tools

Audio
ProcessingTool

Teachers and Student use I-MAESTRO Client User Interface or Accessible Interface (for impaired people)
to use tools and applications as the Integrate Music Score Editor and Viewer Tool, the Gesture and Posture
Tool, the Multimedia Rendering Tool and so on.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 122
www.i-maestro.org ver2.3, 2006-04-28

As showed in the previous figure Cooperative Support for Music Training contains three layers:
• API for Connecting Cooperative Work Tool. Each specific tool, which needs to work

cooperatively, has its own API to exploit Cooperative work services and exchange messages and
files each other.

• Cooperative Work Service. Services of this layer are used from the API to communicate in a
distributed system and they creates log about message exchanged and error occurred. They also

• P2P Services. manages the low level P2P Network functionalities used from the higher layers.
These services are lunched when user logs on to P2P Network and it runs independently until the end
of cooperative session.

Music
Execution

Service

Music
Editing
Service

Login/
Logout
Service

Workgroup
Service

Tuner Tool Metronome
Tool

Integrated
Muisc Score

Edit Tool

Posture and
Gesture acquisition
adn processingTool

Exercise
Processor

Mulitmedia
Rendering

Tool

Client
Manager

Chat Tool File Sharing
Tool

Send
Message
Service

Receive
Message
Service

Send File
Service

Receive
File Service

Message
Log Service

Error Log
Service

Discovery
Service

Synchronization
Service

Application Layer

API for Connecting
Cooperative Work tools

Cooperative work Service

P2P Service

Sensors and
Actuators

Management
Tools

Distribute
Lesson
Service

This figure represent a more detailed view of the Cooperative Support layers.
The Application Layer represents the tools with cooperative functionalities.
The API for Connecting Cooperative Work tools is a layer providing the cooperative functionalities which
are implemented by the Cooperative Work Service and the P2P Service.

The following figure shows in detail the logic connection between services.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 123
www.i-maestro.org ver2.3, 2006-04-28

Music
Execution

Service

Music
Editing
Service

Login/
Logout
Service

Workgroup
Service

Tuner Tool Metronome
Tool

Integrated
Muisc Score

Edit Tool

Posture and
Gesture acquisition
adn processingTool

Mulitmedia
Rendering

Tool

Client
Manager

Chat Tool File Sharing
Tool

Send
Message
Service

Receive
Message
Service

Send File
Service

Receive
File Service Message

Log Service
Error Log
Service

Discovery
Service

Synchronization
Service

Application Layer

API for Connecting
Cooperative Work tools

Cooperative work Service

P2P Service

Sensors and
Actuators

Management
Tools

Distribute
Lesson
Service

«chiamata»

Network

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 124
www.i-maestro.org ver2.3, 2006-04-28

12.2 Class Diagram of Cooperative Work Service and P2P Service

PeerManager

PeerExplorer

PeerCommunicator

FileReceiver

Thrsem

Tempester Trasponder

1

1

1

1

FileSender FileTransfe

1

1

1

1

1

1

1

1

Discovery Service Send Message Service
Receive Message Service

Send File Service
Receive File Service

MessageLogService

LogService

MessageErrorService

1

1

«uses»

SynchronizationService

SyncClien

SyncServer1 1

1 1

1

1

Synchronization Service

LoginService

.
 Cooperative Work Service and P2P Service involve the following classes:

• PeerManager Class: it wraps Cooperative Work Service and P2P Service and it separates hem from
the API layer and Application Layer. It has method to start and stop the services and to exchange
information with them.

• MessageLogService and MessageErrorService: implement the logic of the Log Service;
• PeerExplorer: define the behaviou of the Discovery Service using the classes Transponder and

Tempester.
• PeerCommunicator: to send and receive messages (Send Message Service and Receive Message

Service).
• FileReceiver and FileSender: to send and receive file
• SynchronizationService: it implements the algorithm and the thread to synchronize
• ThrSem: it provides support to implement threads

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 125
www.i-maestro.org ver2.3, 2006-04-28

12.3 Send Message Service

PeerManager leans on PeerCommunicator Send InstMessage method to provide methods to send message.
Here are described only the methods of PeerManager.

This service takes a message arriving from the API layer and sends it to the specified peer, to all peers in a
Workgroup or to all peers in the P2P Network.

When a service want to send a message to all peer over the network it uses sendMessageBroadcast, which
sends a message to all registered peer in P2P Network.

sendMessageBroadcast
Method sendMessageBroadcast
Description Method of PeerManager class: It sends a broadcast message to all peer in the P2P Network

Input
parameters

String Message – message to deliver

Output
parameters

Int 0 if the message is sent correctly, -1 otherwise

sendMessage

Method sendMessage
Description Method of PeerManager class: It sends a message to a specific Recipient
Input
parameters

String IpRecipientAddress – Ip Address of the recipient in the form xxx.xxx.xxx.xxx
String message – the message to deliver

Output
parameters

Int 0 if the message is sent correctly, -1 otherwise

sendMessageByName

Method sendMessageByName
Description Method of PeerManager class: It sends a message to a specific Recipient
Input
parameters

String RecipietnName – User Name of the recipient
String message – the message to deliver

Output
parameters

Int 0 if the message is sent correctly, -1 otherwise

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 126
www.i-maestro.org ver2.3, 2006-04-28

12.4 Receive Message Service

This module waits for any messages arriving from the peer of the network. Each message has to be notified
and passed to the Service of API Layer to process it. In the figure above we can see the methods of
PeerManger and PeerCommunicator involved in the Receive Message Service.

NotifyMsgRcv
Method NotifyMsgRcv

Description It notify the arrive of a new message
Input
parameters

String IPaddresssender – The ip address of the message’s sender
String message – the message arrived

Output
parameters

None

EnbleRecvInstMsg
Method EnbleRecvInstMsg

Description It starts the thread waiting for message coming from peers of the P2P Network. When a new

message arrives it collects the message and it calls NotifyMsgRcv.
Input
parameters

None

Output
parameters

None

CloseAcceptMessageThread

Method CloseAcceptMessageThread

Description It stops the thread waiting for message coming from peers of the P2P Network
Input
parameters

None

Output
parameters

None

ReceiveMessage

Method ReceiveMessage

Description It provides the capability to receive the message coming from other peers.
Input
parameters

None

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 127
www.i-maestro.org ver2.3, 2006-04-28

Output
parameters

String message - return the message arrived

12.5 Send File Service

This service is a client module used to exchange files between peer in the P2P Network. A peer can request
a file to another peer and it is possible to receive the file automatically.
The connection between peer to exchange files, is a point to point connection using TCP protocol. If a peer
need to transfer the same file to more than one peer, it has to send a sequence of file one at time or it can
create more threads (one for each connection) and transfers file in parallel.

acceptingConnection
Method acceptingConnection
Description Accept the connection to send a file
Input
parameters

None

Output
parameters

TRUE if the file can provided
FALSE otherwise

trasferringFile

Method trasferringFile
Description Send a file to a specific peer
Input
parameters

String ipaddress - Ip address of the recipient,
String file_name - the complete path of the file to be transferred

Output
parameters

TRUE if file is correctly transferred
FALSE otherwise

getFileName

Method getFileName
Description It return the name of the file transferred
Input
parameters

 None

Output
parameters

String file_name - the name of the file trasferred

getFileSize
Method getFileSize
Description It returns the size of the file trasferred
Input
parameters

None

Output
parameters

Long size – size of the file transferred

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 128
www.i-maestro.org ver2.3, 2006-04-28

12.6 Receive File Service

This service is the server side used to exchange files between peer in the P2P Network. It waits for
connection arriving from the peer of the P2P Network. Each request is granted by a specific thread and it can
create multiple threads to manage multiple requests.

startReceiveFile
Method startReceiveFile

Description It starts the thread waiting for connection coming from peers of the P2P Network for

transferring files.
Input
parameters

None

Output
parameters

TRUE if the service starts successfully
FALSE otherwise

stopReceiveFile

Method stopReceiveFile

Description It stops the thread waiting for connection coming from peers of the P2P Network
Input
parameters

None

Output
parameters

TRUE if the service stops successfully
FALSE otherwise

receivingFile

Method receivingFile

Description It receives the file sent.
Input
parameters

String – path of the file to receive

Output
parameters

TRUE if file is correctly received
FALSE if some error occur

12.7 Message Log Service

Message Log Service maintains trace of all information passed through Cooperative Work Service Layer. It
is possible to set and get the file name where info will be saved. If no file name is set, the Service create a
new file automatically with a default name with the current hour and date.

An instance of this class is created inside the PeerManger and it is used to log each message passed through
the services of the Cooperative Work Service layer. The file is a text one where each line is the log of a
message

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 129
www.i-maestro.org ver2.3, 2006-04-28

setFileName
Method setFileName
Description Set the name of the file used to save messages passed through Cooperative Work
Input
parameters

String filename - name of the file where the log are saved

Output
parameters

None

getFileName

Method getFileName
Description Get the name of the file set to save messages
Input
parameters

None

Output
parameters

String File Name - name of the file where the log are saved

writeMessage

Method writeMessage
Description It adds a line to the log file every time that a message leaves from Send Message Service or

arrives to Receive Message Service.
Input
parameters

String AddressPeer – ip address of the peer that has sent the message,
String service type – service recipient of the message
String message – the message sent
Timestamp – time and date of the message arrive

Output
parameters

TRUE if the writing succeeds
FALSE otherwise

12.8 Error Log Service

Error Log Service maintains trace of all errors happened in the Cooperative Work Service Layer. It is
possible to set and get the file name where error messages will be saved. If no file name is set, the Service
create a new file automatically with a default name with the current hour and date. The Error file is a text file
where each line is an error occurred inside the services of Cooperative Work Service layer.

An instance of this class is created inside the PeerManger and it is used to log each error message happened
inside the services of Cooperative Work Service layer. The file is a text one where each line is the log of a
message

+setFilename()
+getFilename()
+writeMessage()

ErrorLogService

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 130
www.i-maestro.org ver2.3, 2006-04-28

setFileName
Method setFileName
Description Set the name of the file used to save error happened inside Cooperative Work Service
Input
parameters

String filename - name of the file where the log are saved

Output
parameters

None

getFileName

Method getFileName
Description Get the name of the file set to save messages
Input
parameters

None

Output
parameters

String File Name - name of the file where the log are saved

writeMessage

Method writeMessage
Description It adds a line to the error log file every time that an error happen during the execution of a

service inside a Cooperative Work Service.
Input
parameters

String service type – service which has generated the error,
String error type – type of the error generated,
String Timestamp – hour and date of error

Output
parameters

None

12.9 Discovery Service

Discovery Service is used to interrogate the P2P Network to find all connected peer. Discovery Service fills
a PeerList where information of discovered peers is saved. It contains the name and ip address of the peer.
PeerTable has to be available for API and Cooperative Work Service layers.

startStopScan
Method startStopScan
Description It starts Tempester thread which scans the range of host address and it start Transponder thread

waiting for connection from Discovery Client of the other peer of the network.
When a new peer is found, the address IP and his name is added to the peer list.

Input
parameters

None

Output
parameters

None

disconnect

Method disconnect
Description Stop Transponder and Tempester
Input
parameters

None

Output
parameters

None

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 131
www.i-maestro.org ver2.3, 2006-04-28

12.10 Synchronisation Service

+startSyncRound()
+getMinDelay()
+getMaxDelay()

SynchronizationService

SyncClient SyncServer

1

1

1

1

This module uses a specific synchronization algorithm to maintain synchronization between peer of P2P
Network. It can be used to synchronize a Max/MSP clock put inside each lesson; each tool refers to this
clock to execute a command when they receive cooperative messages.

startSyncRound
Method startSyncRound
Description It starts execution of the synchronization algorithm.
Input
parameters

None

Output
parameters

None

getMinDelay

Method getMinDelay
Description It returns the minimum delay calculated by the synchronization algorithm.
Input
parameters

None

Output
parameters

Int delay – delay in milliseconds

getMaxDelay

Method getMaxDelay
Description It returns the maximum delay calculated by the synchronization algorithm.
Input
parameters

None

Output
parameters

Int delay – delay in milliseconds

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 132
www.i-maestro.org ver2.3, 2006-04-28

13 Client Manager

The Client Manager is the application required to start and manage a work session that can be single user or
cooperative. The Client Manager is a Win32 application providing the capability to allow:

• User login
• Displaying a list of Lessons available in the P2P network
• Displaying a list of roles for selected lesson
• Selecting a role and downloading a cooperative lesson file linked to that role
• Automatic start of the lesson downloaded

After Client Manager starts, the User sees the login form and insert the username that identify the user into
the P2P network.

After the login the User has the possibility to see a list of lessons shared in the P2P network. After the
selection of a Lesson, the User can see a description and a list of available role of the Lesson and can choose
only one of them. After this choice, the Client Manager communicates to the other peer that the role is not
available and waits until Users have covered their roles. When all Users have filled all available roles and
depending on the structure of the lesson, the cooperative lesson can start. Actors are free to leave the lesson
simply closing the active Lesson.

A cooperative Lesson contains generic roles (parts of a score, some type of exercise, other types of
substructures) and each of them can be assigned to one User. Each Lesson contains inside information of the
Workgroup and the max number of members of the Workgroup is given by the number of available roles in
the lesson.

When a User has chosen a role inside a lesson, the Client Manager provides the features to download the
content linked to the role, retrieving it using the URI specified into the XML file of the Lesson.

Lesson downloaded is automatically started by the Client Manager as an independent process. Now, the
execution of the lesson doesn’t depend from the Client Manager anymore, but it follows the logic decided by
the lesson creator. Because we talk about cooperative lessons, each lesson has to have a Music Execution
Service to exchange information between peers.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 133
www.i-maestro.org ver2.3, 2006-04-28

Client ManagerClient Manager

File Connection Help About

Name of
connected user

List of available
roles for the

selected lesson

List available
lesson inside user

local hard disk

Info about
lesson selected

Lesson 12 – Lesson Description
Stauts: Ready
Role 1: Tom
Role 2: available
Role 3: Tim
Role 4: Bob

User Name

Lesson Info

Lesson 07 - Description
Lesson 78 - Description

Lesson 12 - Descrpition

Sequence of operations to setup a cooperative Lesson

1) The User uses a Web Interface to search lesson inside a School Server and download its metadata
information in xml format. Information is saved in a specific directory. This point doesn’t concern the Client
Manager and P2P Network.

2) When the user opens client manager, he chooses “Connect” from the “Connection” menu, inserts his name
using the login form and the p2p services start.

3) The Client Manager automatically searches for the xml file of the lesson inside a specific directory (the
previous one, where lesson information has been saved).

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 134
www.i-maestro.org ver2.3, 2006-04-28

When the xml file is found and loaded, the ClientManager creates a Lesson object and Role objects
depending on the info defined in the metadata. The Lesson objects are made by Roles objects and they are
put in a Lesson vector. Note that lesson and role info are the same info described in the cooperative lesson
metadata as in §13.5.

Then the Client Manager sends the xml metadata information to all peers in the P2P Network. In this way
each peer can see the available lessons for cooperative work.

The format of the message is : SENDLESSON-<xml message of the lesson metadata>.

When a peer receives a message with SENDLESSON headline, it recovers the body part of the message, it
parses the xml and it creates the correspondent lesson and roles objects and adds the lesson to the lesson
vector.

2 -Load lesso n info

4) Now the User receives the lesson arriving from the other peer and he can see roles linked to the lesson in
his GUI.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 135
www.i-maestro.org ver2.3, 2006-04-28

Package principale::User

N
e
t
W
o
r
k

Workgroup Service

2 - Update available lesson 1 - Receive Message

Receive Message Service

5) The User can select a lesson and see the list of available roles and can decide to associate only to one of
these roles (the roles with the status READY). When User selects his role, the information is sent in the P2P
network and all peers update the role info. The role pass from the status READY to BUSY and the lesson file
linked to the role is downloaded from the URI specified inside the correspondent field in the instance of the
class of the Role chosen. When the lesson is downloaded, it is unzipped (if it is compressed) and then it is
automatically started by the Client Manager, lunching a new process executing the correspondent executable
file.

User is now ready to take part to the cooperative lesson depending on the logic specified by the lesson
creator.

The format of the message is: ROLECHOOSE -<lessonid>-<rolename>-<username>.

The <lessonid> parameter corresponds to the “ID” parameter of the CooperativeLesson description metadata
(see § 13.5), <rolename> and <username> are the “RoleName” and “MemberName” parameters of the Role
description.

When a peer receives a message as the previous one, it searches the lesson and role and update the username
info.

6) All peers receive info about roles status. Earlier the role was available for all, now the role is booked and
nobody can choose it again.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 136
www.i-maestro.org ver2.3, 2006-04-28

N
e
t
W
o
r
k

Workgroup Service

2 - User see the changes in his GUI 1- Receive info about role changes

Receive message service

Package principale::User

The previous collaboration diagram shows the message exchange during the setup of a cooperative lesson.
As regards the singol user lesson, the setup step is simpler: a single user lesson is a cooperative lesson with
only one role.

In this way user loads his lesson and choose the only one role available, then system download and/or open
the lesson. The lesson is not cooperative so it has no Music Execution Service with CWS Service and P2P
service.

Max/MSP cooperative lesson

First of all it is mandatory that p2p and CWS layer in the Music Execution Service has to be started using
different ports for server modules, respect of the same modules of the Client Manager, otherwise there will
be a conflict during connection startup of the Music Execution Service.

After that a cooperative lesson is executed as an independent process by the Client Manager, the Music
Execution Service inside the lesson starts its Computer Work Support Layer and P2P Layer.

The first operation of the Music Execution Service is sent a localhost message to the client manager to
receive its lesson id of the lesson chosen from the user in the Cleint Manager. The knowledge the lesson id is
useful when the Music Execution Service send a message coming from one of the cooperative tool inside the
lesson. In this way, before the string of the message, it is possible to insert the lesson id in this way:

<lessonid>-<message>:

1) <lessonid>: ID values of the lesson loaded and defined inside the metadata
2) <message>: any message type that the Music Execution Service sends in the P2P Network.

When a Music Execution Service of a generic lesson receives a message, the first step is to understand if the
message is for itself or no. Comparing the <lessonid> of the message with the own lessonid , each lesson can
accept only the its message and discard the others.

The Music Execution Service can also receive from the Client Manager the name of the User connected with
each role. With these info, it is possible to manage the lesson execution, for example enabling or disabling
users who are following the same lesson. Obviously this feature depends on the lesson logic defined by the
lesson creator.

Then, after the correct check of <lessonid>, the <message> is parsed to understand:

1) The type of the command (START command, STOP command, a generic SENDMESSAGE
command)

2) the recipient role (RoleName parameter inside role description metadata)
3) the recipient tool name

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 137
www.i-maestro.org ver2.3, 2006-04-28

4) and possible tools parameters

Then the command is sent to the correct outlet of the Music Execution Service and it is used from the other
Max/MSP object linked to the outlet.

13.1 Class Diagram of ClientManager and its services

The figure shows the class diagram of the Client Manager and the services of the API layer that it uses.
Client Manager is a Wx application and it is composed by:

• WorkGroupService: it provides methods and functionalities to show cooperative lesson, add user to
a selected role, remove user from a role, update available cooperative lesson in p2p Network

• DistributeLessonService: it gives the capability to download lesson after role user chosen and to
start it as an independent process.

• LoginService: it registers user name when a user opens the ClientManager and starts and stops
services of P2P Layer.

• PeerManager: a class which links the ClientManager with the Cooperative work service and P2P
services.

ClientManager also inherit from MessageEventHandler, DecisionHandler and PeerEventHandler to
manage event append in the beneath layer.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 138
www.i-maestro.org ver2.3, 2006-04-28

13.2 Distribute Lesson Service

This service is realized by the class DistributeLessonService and it provides methods to download lesson
given a specific Uri and to open it specifying the lesson path.

downloadLesson
Method downloadLesson
Description Download a lesson from the Uri specified in the input parameter
Input
parameters

String location – the Uri where it is possible to find the lesson

Output
parameters

TRUE if lesson is downloaded successfully
FALSE otherwise

openLesson
Method openLesson
Description Open the lesson using the path specified in the input parameter.
Input
parameters

String path – local path of the lesson to open

Output
parameters

TRUE if lesson is opened successfully
FALSE otherwise

decompressLesson

Method decompressLesson
Description It decompress the lesson and recreate the original tree of lesson content.
Input
parameters

String path – local path of the lesson to decompress

Output
parameters

TRUE if lesson is opened successfully
FALSE otherwise

13.3 Login/Logout Service

With this module Students and Teacher can access to the P2P Network and attend to a cooperative sessions.
Login Service requests user name when a User opens the Client manager, then it starts ad sets up services of
Cooperative Work Service and P2P Service Layers.

login
Method login
Description it save the name of the user and it starts the services of P2P Service Layer.
Input
parameters

string user name- the user name used inside the p2p network

Output None

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 139
www.i-maestro.org ver2.3, 2006-04-28

parameters

logout
Method logout
Description Disconnect the user stopping all the active services of the P2P Service Layer. It is executed

when user closes the Client Manager.
Input
parameters

None

Output
parameters

None

13.4 Workgroup Service

Workgroup Service keeps information about available lessons and roles inside P2P network. and maintain
trace of available roles inside them. Info are updated automatically whenever a configuration change
happens (e.g. a new user connects to an available role, or a user loads a new cooperative lesson).

addRoleUser
Method addRoleUser
Description add the user to the Role chosen. Information is sent to all peer of the P2P Network.
Input
parameters

String Lesson, - Lesson choosen by the user
String Role, - Role choosen by the user
String user_name – username to be linked to the previous role

Output
parameters

Boolean - TRUE if user is correctly added FALSE otherwise

removeRoleUser
Method removeRoleUser
Description Remove the present user from the Role selected. Information is sent to all peer of the P2P

Network.
Input
parameters

String lesson - Lesson choosen by the user
String role - Role choosen by the user

Output
parameters

Boolean - TRUE if user is correctly removed FALSE otherwise

addLesson

Method addLesson
Description Add a new lesson to the lesson list with all its available roles. The method adds the lesson to

the local lesson list of the peer and sends the lesson also to the other peer in P2P Network.
Input
parameters

String Lesson info.

Output
parameters

getLessonList

Method getLessonList
Description Request the list of available Lessons to a peer. When a new peer connects to the P2P Network,

it requests the lesson list to one of the other peer. Since each peer is equal, all peer has the
same lesson list, so it needs to only one connection to one peer to receive the full list.

Input
parameters

None

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 140
www.i-maestro.org ver2.3, 2006-04-28

Output
parameters

String list – It is the list of available lesson info in xml format.

downloadLesson

Method downloadLesson
Description It calls the Distribution Lesson Service to download the lesson linked to the role chosen
Input
parameters

Lesson URI

Output
parameters

None

13.5 Cooperative Session Data

In this section the information used to define a cooperative Lesson are described. Information are written into
lesson metadata and they are used during lesson setup. This information is present in every lesson, both
cooperative and single user lesson. For the single user lesson, there is only one role and user can complete
the lesson alone.

 CooperativeLesson
Description

Data Type Description
ID String Unambiguous code of the lesson
Description String Small description of the lesson
Note String Useful information to perform the lesson
Status String It specifies if the lesson is READY to start

or if it is just STARTED.
 Role description
RoleName String Role name
MemberName String Name of the Student who has joined the

role
OptionalRole Boolean It specifies if the lesson role is optional or

not to perform the lesson. If it is
mandatory, lesson cannot start until the
person has joined that role.

Status String The status of the role is READY if the
role is free; otherwise it is BUSY because
somebody has chosen it.

Location String URL or path where it is possible to find
the lesson linked to the role

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 141
www.i-maestro.org ver2.3, 2006-04-28

Cooperative Lesson XML formalisation
The set of metadata defined previously formalised by means of the following XML Schema:

<xs:schema ...>

<xs:element name=" CooperativeLesson">
<xs:complexType>

<xs:sequence>
 <xs:element name="ID" type="xs:string"/>
 <xs:element name="Description" type="xs:string"/>

<xs:element name="Note" type="xs:string"/>
 <xs:element name="Status" type="xs:string"/>

 <xs:complexType>
<xs:element name="Role" maxOccurs="unbounded">

 <xs:sequence>
 <xs:element name="RoleName" type="xs:string"/>

 <xs:element name="MemberName" type="xs:string"/>

<xs:element name=”Status" type="xs:string"/>
 <xs:element name="OptionalRole" type="xs:boolean"/>
 <xs:element name="Location" type="xs:string"/>
 </xs:sequence>
 </xs:element>

</xs:complexType>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

Example of XML file:
<CooperativeLesson>
 <ID>Unambiguous code of the lesson</ID>

<Description>Description of the lesson</Description>
<Note> Some note about the lesson</Note>
<status>READY</status>
<Role>

<RoleName>Violin</RoleName>
<MemberName>Tom</MemberName>
<OptionalRole>TRUE</ OptionalRole >
<Status>BUSY</Status>
<Location>http://…</Location>

</Role>
< Role >

<RoleName>Cello</RoleName>
<MemberName></MemberName>
<OptionalRole>TRUE</ OptionalRole >
<Status>READY</Status>
<Location>http://…</Location>

</ Role >
…
</CooperativeLesson>

13.6 Music Execution Service

Music Execution Service provides all cooperative function available for tools working inside a cooperative
lesson (e.g. metronome, gesture and posture tool, multimedia rendering tools, sensors…).
The service is implemented as Max External Object and only one copy of this object can be included inside a
cooperative Lesson.
The Object has several Inlets used to receive information from other Max Object and several Outlets used to
send information to other objects.
Each Method described below represent an Inlet or an Outlet of the Music Execution Service.
To use this service is mandatory to create an object inside Max Designer Interface.
At this point each tool inside a cooperative lesson can communicate with other tool sending message to the
right Inlets and receiving them from the right Outlets.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 142
www.i-maestro.org ver2.3, 2006-04-28

The figure above represents a prototype of Music Execution Service Max External. It will have more Inlets
and Outlets, one for each provided functions.

An example of possible connection between the Music Execution Service and , e.g., two metronome tools
(Metro1 and Metro2, they are Max/MSP external too) and a timer used for synchronization is displayed in
the figures below:

Teacher Lesson

This image represents an example of the execution of a start command in a cooperative lesson. User presses
the “start button” to start Metro1 and Metro1 send the command <ToolName> <delay> (in this case Metro1
500) to the Start Inlet of Music Execution Service Object. Music Execution Service distributes the command
to all other peer of P2PNetwork.

Student Lesson

The figure of the Student Lesson shows the use of the same two metronomes (Metro1 and Metro2) of the
previous example and one timer with the support of Music Execution Service.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 143
www.i-maestro.org ver2.3, 2006-04-28

The first outlet of the Music Execution Service represents the Start command arriving from the metronome
inside another lesson (the Teacher Lesson).
When the start command arrives, it exits from the first outlet and it enters in the route object.
The route object, depending on the first parameter of the outlet Start, chooses the specific name of the
recipient tool, and it delivers the remaining parameters (in this case the values of 500) to the correct tool.
In this case the Metro1 has received from another Metro1 the start command to be performed after 500
milliseconds; so the Metro1 will use the mytimer, which is synchronised with all the other mytimer of the
lesson, to execute start command at the right moment.

To synchronise mytimer, the Teacher (see Teacher Lesson figure), send a “bang” message to the Sync Inlet.
The synchronization process starts and at the end, a “bang” message exit from the Outlet Sync of each peer
and the mytimer inside each lesson is reset.

In these examples we have used the “route” object of Max/MSP to parse the command and forward the
correct message to the correct tool. It is only an example; it is possible using some other objects to have the
same behaviour.

The Music Execution Service provides the following functions:

Inlet - Start
Method Inlet - Start
Description Send a command in a cooperative way to start a specific tool. The command arrives from a

tool which specified its name and the delay to wait before starting.
Input
parameters

String ToolName - The name of the tool which has sent the message
Integer delay - The delay to wait before the start execution

Output
parameters

None

Sample
Message

<ToolName> <delay>

Outlet - Start

Method Outlet - Start
Description It sends the start command arriving from the P2P Layer to a Max/MSP Route or some other

object to forward the command to the correct tool
Input
parameters

None

Output
parameters

String ToolName - The name of the tool which has sent the message
Integer delay - The delay to wait before the start execution

Sample
Message

<ToolName> <delay>

Inlet – Stop
Method Inlet – Stop
Description Send a command in a cooperative way to stop a specific tool. It is specified the name of the

tool to be stopped.
Input
parameters

String ToolName - The name of the tool to be stopped

Output
parameters

None

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 144
www.i-maestro.org ver2.3, 2006-04-28

Request
Sample
Message

<ToolName>

Response
Sample
Message

None

Outlet - Stop

Method Outlet - Stop
Description It sends the stop command arriving from the P2P Layer to a Max/MSP Route or some other

object to forward the command to the correct tool
Input
parameters

None

Output
parameters

String ToolName - The name of the tool to be stopped

Request
Sample
Message

<ToolName>

Response
Sample
Message

None

Inlet- SendMessage
Method Inlet- SendMessage
Description Send a generic message in a cooperative way to a specified tool and role
Input
parameters

String Role - One of the role defined inside the lesson – if Role=ALL means that the message
is for all roles in the lesson.
String ToolName - The name of the tool which has sent the message
String message – It contains the message to deliver to the Tool. The message is parsed by the
specific tool.

Output
parameters

None

Sample
Message

It is a text string with: <Role> <ToolName> <message>

Response
Sample
Message

None

Outlet - ReceiveMessage

Method Outlet - ReceiveMessage
Description It sends from the Outlet of Music Execution Service the message from the P2P network and it

can use a Max/MSP Route or some other object to forward the command to the correct tool
and/or role.

Input
parameters

None

Output
parameters

String Role - One of the role defined inside the lesson – Role=ALL means that the message is
for all roles in the lesson.
String ToolName - The name of the tool which has sent the message
String message – It contains the message to deliver to the Tool. The message is parsed by the
specific tool.

Sample
Message

It is a text string with: <Role> <ToolName> <message>

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 145
www.i-maestro.org ver2.3, 2006-04-28

Inlet - SetMetroSpeed
Method Inlet - SetMetroSpeed
Description Send a command in a cooperative way to set the speed of a metronome
Input
parameters

String ToolName – Name of the specific metronome
Enum string value_of_note - Possible values are:2/1, 1/1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64
Integer beat_per_minute – it defines the metronome’s speed

Output
parameters

None

Sample
Message

<ToolName><value_of_note> <beat_per_minute>

Outlet - GetMetroSpeed

Method Outlet - GetMetroSpeed
Description Send from the Outlet of Music Execution Service a message from the P2P network and

forward it to the specified metronome tool to set metronome’s speed, using for example
Max/MSP.

Input
parameters

None

Output
parameters

String ToolName – Name of the specific metronome
Enum string value_of_note - Possible values are: 2/1, 1/1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64
Integer beat_per_minute – it defines the metronome’s speed

Request
Sample
Message

<ToolName><value_of_note> <beat_per_minute>

Inlet - Sync
Method Inlet - Sync
Description Send a message to start a synchronization round
Input
parameters

String “bang” – Max/MSP command

Output
parameters

None

Sample
Message

It is a text string with: “bang” word.

Outlet - Sync
Method Outlet - Sync
Description Send a “bang” message to reset the Max/MSP timer inside the lesson, used for the tool’s

synchronization
Input
parameters

None

Output
parameters

string “bang” – Max/MSP command

Sample
Message

It is a text string with: “bang” word.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 146
www.i-maestro.org ver2.3, 2006-04-28

Inlet - getListRoles
Method Inlet - getListRoles
Description Send a command to recover the list of roles inside the lesson.
Input
parameters

None

Output
parameters

None

Outlet - getListRoles
Method Outlet - getListRoles
Description Receive the list of roles inside the lesson.
Input
parameters

None

Output
parameters

String roles list - a list of roles

Inlet - getListConnectedRoles
Method Inlet - getListConnectedRoles
Description Send a command to recover the list of connected roles inside the lesson.
Input
parameters

None

Output
parameters

None

Outlet - getListConnectedRoles
Method Outlet - getListRoles
Description Receive the list of connected roles inside the lesson.
Input
parameters

None

Output
parameters

String roles list - a list of connected roles

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 147
www.i-maestro.org ver2.3, 2006-04-28

14 Specification of Assessment Support

14.1 Assessment Support Overview

Assessment Support

Assessment Model and
Information, Save and

Load

Assessment Processor

I-MAESTRO Client Tool::I-
MAESTRO Lesson Model

I-MAESTRO Client Tool::Music
Training Exercise Processor

Audio
Processing::Audio

Assessment
Support

Gesture and Posture
Tools::Gesture

Assessment Support

Gesture and Posture
Tools::Posture

Assessment Support

Integrated Music Score
Editor Tool::Music Editor
and Viewer Assessment

Support

Mathematical Support
for Assessment

Assessment Support applies assessment models taking into account profile, exercise, context, audio
processing results, symbolic processing results, sensors, gesture and posture, etc.
The main modules are:

• Assessment Processor, which is able to manage the global assess merging various kind of
assessment coming from tools Assessment Support(Gesture and Posture, Audio, Music Editor and
Viewer). It is also can exchange command with the Music Training Exercise Processor.

• Assessment Model and Information, Save and Load. It represents the correct model and
information to use for assess.

• Mathematical Support for Assessment provides support to Assessment Processor for calculating
assessments.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 148
www.i-maestro.org ver2.3, 2006-04-28

14.2 General Assessment model and information
:
The purpose of assessment is to check what is being taught and to guide teaching to supervise progress
toward skill achievement. The first step in any assessment model should focus on determining what the
student knows or does not know. Based on this the teacher develops instructional materials corresponding to
the student’s level. In this initial assessment, a test model is constructed for each pedagogical purpose, and
different scores are established to verify mastery and no mastery.

Assessment procedures should be designed to provide students a chance to demonstrate their capabilities and
to improve them. Student evaluation involves making remarks, determining meters of the student
achievement, keeping records and doing choices on the foundation of the collected student information. It is
important for a efficient assessment model, to have a predetermined criteria to evaluate student’s capabilities
(the student scored should be based on a criteria predefined). No assessment tool is effective if is not used in
a regular basis, and to develop effective assessment requires a constant revision based on feedback from the
teachers and students.

For evaluation effectiveness is necessary to have an atmosphere in which all students are motivated to do
their best and to focus on the assignment. The instructions should be clear and comprehensible; all the
musical examples should be reproduced with good fidelity and should be clearly audible to every student.
Besides each student should have the same amount of time to answer the questions, all necessary materials,
instruments, and equipment should be available and in good working order. Ideally, when the test evaluation
ask the student to sing, play instruments, or move, the student's response should be audiotaped (or videotaped
better).

The teacher must decide the most appropriate time to set the assessing in each specific subject, taking into
account:

- to estimated the necessary time to cover the key knowledge and skills.
- to estimated the length of time required for the students to complete the writings works, time to

rehearsal, etc.
- If there is any connexion to others subjects that can interfered in the final results.
- Availability of the sources (library and others) facilities.

14.3 Pupil profile on the Server Side

<?xml version="1.0" encoding="UTF-8"?>

<!--
 Document : iMaestroStudent.xsd
 Author : Fundación Albéniz
 Description:
 Definition of Student schema for I-MAESTRO project.
-->

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Student Schema for I-MAESTRO project.
 Fundación Albéniz
 </xsd:documentation>
 </xsd:annotation>

 <xsd:include schemaLocation="iMaestroGeneric.xsd"/>

 <xsd:element name="studentProfile" type="StudentProfileType"/>

 <xsd:complexType name="StudentProfileType">
 <xsd:sequence>

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 149
www.i-maestro.org ver2.3, 2006-04-28

 <xsd:element name="personalData" type="PersonalData"/>
 <xsd:element name="physicalInformation" type="PhysicalInformation"/>
 <xsd:element name="studentGoal" type="LearningGoal"/>
 <xsd:element name="generalSkills" type="GeneralSkills"/>
 <xsd:element name="musicalSkills" type="MusicalStudiesType"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="MusicalStudiesType">
 <xsd:retriction base="xsd:string">
 <xsd:enumeration value="elemental"/>
 <xsd:enumeration value="professional"/>
 <xsd:enumeration value="highStudies"/>
 <xsd:enumeration value="phD"/>
 </xsd:retriction>
 </xsd:complexType>

 <xsd:simpleType name="GenderType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="FEMALE"/>
 <xsd:enumeration value="MALE"/>
 <xsd:enumeration value="UNKNOWN"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="EthnicType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="ASIAN"/>
 <xsd:enumeration value="BLACK"/>
 <xsd:enumeration value="WHITE"/>
 <xsd:enumeration value="UNKNOWN"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="HandicapType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="TOTAL-BLIND"/>
 <xsd:enumeration value="PARTIAL-BLIND"/>
 <xsd:enumeration value="OTHER"/>
 <xsd:enumeration value="NONE"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="PreferenceHandType">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="leftHanded|rightHanded"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:complexType name="PersonalData">
 <xsd:sequence>
 <xsd:element name="firstName" type="xsd:string"/>
 <xsd:element name="lastName" type="xsd:string"/>
 <xsd:element name="birthDate" type="xsd:date"/>
 <xsd:element name="sex" type="GenderType"/>
 <!-- it could be defined or reused a LanguageType for
 motherLanguage -->
 <xsd:element name="motherTongue" type="xsd:string"/>
 <xsd:element name="ethnic" type="EthnicType" />
 <xsd:element name="physicalTuition" type="xsd:boolean"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="PhysicalInformation">
 <xsd:sequence>
 <xsd:element name="weight" type="xsd:decimal"/>
 <xsd:element name="height" type="xsd:decimal"/>
 <!-- Usual practice of fitness -->
 <xsd:element name="fitness" type="xsd:boolean"/>
 <xsd:element name="handicap" type="HandicapType" minOccurs="0"/>
 <xsd:element name="handType" type="PreferenceHandType"/>
 </xsd:sequence>
 </xsd:complexType>

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 150
www.i-maestro.org ver2.3, 2006-04-28

 <xsd:simpleType name="InterestType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="PROFESSIONAL"/>
 <xsd:enumeration value="AMATEUR"/>
 <xsd:enumeration value="DILETTANTE"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="DedicationType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="FULLTIME"/>
 <xsd:enumeration value="PARTTIME"/>
 <xsd:enumeration value="SPORADIC"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:complexType name="LearningGoal">
 <xsd:sequence>
 <xsd:element name="interest" type="InterestType"/>
 <xsd:element name="dedication" type="DedicationType"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:simpleType name="StudiesType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Primary"/>
 <xsd:enumeration value="Secondary"/>
 <xsd:enumeration value="University"/>
 <xsd:enumeration value="PhD"/>
 <xsd:enumeration value="None"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="LanguageType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Italian"/>
 <xsd:enumeration value="German"/>
 <xsd:enumeration value="English"/>
 <xsd:enumeration value="French"/>
 <xsd:enumeration value="Russian"/>
 <xsd:enumeration value="Spanish"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="PerformingArtsType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="theatre"/>
 <xsd:enumeration value="dance"/>
 <xsd:enumeration value="other"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:complexType name="GeneralSkills">
 <xsd:sequence>
 <xsd:element name="computers" type="ValorationRange"/>
 <xsd:element name="studies" type="StudiesType"/>
 <xsd:element name="languages" type="LanguageType"/>
 <xsd:element name="performingArts" type="PerformingArtsType" minOccurs="0"/>
 </xsd:complexType>
</xsd:schema>

14.4 Local History and Data on the Client Side

The main purpose of the historical data is to validate the evolution of the Student’s progress through all the
data collected by the system. The student evaluation should be continuous processes which follow the
progress of a student over a significant period of time. For this reason, all the student’s results of the “skill
and capacities” will be check it and save it by the system, and it will be possible for the student to see in
short or long term his results (i.e. last two weeks, form January till Mach, etc).

The historical data (from the students) will determinate in which areas the student is (or not) progressing.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 151
www.i-maestro.org ver2.3, 2006-04-28

Check and analyse the improving percentages. All this scores will be collected and enter into the database, so
it can give meaningful information to the teacher to help drive instruction. Monitor progress will be use to
assess students academic performance and evaluate the effectiveness of instruction. (Also monitor progress
will be implemented with individual students or group students).
The learning process of the students will be collected in three different categories:

1 Initial evaluation: Review of the initial technical and theoretical knowledge of the student.
2 Formative evaluation: Assessment of the speed of assimilation and comprehension of the knowledge

that the student is acquiring. The student’s academic achievements will be measured on a regular
basis (weekly or monthly).

3 Final evaluation: Assessment of the knowledge acquired during the learning process.

Client-side history and data will be needed to run the different exercises and lessons, providing the necessary
data to each particular design and programming. It should be fully compatible, syncronized and able to
update the server side information.

14.5 Assessment Support for Symbolic Training

Assessment task for symbolic training assess the capacity to recall information from the student’s
knowledge, and the capabilities to analyse and synthesis the new information and concepts. For symbolic
training is important to assess the development of the following skills in each student:

- Ability to read at sight music of all the periods (including early notation and twentieth century)
- Ability to recall important works, composer of Western Music, sources, different aspects of the

major historical periods and styles.
- Ability to place music in its proper cultural context
- Ability to recognized and described properly a number of representative compositions from the

major historical periods and styles of Western Music.
- Ability to write music, demonstrating and understanding theoretical terms, symbols, concepts

(demonstrate knowledge of traditional and modern compositional styles and capability to transfer it
to one’s own individual style of composition).

- Ability to instrumentation, arranging skills and score knowledge for various instrumental ensembles.
- etc.

14.6 Assessment Support for Practice Training

Practice Trainings are learning programs to teach the fundamental principles of the musical
practice: rhythm training, ear training, development principles of movements, etc. The main goal of
evaluation in the practice training model is to check the study progression and to consolidate the
musical principles. The techniques of evaluation will depend on its purpose (professional or
amateur) and subject.

An example of a way to evaluate the general skills in practice training is to measure the students’
control capabilities in different subjects like:

• Musical performance (or basic principles of musicianship):
o Evaluate the student ability to:
o Adequate use of dynamics, articulation, accents and breathing, know when to make

retards, etc.
o Phrasing (types, emotional content, beginning, ending, developing, etc.)

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 152
www.i-maestro.org ver2.3, 2006-04-28

o Perform appropriately representative repertory of the instrument, demonstrating
musicianship, technical proficiency, and interpretative understanding

o Historical approach of genres: 17th and 18th centuries, 19th century, 20th century
Perform in small and large ensembles.

• Improvisation Skills
o Evaluate the student ability to:
o Improvise on the instrument (making the accompaniment or the principal voice)

Compose and develop original melodies appropriate to the instrument,
accompaniments, and short pieces in a variety of genres and styles vocally, and
instrumentally).

o Improvise in small ensembles.

• Movement Skills
o Evaluate the student’s ability to:
o Coordination
o Flexibility degree
o Ability of the mind to prepare-supervise the muscular activity
o Right use of awareness/preparatory movement exercises before playing.

An example of a way to evaluate the basic skills for bowed string instruments is to measure the
students’ control capabilities in different subjects like:

• Playing position: posture, instrument hold
• Left hand: fingering, position and shifting, vibrato, harmonics, left hand pizzicato
• Right hand: tone production, bowings,
• Etc

14.7 XML Schema for Symbolic and Practice Training Assessment

<?xml version="1.0" encoding="UTF-8"?>

<!--
 Document : iMaestroAssessmentParameters.xsd
 Author : Fundación Albéniz
 Description:
 Purpose of XML Schema document follows.
-->

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Assessment Parameters for I-MAESTRO project.
 Fundación Albéniz
 </xsd:documentation>
 </xsd:annotation>

 <xsd:include schemaLocation="iMaestroGeneric.xsd"/>

 <xsd:group name="instrumentPerformanceSkills">
 <xsd:sequence>
 <xsd:element name="technique" type="ValorationRange"/>
 <xsd:element name="execution" type="ValorationRange"/>
 <xsd:element name="expression" type="ValorationRange"/>
 </xsd:sequence>
 </xsd:group>

 <xsd:group name="bowPlayerPostureAssessment">
 <xsd:sequence>

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 153
www.i-maestro.org ver2.3, 2006-04-28

 <xsd:element name="bodyCorrectness" type="xsd:boolean"/>
 <xsd:element name="leftArmCorrectness" type="xsd:boolean"/>
 <xsd:element name="rightArmCorrectness" type="xsd:boolean"/>
 <xsd:element name="leftElbowCorrectness" type="xsd:boolean"/>
 <xsd:element name="rightElbowCorrectness" type="xsd:boolean"/>
 <xsd:element name="leftWristCorrectness" type="xsd:boolean"/>
 <xsd:element name="rightWristCorrectness" type="xsd:boolean"/>
 <xsd:element name="leftHandCorrectness" type="xsd:boolean"/>
 <xsd:element name="rightHandCorrectness" type="xsd:boolean"/>
 <xsd:element name="feetPositionCorrectness" type="xsd:boolean"/>
 </xsd:sequence>
 </xsd:group>

 <xsd:group name="instrumentLeftHandAssessment">
 <xsd:sequence>
 <xsd:element name="fingeringPosition" type="ValorationRange"/>
 <xsd:element name="leftThumbTechnique" type="ValorationRange"/>
 <xsd:element name="fingerFlexibility" type="ValorationRange"/>
 <xsd:element name="fingerPressure" type="ValorationRange"/>
 <xsd:element name="fingerIndependence" type="ValorationRange"/>
 <xsd:element name="trills" type="ValorationRange"/>
 <xsd:element name="doubleStops" type="ValorationRange"/>
 <xsd:element name="positionShifting" type="ValorationRange"/>
 <xsd:element name="firstPosition" type="ValorationRange"/>
 <xsd:element name="secondPosition" type="ValorationRange"/>
 <xsd:element name="thirdPosition" type="ValorationRange"/>
 <xsd:element name="fourthPosition" type="ValorationRange"/>
 <xsd:element name="fifthPosition" type="ValorationRange"/>
 <xsd:element name="higherPositions" type="ValorationRange"/>
 <xsd:element name="scaleTechnique" type="ValorationRange"/>
 <xsd:element name="vibratoTechnique" type="ValorationRange"/>
 <xsd:element name="nonTemperedIntonation" type="ValorationRange"/>
 <xsd:element name="temperedIntonation" type="ValorationRange"/>
 <xsd:element name="naturalHarmonics" type="ValorationRange"/>
 <xsd:element name="artificialHarmonics" type="ValorationRange"/>
 <xsd:element name="pizzicato" type="ValorationRange"/>
 </xsd:sequence>
 </xsd:group>

 <xsd:group name="instrumentRightHandAssessment">
 <xsd:sequence>
 <xsd:element name="toneProduction" type="ValorationRange"/>
 <xsd:element name="appropiateBowing" type="ValorationRange"/>
 <xsd:element name="stringCrossing" type="ValorationRange"/>
 <xsd:element name="detaché" type="ValorationRange"/>
 <xsd:element name="legato" type="ValorationRange"/>
 <xsd:element name="portato" type="ValorationRange"/>
 <xsd:element name="loure" type="ValorationRange"/>
 <xsd:element name="collé" type="ValorationRange"/>
 <xsd:element name="martellato" type="ValorationRange"/>
 <xsd:element name="martelé" type="ValorationRange"/>
 <xsd:element name="spiccato" type="ValorationRange"/>
 <xsd:element name="flyingSpicatto" type="ValorationRange"/>
 <xsd:element name="saltellato" type="ValorationRange"/>
 <xsd:element name="sautille" type="ValorationRange"/>
 <xsd:element name="ricochet" type="ValorationRange"/>
 <xsd:element name="hookedBowing" type="ValorationRange"/>
 <xsd:element name="rimbalzato" type="ValorationRange"/>
 <xsd:element name="tremolo" type="ValorationRange"/>
 <xsd:element name="sulPonticello" type="ValorationRange"/>
 <xsd:element name="colLegno" type="ValorationRange"/>
 <xsd:element name="doubleStops" type="ValorationRange"/>
 <xsd:element name="accordAttack" type="ValorationRange"/>
 <xsd:element name="pizzicato" type="ValorationRange"/>
 </xsd:sequence>
 </xsd:group>

 <xsd:group name="cooperativeWorkAssessment">
 <xsd:sequence>
 <xsd:element name="leading" type="ValorationRange"/>
 <xsd:element name="dynamicsCoordination" type="ValorationRange"/>
 <xsd:element name="intonationCoordination" type="ValorationRange"/>
 <xsd:element name="timberCoordination" type="ValorationRange"/>
 <xsd:element name="tempoCoordination" type="ValorationRange"/>
 <xsd:element name="followingDirector" type="ValorationRange"/>

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 154
www.i-maestro.org ver2.3, 2006-04-28

 <xsd:element name="phrasingImitation" type="ValorationRange"/>
 <xsd:element name="bowsCoordination" type="ValorationRange"/>
 </xsd:sequence>
 </xsd:group>

 <xsd:group name="classroomAssessment">
 <xsd:sequence>
 <xsd:element name="activeStudentNumber" type="xsd:integer"/>
 <xsd:element name="listenerStudentNumber" type="xsd:integer"/>
 </xsd:sequence>
 </xsd:group>

 <xsd:group name="symbolicTrainingAssessment">
 <xsd:sequence>
 <xsd:element name="sightReading" type="ValorationRange"/>
 <xsd:element name="sightSinging" type="ValorationRange"/>
 <xsd:element name="rhytmicalReading" type="ValorationRange"/>
 <xsd:element name="transposedReading" type="ValorationRange"/>
 <xsd:element name="rhytmicalReading" type="ValorationRange"/>
 <xsd:element name="polyRhythm" type="ValorationRange"/>
 <xsd:element name="dictationAbilities" type="ValorationRange"/>
 <xsd:element name="intonationAccuracy" type="ValorationRange"/>
 <xsd:element name="harmonicEar" type="ValorationRange"/>
 <xsd:element name="perfectPitch" type="ValorationRange"/>
 <xsd:element name="intervalsRecognition" type="ValorationRange"/>
 <xsd:element name="innerEar" type="ValorationRange"/>
 <xsd:element name="chordsDictation" type="ValorationRange"/>
 <xsd:element name="atonalDictation" type="ValorationRange"/>
 <xsd:element name="formalAnalysis" type="ValorationRange"/>
 <xsd:element name="harmonicAnalysis" type="ValorationRange"/>
 <xsd:element name="melody4VoicesHarmonisation" type="ValorationRange"/>
 <xsd:element name="bass4VoicesHarmonisation" type="ValorationRange"/>
 <xsd:element name="musicalForms" type="ValorationRange"/>
 <xsd:element name="modulationAndProgression" type="ValorationRange"/>
 <xsd:element name="middleAgeKnowledge" type="ValorationRange"/>
 <xsd:element name="reinassanceKnowledge" type="ValorationRange"/>
 <xsd:element name="baroqueKnowledge" type="ValorationRange"/>
 <xsd:element name="classicKnowledge" type="ValorationRange"/>
 <xsd:element name="romanticKnowledge" type="ValorationRange"/>
 <xsd:element name="impressionisticKnowledge" type="ValorationRange"/>
 <xsd:element name="XXCenturyKnowledge" type="ValorationRange"/>
 <xsd:element name="ethnicMusicKnowledge" type="ValorationRange"/>
 <xsd:element name="popKnowledge" type="ValorationRange"/>
 <xsd:element name="jazzKnowledge" type="ValorationRange"/>
 <xsd:element name="flamencoKnowledge" type="ValorationRange"/>
 <xsd:element name="electroacusticsKnowledge" type="ValorationRange"/>
 <xsd:element name="impressionisticKnowledge" type="ValorationRange"/>
 <xsd:element name="classicHarmony" type="ValorationRange"/>
 <xsd:element name="counterpoint" type="ValorationRange"/>
 <xsd:element name="orchestration" type="ValorationRange"/>
 <xsd:element name="creativity" type="ValorationRange"/>
 </xsd:sequence>
 </xsd:group>

 <xsd:group name="generalPracticeAssessment">
 <xsd:sequence>
 <xsd:element name="rhythmMemory" type="ValorationRange"/>
 <xsd:element name="melodicMemory" type="ValorationRange"/>
 <xsd:element name="harmonicMemory" type="ValorationRange"/>
 <xsd:element name="feelMeaningMemory" type="ValorationRange"/>
 <xsd:element name="projectRxpressiveness" type="ValorationRange"/>
 <xsd:element name="imagination" type="ValorationRange"/>
 <xsd:element name="dynamics" type="ValorationRange"/>
 <xsd:element name="articulation" type="ValorationRange"/>
 <xsd:element name="accents" type="ValorationRange"/>
 <xsd:element name="breathing" type="ValorationRange"/>
 <xsd:element name="phrasing" type="ValorationRange"/>
 <xsd:element name="historicalContextSuitability" type="ValorationRange"/>
 <xsd:element name="melodicImprovisation" type="ValorationRange"/>
 <xsd:element name="groupImprovisation" type="ValorationRange"/>
 <xsd:element name="stypeImprovisation" type="ValorationRange"/>
 <xsd:element name="movementCoordination" type="ValorationRange"/>
 <xsd:element name="flexibilityMovement" type="ValorationRange"/>
 </xsd:sequence>
 </xsd:group>

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 155
www.i-maestro.org ver2.3, 2006-04-28

 <xsd:complexType name="practiceTrainingAssessmentParameter">
 <xsd:sequence>
 <xsd:group ref="instrumentPerformanceSkills" maxOccurs="1"/>
 <xsd:group ref="bowPlayerPostureAssessment" maxOccurs="1" />
 <xsd:group ref="instrumentLeftHandAssessment" maxOccurs="1" />
 <xsd:group ref="instrumentRightHandAssessment" maxOccurs="1" />
 <xsd:group ref="cooperativeWorkAssessment" maxOccurs="1" />
 <xsd:group ref="classroomAssessment" maxOccurs="1" />
 <xsd:group ref="symbolicTrainingAssessment" maxOccurs="1" />
 <xsd:group ref="generalPracticeAssessment" maxOccurs="1" />
 </xsd:sequence>
 </xsd:complexType>

</xsd:schema>

14.8 Assessment model in Class Rooms
This model presents a wide variety approach towards music tuition or educational courses. The class room
models include several possible forms like: teacher to student, teacher to many students, etc.
In the class room setting, the musical knowledge and skills will be measured by different collective test form
to determine the level of technical skills, ear test and musical hearing, etc. There are different methods to
recording observations in the classroom setting:

- Particular records: The teacher makes notes about the student’s progress (i.e. student’s work habits,
contributions and discussions whit the others students, etc.)

- Rating scales: The teacher completes for each student a rating scale from the student progress in
different subjects.

- Checklist: checklist of observable activities (i.e. ability to listen others, play together, etc.)

Usually to measure the student’s knowledge and skills in creating and performing (i.e. artistic abilities,
repertoire), the students are assessed individually.

14.9 Assessment model for self assessment

Opportunities are limited for students who wish continue learning outside of a classroom setting. For this
reason, different educational trainings are accessible for these students and also several self assessment
models. The self assessment model should review all the basic skills and principles of the instrumental
technique and theoretical knowledge.
A possible scale for self assessment model can include the satisfaction level form the student in different
subjects (i.e. scale from 1: very dissatisfied to 5: very satisfied), and measurements of effort (i.e. a scale from
1: very hard to 5: very easy)

14.10 Assessment model for Cooperative work

Cooperative classes and workshops models favour a group approach towards instruction. This training can
assist many students at once in synchronous string classes, coaching sessions, master classes, and group
performances. In this model opportunities are given for group of students to communicate with one another
for discussion groups, chamber music experience, etc. Thought group playing the student learn the skills
required to perform in an ensemble. The way to evaluate them is by checking between sections of the group,
orchestra and soloists, etc.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 156
www.i-maestro.org ver2.3, 2006-04-28

14.11 Assessment Support User Interface

<?xml version="1.0" encoding="UTF-8"?>

<!--
 Document : iMaestroUserInterface.xsd
 Author : Fundación Albéniz
 Description:
 Metadata of lessons from teacher pespective.
-->

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 User Interface Parameters for I-MAESTRO project.
 Fundación Albéniz
 </xsd:documentation>
 </xsd:annotation>

 <xsd:include schemaLocation="iMaestroStudent.xsd"/>
 <xsd:include schemaLocation="iMaestroAssessmentParameters.xsd"/>

 <xsd:element name="exerciseParameters" type="ExerciseParametersType"/>

 <xsd:complexType name="ResultType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="newExercise"/>
 <xsd:enumeration value="repeat"/>
 <xsd:enumeration value="re-evaluate student"/>
 <xsd:enumeration value="modify assessment"/>
 <xsd:enumeration value="change exercise type"/>
 </xsd:restriction>
 </xsd:complexType>

 <xsd:complexType name="ExerciseParametersType">
 <xsd:sequence>
 <xsd:element name="goal" type="xsd:string"/>
 <xsd:element name="mandatory" type="xsd:boolean"/>
 <xsd:element name="storable" type="xsd:boolean"/>
 <xsd:element name="targettedStudent" type="StudentProfileType"/>
 <xsd:element name="assessmentParameters" type="AssessmentParametersType"/>
 <xsd:element name="courseFlow" type="ResultType" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 157
www.i-maestro.org ver2.3, 2006-04-28

15 Specification of I-MAESTRO Music Exercise Generator

15.1 Music Exercise Generator overview

I-MAESTRO Music Exercise Generator

The I-MAESTRO Exercise Generator is part of the I-MAESTRO Production Tools. It is complementary to
the Music Exercise Authoring Tool in providing automated generation of Exercises. The main outputs
produced by the Exercise Generator are Music Exercise Formalisations in Training Specification Language
(TSL) and Music Notation in MPEG Symbolic Music Representation (SMR), which can be used by the
Music Exercise Formalisation.

The music generated in SMR can be based on a provided piece of music, from which the music is excerpted.
Annotations in SMR can be used to control the excerption and processing. Alternatively music can be
synthesised according to generation rules. The processing uses SMR Generation Algorithms provided in the
package of that name.

The exercise generator generates exercise descriptions, which can be interpreted by the Music Training
Exercise Processor. The creation of the Exercise Formalisation is based on pedagogic paradigms, which
describe the structure of the created exercises. The main function of the Exercise Generator is to combine a
pedagogic paradigm, music material, and user-defined parameters to generate a variety of exercises.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 158
www.i-maestro.org ver2.3, 2006-04-28

Several design decisions have still to be made, since this is a novel concept and some of the prerequisite
work and resources are not yet available. This includes the question whether the Generator Configuration
will be stored in the Pedagogical Paradigm or separately, and the question, whether the Exercise Generator
Tool should be integrated into the Exercise Authoring Tool. Also many details depend on the SMR and TSL
formats that are currently being developed.

15.2 Exercise Generation Workflow

The basic Exercise Generation workflow consists of three main stages as shown in following activity
diagram.

Exercise Generation Workflow

Firstly, for preparation the pedagogic paradigm and the music material are loaded and configuration of the
algorithms is set up. Secondly, the algorithms are applied and the exercises and music material are created.
Thirdly, possibly after revision, the result and the configuration are saved.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 159
www.i-maestro.org ver2.3, 2006-04-28

This workflow represents – apart from the revision loop – a batch processing approach. This requires the
User (normally a Teacher) to have good knowledge of the algorithms involved. To allow a more explorative
approach, especially for not technically inclined users, more revision points and interactivity will be added at
where appropriate. For example, showing the SMR processing results using the score display, and give the
user an opportunity to modify the Annotations and/or the Configuration to match her/his intention before
applying the TSL processing.

There are two types of Exercises: Symbolic Training Exercises and Practice Training Exercise. In Symbolic
Training, the Exercises focus on theoretical concepts. The typical input will therefore be either multiple-
choice or the input of a small number of individual notes, either with the mouse, a keyboard, or an acoustic
instrument. In Practice Training, the input will consist mainly of recordings of student performances, both
acoustical and video/3D sensors. These will be analysed by the tools developed in Audio Processing Tools
and Score Following.

Although both types deal with different content, they are similar from the generation aspect. Knowledge
Units are structurally different and do not need the generation features provided here, since they offer mainly
existing media material with little interactivity.

15.3 TSL Generation Algorithms

The generation of exercises represented in TSL uses Pedagogic Paradigms, which function as templates for
the exercises generated. The concrete extent of functionality that can be implemented will evolve during the
project, as the TSL and pedagogic paradigms are developed. Nevertheless, some basic algorithms classes can
already be identified and are listed in the following. For these classes general post-conditions are specified,
that are valid for all algorithms of that class. In addition there may be special constraints for specific music
material, Pedagogic Paradigms, or functionality, which need to be added as necessary in the course of
development.

15.3.1 Content Insertion

The first and simplest case is inserting content into the template, e.g. music examples in SMR.
General Post-Conditions:

1. The result must be correct TSL.
2. The result must contain the specified content at the specified position.

15.3.2 Exercises with Music Variations

Using one exercise template to generate multiple exercises by creating variations on the music. This is
mainly a multiple application of Content Filling after applying SMR Variation Algorithms.
General Post-Conditions:

1. The result must be correct TSL.
2. Variations must not be identical

15.3.3 Content Recombinations

The content of a lesson can be intensively trained by recombining its elements, e.g. in a multiple choice
exercise.
General Post-Conditions:

1. The result must be correct TSL.
2. The combination of elements must not contain identical elements
3. Successive combinations must not be identical

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 160
www.i-maestro.org ver2.3, 2006-04-28

15.3.4 Exercise Variations

Content can be trained intensively by using different types of exercises on it. This may include applying
different SMR Algorithms as appropriate to the different exercise types.
General Post-Conditions:

1. The result must be correct TSL.
2. Successive exercises must not be identical.

15.4 SMR Generation Algorithms

SMR generation algorithms are used for the generation of music material for exercises. We can only
implement a small part of the vast space of possible algorithms, of which many may be interesting in
particular pedagogic situations. To overcome this problem we implement basic algorithms and offer ways of
extending and combining these that allow the user to recombine algorithms. The algorithm set of will further
evolve during the course of the project as the progress in pedagogic concepts entails the development of new
algorithms.

The SMR Generation Algorithms can be divided into two groups: Synthesis and Variation. SMR Synthesis
Algorithms for synthesising SMR (as opposed to creating variations) provide music material without music
input.

Generation of basic musical elements
The generation of basic musical elements like scales and chords, arpeggios will be realised by pattern
descriptions, that specify the basic form of the element (e.g. a major triad chord as c-e-g or, if useful, in a
more abstract form, such as: minor third, major third). As an extension the root note, numbers of repetitions,
and note values will be variable and controlled by parameters.

Generation of constrained musical elements
Generation of melodic and rhythmic material corresponding to musical constraints like key, time signature,
rhythmic patterns, and harmonic sequence. This algorithm includes mainly mapping of pitch and rhythmic
values to fit a constraint pattern.

15.4.1 SMR Variation

These algorithms provide essential musical variations, such as the following:

Chromatic transposition
This chromatic transposition ct(n,x) changes the pitch of every processed note n by an interval x that is
provided as a parameter, such that xxnctcpncp +=)),(()(, where cp(n) is the chromatic pitch of n. The
transposition must produce enharmonically correct pitches, as these are necessary for any exercises involving
music notation. Enharmonic correctness in this case means that the interval x is consistently treated as the
same diatonic interval and the produced pitches are consistent with it. E.g. a Tritone (6 semitones) can either
be treated as an Augmented Fourth or as an Diminished Fifth, leading to completely different diatonic notes.

Diatonic transposition
Diatonic transposition dt(n,x,s) changes the pitch of each processed note by the same diatonic interval, i.e.
they have the same distance on a scale s, which is usually a subset of the 12 semitones of every octave, called
the degrees. The general condition is xssxndtdgndg +=)),,,(()(, where dg(n,s) returns the degree of
note n with respect for scale s. In addition we require)),,,((),(ssxndtaccsnacc = , indicating that the

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 161
www.i-maestro.org ver2.3, 2006-04-28

accidental of n with respect to its scale degree in s is kept constant, and)sgn()),,(sgn((xnsxndt =−
which states that all transpositions must be made in the same direction. However,

xsxndtcpncp +=)),,(()(does not hold in general, but where s is symmetric, i.e. where all intervals in s
are of the same size.

Change in key signature
A change in key signature entails either a transposition (in this case the appropriate direction of the
transposition has to be found) or it puts the existing notes into a new tonal context, which entails an
adaptation of the accidentals.

Rhythmic transformation
A rhythmic transformation of can always be reduced to changing start times and durations of notes. The
questions, how these changes are controlled, and which constraints must be satisfied, depend very much on
the pedagogical application. Transformations that are commonly used are the change of position (within a
composition or locally e.g. from the beat to a syncope) subdivision (binary – swing- ternary – dotted –
double-dotted) and duration (also articulation).

Change in tempo
A change in tempo is a specific rhythmic transformation, where all start times and durations are multiplied
by a constant factor. In addition, the tempo indications in the SMR must be adapted.

Application of rhythmic patterns to melodic material
This is a special case of rhythmic transformation, which takes the rhythmic properties of one set of notes and
changes the start times and durations of another set accordingly. This may have implications for the structure
of the music (i.e. rests or surrounding notes will have to be added or deleted to maintain metrical structure).
The specifics of these adaptations depend on the pedagogical purpose.

Application of melodic material to rhythmic patterns
This is the inverse of the previous case, where the pitch values of a set of notes are taken as a model for
another set of notes. Again adaptations may be useful, but specifics are not yet clear.

Excerption
The algorithms must comprise extraction of voices, segments and selections based on rules. This is
performed by copying the notes marked up to a new SMR unit, which can then be further processed. For
efficient and effective use, the annotation of relevant sets of notes has to comply with the conventions used
in the Generation algorithms. Otherwise, manual identification of the note sets will be necessary.

Application of style parameters
With more complex algorithms, combined of the basic building blocks above, it will be possible to take into
account style, when generating or varying music. This can mainly be done through the choice of appropriate
parameters and patterns (e.g. create a ‘swing’ feeling by dividing crotchets in 2:1 ratio), or the selection of
specific material (e.g. marked by specific annotations). This will give a high-level interface, especially useful
to users who lack the time or skills to define their own algorithms.

15.5 Generator Configuration

The Generator Configuration stores all the information on the used material and the application of the
algorithms. It contains the information about which algorithms are to be used, the parameters for the
individual algorithms, and rules controlling their application and combination.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 162
www.i-maestro.org ver2.3, 2006-04-28

Material
The definition, which parts of given music are to be used, is made by reference to annotations in the SMR.
There can be different material for different algorithms, which may be combined (e.g. when applying a
pattern).

Parameters
The parameters of algorithms, e.g. the interval of a transposition, need to be defined for every algorithm.

Rules
Generation Rules allow to specify the scope of the algorithm application, e.g. ‘generate the c major scale and
transpose it to all 12 semitones’. Therefore it allows simple scripting with loops over ranges of numbers and
sets of music material, as well as conditions that specify. This feature allows programmers and users to
create composed algorithms for later use or reuse, as well as is gives great flexibility for matching individual
needs.

Further research needs to be done, to find out, whether it will be possible to use an existing scripting
language like JavaScript, or whether a specialized solution is more suitable.

15.6 Format for Generation Configuration

The Generation Configuration will be stored as an XML file according to an XML Schema definition. The
structure of the Schema is shown in the following diagram. Individual elements in the Schema depend on
the details of the SMR and TSL.

15.7 Music Exercise Generator User Interface

The user interface of the Exercise Generator allows the User to load the data, define the configuration, run
and control the application of the algorithms. The essential parts of the interface will be menus and forms
that allow creation of a configuration and running it. In addition the Score Editor Module will be used to
allow annotation of music and viewing created SMR, and the created Exercises in TSL will be displayed
using the Exercise Authoring Tool (see chapter 7).
The Menus will provide the following basic functionality:

• Main Menu

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 163
www.i-maestro.org ver2.3, 2006-04-28

o Load Paradigm
o Load SMR
o Load Configuration
o Save SMR
o Save TSL
o Save Configuration

• SMR Algorithm Menu
o Add Algorithm
o Remove Algorithm

• TSL Algorithm Menu
o Add Algorithm
o Remove Algorithm

• Processing
o Start SMR Processing
o Start TSL Processing

• Help
o About
o Help Index

The loading and saving items will be implemented using Standard File dialogs, as far as they load from files.
Algorithm Parameters and Rules will be editable in GUI forms in the main window, where also SMR will be
displayed using the I-MAESTRO SMR viewer and the editor for editing Annotations. Whether the viewing
and playback of generated exercises should better be handled in the main window or in a separate window,
needs to be determined during early tests.

15.8 Music Exercise Generator Tool Profile

Module/Tool Profile
Exercise Generator Tool

Responsible Name Tillman Weyde
Responsible Partner LCU
Status (proposed/approved) Proposed
Implemented/not implemented Not implemented
Status of the implementation 0%
Executable or Library/module
(Support)

Module or Executable (to be decided in due course)

Single Thread or Multithread Single threaded
Language of Development Java or C++
Platforms supported Windows and Macintosh
Reference to the location of the
source code demonstrator

Reference to the location of the
demonstrator executable tool for
internal download

Reference to the location of the
demonstrator executable tool for
public download

Address for accessing to
WebServices if any, add
accession information (user and

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 164
www.i-maestro.org ver2.3, 2006-04-28

Passwd) if any
Test cases (present/absent) Present
Test cases location See DE 2.1.1d section 8.5
Major Problems not solved
Major pending requirements

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Exercise Authoring Tool

Formats Used Shared with format name or reference to a

section
MPEG SMR All I-MAESTRO MPEG-4 Symbolic Music

Representation
TSL Exercise Authoring, Player To be developed
Generator Configuration See above

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 165
www.i-maestro.org ver2.3, 2006-04-28

16 Specification of Audio Recording Tool

The Audio Recording Tool available in Max/MSP are movie and imove objects. They use QuickTime, so this
program has to be installed in the system. It is possible to open an audio file (all QuickTime format are
supported such as mp3, wav, aiff), play, stop, pause, resume ,go to a specific point, etc.
For more details see the Max/MSP reference manual.

There are many objects specifically designed to manipulate MIDI format. It is possible to prepare message in
midi format, send in/out raw midi data, interpret, play and record midi data. It is also possible manage real
time midi messages.

Principal objects that provide these capabilities are midin, midiout, midiformat, midipars, midiflush, seq (for
midi recroding) and rtin (for real time message).

17 Specification of Video Recording Tool

The Video Recording Tool available in Max/MSP are movie and imove objects. They use QuickTime, so this
program has to be installed in the system. It is possible to open a video file (all QuickTime format are
supported such as MPEG, MOV), play, stop, pause, resume , go to a specific point, etc. For more details see
the Max/MSP reference manual).

18 Specification of Metronome Tool

The Metronome Tool allows to keep Tempo during a performance. There are two types of objects inside
Max/MSP that can be used as metronome: metro and qmetro (based on jitter). It is possible to start and stop
metro and it sends a bang message at regular intervals. This message can be used to turn on a led or to
produce a sound useful to create a metronome. (For more details see the Max/MSP reference manual).

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 166
www.i-maestro.org ver2.3, 2006-04-28

19 Specification of Tuner Tool

The Tuner Tool allows to tune instruments before a performance. It is possible to make a simple tuner using
midi objects (e.g. using mtof object) to generate note with different frequencies. For more details see the
Max/MSP reference manual)

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 167
www.i-maestro.org ver2.3, 2006-04-28

20 Specification of I-MAESTRO School Server and Portal for the school

I-MAESTRO School Server

Web Service for Load
and Save

Lesson
Database

WEB Administrative Interface

Student
Database

Teacher

I-MAESTRO-Architecture::I-
MAESTRO Client Tools

I-MAESTRO-Architecture::I-
MAESTRO Production Tools

I-MAESTRO-Architecture::I-
MAESTRO Other Applications

and Tools

Workgroup
Database

I-MAESTRO-Architecture::Cooperative Support for Music Training

School Portal

Teacher Student

Software and
Information database

Group
database

Student
database

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 168
www.i-maestro.org ver2.3, 2006-04-28

I-MAESTRO School Server contains all available I-MAESTRO contents used by tools and all information
about registered users (Students and Teacher). Databases by the School Server contain Student profiles,
Lesson archived, and information about workgroup used in cooperative works.
Databases have an internal access for:

• I-MAESTRO Production Tools, I-MAESTRO Client Tools and I-MAESTRO Other Applications
and Tools through Web Services used by Cooperative Support for Music Training to load and save
Lessons and Exercises

• Teachers who use Web Administrative Interface
and an external access through School Portal accessible from internet used by registered Teachers and
Students.
Internal access gives full access to databases, while external one gives access only to Lesson database,
Workgroup database and Software and Information database.

20.1 Lesson Database

Module/Tool Profile
Lesson Database

Responsible Name
Responsible Partner EXITECH
Status (proposed/approved) proposed
Implemented/not implemented Not implemented
Status of the implementation
Executable or Library/module
(Support)

Single Thread or Multithread Multithread
Language of Development
Platforms supported
Reference to the location of the
source code demonstrator

Reference to the location of the
demonstrator executable tool for
internal download

Reference to the location of the
demonstrator executable tool for
public download

Address for accessing to
WebServices if any, add
accession information (user and
Passwd) if any

Test cases (present/absent)
Test cases location http://
Major Problems not solved --

--
Major pending requirements --

--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 169
www.i-maestro.org ver2.3, 2006-04-28

section

Protocol Used Shared with Protocol name or reference to a

section

Used Database name
IMDB
User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

20.1.1 General Description of the Module
The I-MAESTRO school server store information about the Lessons. The Lessons data model seems to need
a quite large number of tables that can be divided in two main categories: one for teacher data and the other
for the student supplied data.

The tables involved in the teacher data should be:

• Lesson
• Lesson categories
• Lesson access rights
• Lesson difficulty levels

The tables involved in the student created data should refer to:

• Lesson attempts, states and results

The loader and saver web-service will mainly interact with the run time (student supplied) side. The
administrative side (teacher provided data) will interact with the administrative interface.

20.1.2 User interface description of the tool
This module has no user interface since it is a database

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 170
www.i-maestro.org ver2.3, 2006-04-28

20.1.3 Table description for database Lesson Database

Course Table

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 171
www.i-maestro.org ver2.3, 2006-04-28

New fields have to be added in order to fulfil I-MAESTRO requirements:

Filed Name Type Description
CourseLevelID int

Lesson Category Table (mdl_course_category)

Lesson difficulty levels (mdl_course_level)
Filed Name Type Description
LessonLevelID Primary key
Level code varchar Coded level string
Description varchar
Visible Boolean
Timemodified Date

Lesson access rights (mdl_course_accesses)
Filed Name Type Description
LessonAccesRightID Primary key
ShortCode varchar Coded level string

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 172
www.i-maestro.org ver2.3, 2006-04-28

Description varchar
Visible Boolean

Lesson modules: (mdl_course_modules) – Stores info about single modules in a course section, which may
consists of quizzes, internal resources (HTML), external resources (link to other sites or files), etc…

Lesson resources: (mdl_resources) - Stores info about active course external resources (link or files) in case
that the module type (module field in mdl_course_modules).

The student’s attempts and result are stored in a dedicated table: mdl_scorm_scoes_track structured as
follows:

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 173
www.i-maestro.org ver2.3, 2006-04-28

20.2 Student and Teachers Database

Module/Tool Profile
Student Database

Responsible Name
Responsible Partner EXITECH
Status (proposed/approved) proposed
Implemented/not implemented Not implemented
Status of the implementation
Executable or Library/module
(Support)

Single Thread or Multithread Multithread
Language of Development
Platforms supported
Reference to the location of the
source code demonstrator

Reference to the location of the
demonstrator executable tool for
internal download

Reference to the location of the
demonstrator executable tool for
public download

Address for accessing to
WebServices if any, add
accession information (user and
Passwd) if any

Test cases (present/absent)
Test cases location http://
Major Problems not solved --

--
Major pending requirements --

--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 174
www.i-maestro.org ver2.3, 2006-04-28

Protocol Used Shared with Protocol name or reference to a

section

Used Database name
IMDB

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

20.2.1 General Description of the Module

The I-MAESTRO school server store information about Students and Teachers. The data model requires a
quite large number of tables that will contains all the Student and Teacher profile.

 The databases tables should be:

• Students
• Teachers

The loader and saver web-service will mainly interact with the run time (student supplied) side. The
administrative side (teacher provided data) will interact with the administrative interface.

Student Table (mdl_user) - Holds user information for each person
FIELD NAME TYPE Notes
id int(10)
confirmed boolean Confirmed enrolment via e-mail
policyagreed boolean Student accept the policy
deleted boolean Deleted user (history archived and visible)
username varchar(100)
password varchar(32)
idnumber varchar(64)
firstname varchar(20)
lastname varchar(20)
email varchar(100)
emailstop
icq varchar(15)
skype varchar(50)
yahoo varchar(50)
aim varchar(50)
msn varchar(50)
phone1 varchar(20)
phone2 varchar(20)
institution varchar(40)
department varchar(30)
address varchar(70)
city varchar(20)
country char(2)
lang varchar(10)

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 175
www.i-maestro.org ver2.3, 2006-04-28

theme varchar(50)
timezone varchar(100)
firstaccess int(10)
lastaccess int(10)
lastlogin int(10)
currentlogin int(10)
lastIP varchar(15)
secret varchar(15)
picture
url varchar(255)
description text
mailformat
maildigest
maildisplay
htmleditor
autosubscribe
trackforums
timemodified int(10)

Administrators table (mdl_user_admins) - One record per administrative user
id Primary key
userid User ID

Teachers table (mdl_ user_coursecreators) - One record per Teacher
id Primary key
userid User ID

Student activity table (mdl_user_students) - Holds student information
id Primary key
userid User ID
LessonID Course student enrolled in
timestart
timeend
time

mdl_user_teachers - One record per teacher per course
id Primary key
userid User ID
LessonID Course student enrolled in
authority
role
editall
timemodified Most recent time teacher record modified

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 176
www.i-maestro.org ver2.3, 2006-04-28

20.3 Workgroup Database

Module/Tool Profile
Workgroup Database

Responsible Name
Responsible Partner EXITECH
Status (proposed/approved) proposed
Implemented/not implemented Not implemented
Status of the implementation
Executable or Library/module
(Support)

Single Thread or Multithread Multithread
Language of Development
Platforms supported
Reference to the location of the
source code demonstrator

Reference to the location of the
demonstrator executable tool for
internal download

Reference to the location of the
demonstrator executable tool for
public download

Address for accessing to
WebServices if any, add
accession information (user and
Passwd) if any

Test cases (present/absent)
Test cases location http://
Major Problems not solved --

--
Major pending requirements --

--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

Protocol Used Shared with Protocol name or reference to a

section

Used Database name
IMDB

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 177
www.i-maestro.org ver2.3, 2006-04-28

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,
proprietary, authorized or not

Groups Table_(mdl_groups)
GroupID Primary key
Name varchar
Description Varchar
Password Varchar
Lang Varchar
Theme Varchar
picture URL
hidepicture Boolean
Timecreated Date
timemodified date

Groups Lesson relation Table_(IMDB_lesson_groups)
ID Primary key
GroupID varchar
LessonID Varchar

Groups Users relation Table
ID Primary key
GroupID varchar
UserID Varchar
Timeadded date

20.4 Web Service for Load and Save

Module/Tool Profile
Web Service for Load and Save

Responsible Name
Responsible Partner EXITECH
Status (proposed/approved) proposed
Implemented/not implemented Not implemented
Status of the implementation
Executable or Library/module
(Support)

Single Thread or Multithread Multithread
Language of Development JAVA
Platforms supported Windows
Reference to the location of the
source code demonstrator

Reference to the location of the
demonstrator executable tool for
internal download

Reference to the location of the
demonstrator executable tool for

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 178
www.i-maestro.org ver2.3, 2006-04-28

public download
Address for accessing to
WebServices if any, add
accession information (user and
Passwd) if any

Test cases (present/absent)
Test cases location http://
Major Problems not solved --

--
Major pending requirements --

--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

Protocol Used Shared with Protocol name or reference to a

section

Used Database name
IMDB

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

20.4.1 General Description of the Module

The I-MAESTRO school server Loader/Saver web-service is a tool that is capable of getting an I-
MAESTRO object and putting it in the database, that is the saving function; and it is also capable, given an
Object ID to return the I-MAESTRO object in the client compliant format, that is the loading function.

The load and save function are always considered from the point of view of the user, so that Load means
“load from I-MAESTRO” and save means import inside I-MAESTRO database.

The I-MAESTRO Loader/Saver interacts with Cooperative Support for Music Training. This module offers
the services for saving in the database objects and for loading objects from the database. This module can be
split in the Loader and Saver in order to have a better understanding of the different behaviour of the two
services. Both services of this module are implemented as web-services and therefore in the following
specification, the WSDL of the proposed service together with samples of the SOAP messages will be
reported. The services can operate in synchronous and asynchronous mode. In asynchronous mode a Listener
approach will be implemented, in the sense that the user, in order to be allowed to use asynchronous
operation must offer a web-service with a known interface to receive the result of the operation.
The saver module will automatically set the version of the object inside the object as soon as the object is
saved increasing the number currently present in the database.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 179
www.i-maestro.org ver2.3, 2006-04-28

All services will be implemented in JAVA.

Saver
Saver/Indexer module offers basically the database commit service.

Loader
The loader module offers basically the checkout service.
The following table summarizes the methods of the Loader web-service a short description of the
functionalities.

20.5 Web Administrative Interface

Module/Tool Profile
Web Administrative Interface

Responsible Name Marius Spinu
Responsible Partner EXITECH
Status (proposed/approved) proposed
Implemented/not implemented
Status of the implementation
Executable or Library/module
(Support)

Single Thread or Multithread
Language of Development PHP, JAVASCRIPT, JAVA
Platforms supported LINUX, WINDOWS
Reference to the location of the
source code demonstrator

Reference to the location of the
demonstrator executable tool for
internal download

Reference to the location of the
demonstrator executable tool for
public download

Address for accessing to
WebServices if any, add
accession information (user and
Passwd) if any

Test cases (present/absent)
Test cases location
Major Problems not solved
Major pending requirements

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

Protocol Used Shared with Protocol name or reference to a

section

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 180
www.i-maestro.org ver2.3, 2006-04-28

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

MOODLE

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
 MOODLE GPL

The School server administrative interface will allow to manage the school server. A Open Source Tool as
MOODLE can be used in order to satisfy the requirements.

In MOODLE the administration functionalities are organised in more categories:

20.5.1 Configuration tool:

The variables item allows to modify Interface, Security, Mail, Regional, Permissions and other
miscellaneous parameters. The language allows to quickly change the portal language:

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 181
www.i-maestro.org ver2.3, 2006-04-28

A special section is dedicated to user management

Some requested fields are already active in MOODLE and some new functionalities have to be implemented
in order to fulfil with the user requirements.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 182
www.i-maestro.org ver2.3, 2006-04-28

20.5.2 Student profile management

STUDENT PROFILES
Functionality Implemented in

MOODLE?
Create new profile Yes
Save profile Yes
Load (Open) Yes
Editing profile Yes
Delete Yes
Profile comparison No
Profile upload/download No

The MOODLE user interface related to the Student profile allows to create a new Student profile or to
open/edit/update/delete an existing one.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 183
www.i-maestro.org ver2.3, 2006-04-28

20.5.3 Group profile management

In MOODLE the GROUP exist but can the groups are related only for one lessons/course. In I-MAESTRO
the concept of group of students should be activated at a higher level.

As depicted in the next figure the MOODLE group management interface can be used but the functionalities
have to be adapted to the project requirements.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 184
www.i-maestro.org ver2.3, 2006-04-28

Group profile
Functionality Implemented in

MOODLE?
Create new group profile Yes / to be changed
Save profile Yes / to be changed
Load (Open) Yes / to be changed
Editing profile Yes / to be changed
Delete Yes / to be changed
Profile comparison No
Profile upload/download No

20.5.4 Work profile management

The work profile concept is not implemented in MOODLE. It is quite similar to the group profile and should
have the same graphic interface.

Work profile
Functionality Implemented in

MOODLE?
Create new group profile Yes / to be changed
Save profile Yes / to be changed
Load (Open) Yes / to be changed
Editing profile Yes / to be changed
Delete Yes / to be changed
Profile comparison No
Profile upload/download No

20.6 School Portal

Module/Tool Profile
School Portal

Responsible Name Marius Spinu
Responsible Partner EXITECH
Status (proposed/approved) proposed
Implemented/not implemented Not implemented
Status of the implementation
Executable or Library/module
(Support)

Web application

Single Thread or Multithread Multithread
Language of Development PHP
Platforms supported Any OS
Reference to the location of the
source code demonstrator

Reference to the location of the
demonstrator executable tool for
internal download

Reference to the location of the

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 185
www.i-maestro.org ver2.3, 2006-04-28

demonstrator executable tool for
public download
Address for accessing to
WebServices if any, add
accession information (user and
Passwd) if any

Test cases (present/absent) present
Test cases location
Major Problems not solved --

--
Major pending requirements --

--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

Protocol Used Shared with Protocol name or reference to a

section

Used Database name
IMDB

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

20.6.1 General Description of the Module

The School Portal is dedicated to the software download. It will contain all the I-MAESTRO tools, help files,
configuration How-To, configuration tools, etc.

Large part of the portal should be publicly accessible but some software (according to the licenses) will be
downloadable only for the registered users (Student or Teacher).

The portal will be structured in two levels

• Public level
• Controlled access level

In order to access the “Controlled access area” the I-MAESTRO Student or teacher account and password
will be requested. The user activity should be monitored for statistical purposes.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 186
www.i-maestro.org ver2.3, 2006-04-28

20.7 Software and Information Database

Module/Tool Profile
Software and Information Database

Responsible Name Marius Spinu
Responsible Partner EXITECH
Status (proposed/approved) proposed
Implemented/not implemented Not implemented
Status of the implementation
Executable or Library/module
(Support)

Single Thread or Multithread Multithread
Language of Development
Platforms supported
Reference to the location of the
source code demonstrator

Reference to the location of the
demonstrator executable tool for
internal download

Reference to the location of the
demonstrator executable tool for
public download

Address for accessing to
WebServices if any, add
accession information (user and
Passwd) if any

Test cases (present/absent)
Test cases location
Major Problems not solved --

--
Major pending requirements --

--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

Protocol Used Shared with Protocol name or reference to a

section

Used Database name
IMDB

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 187
www.i-maestro.org ver2.3, 2006-04-28

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

20.7.1 General Description of the Module

A database will be implemented in order to archive all the I_MAESTRO software tools and the information
documents.

The database should be structured in some tables as:

• IMDB_downloadable_data
• IMDB_tools_access_rights
• IMDB_ downloadable resource table

20.7.2 Database tables description

IMDB_downloadable_data table

This table will contain the generic information about the downloadable data (software or information).

Field Name Type Notes
downloadableDataID Int Primary key
Name varchar
Description varchar
popup varchar
type varchar(30)

IMDB access right table

The access right table will associate a downloadable data with an userID for access right purposes.

Field Name Type Notes
downloadableDataID Int Primary key
userID Int

If a user is not present in the table he/she cannot download/view the files.

IMDB_ downloadable resource table

This table associate resources (mainly files) with the downloadable data

Field Name Type Notes
resourceID Int
name varchar(255)
type varchar(30)
reference varchar(255)
summary text
alltext text

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 188
www.i-maestro.org ver2.3, 2006-04-28

options varchar(255)
timemodified int(10)

A table very similar with the mdl_resources table can be used in this case but in order to allow to one tool to
be composed from more than one files an intermediary connection table can be considered:

Field Name Type Notes
downloadableDataID Int Primary key
resourceID Int

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 189
www.i-maestro.org ver2.3, 2006-04-28

21 Annex A: Pre Existing Know – How

Table of the Pre-existing know how

The following table simplifies the assignment of the grants to the access at the pre-existing know-how/software and tools. According to this
Consortium Agreement the rights to access at the know-how can be given only via written statements. This process can be very time-consuming thus
the table reported is a way to simplify and accelerate the mechanism.

Providing status During Project After Project conclusion Contract
or

Provider

Pre existing know how

tool, software,
description

Source
Code: Y

language,
N

Binar
y

Code:
Y/N

Operati
ng

Systems
list

Cha
nged

in
WP

Mont
h

Availa
bility

Licensing/fr
ee of

Charge,
FOC

Accessing
Contract

ors

Licensing
/free of
Charge

Accessing
Contract

ors

Licensing
cost

DSI WEDELMUSIC Editor:
multimedia integration and
distribution tools, image score,
music notation, audio player,
video player, animations,
integration with authoring tools,
watermarking scores, printing
music, help support, transaction
model, music notation
conversions, o.

Source Code
Available for
the I-
MAESTRO
Framework ,
C++

Y Windows,
partially
also Linux

NA M1 Free of Charge
(FOC) in I-
MAESTRO
Framework

DSI mainly,
All for
usage in the
I-
MAESTRO
if needed

Free of
Charge in I-
MAESTRO
Framework

All Licensing
based

DSI Client certification and
registration, not completely of
DSI.

Source Code,
C++, ASM

Y Win, X86 NA M1 FOC, I-
MAESTRO
Framework

DSI mainly,
All

Licensing All

DSI Feature extraction tools for audio
files, algorithm for shrinking and
stretching audio

Source Code,
C++

Y Win NA M1 FOC, I-
MAESTRO
Framework

All if
necessary

Integrated in
I-
MAESTRO
Framework

All IMF share

DSI Automatic formatting tools such
as MILLA engine.

Source Code,
C++

Y Win NA M1 FOC, I-
MAESTRO
Framework

DSI mainly,
All

Integrated in
I-
MAESTRO
Framework

All IMF share

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 190
www.i-maestro.org ver2.3, 2006-04-28

UNIVLE
EDS

2D video and 3D motion,
acquisition and analysis modules

Source code,
c++

Y Windows NA M1 FOC, I-
MAESTRO
Framework

UNIVLEED
S mainly

Integrated in
I-
MAESTRO
Framework

All IMF share

UNIVLE
EDS

Audio capture and analysis
module

Source code,
c++

y Windows NA M1 FOC, I-
MAESTRO
Framework

UNIVLEED
S mainly

Integrated in
I-
MAESTRO
Framework

All IMF share

EXITEC
H, DSI

MPEG SMR player and light
editor, as reported on the MPEG
repository

Source Code
Available for
the I-
MAESTRO
Framework ,
C++

Y Windows,
partially
also Linux

NA M1 Free of Charge
(FOC) in I-
MAESTRO
Framework

DSI mainly,
All for
usage in the
I-
MAESTRO
if needed

Free of
Charge in I-
MAESTRO
Framework

All Related to the
rules of
MPEG ISO

DSI MPEG21 authoring tool, player,
object modelling tool, etc.

Source Code
Available for
the I-
MAESTRO
Framework ,
C++

Y Windows,
partially
also Linux

NA M1 Free of Charge
(FOC) in I-
MAESTRO
Framework

DSI mainly,
All for
usage in the
I-
MAESTRO
if needed

Licensing
but free see
on right

All Licensing
based on
AXMEDIS
model and
mechanism

EXITEC
H

Portal support and framework for
managing workgroups, mailing
list, etc.

PHP, Source
code

N Linux NA M1 FOC EXITECH,
all as users

Licensing
but free see
on right

All Free for 4
years after
the project
conclusion

IRCAM SUIVI : software package for
automatic accompaniment of a
performer composed of a notation
editor in JAVA, a learning
mechanism based on HMM,
algorithms for pitch and other
signal features detection,
synchronisation mechanism

Max/MSP
source code
(patches)
including
compiled
object code
(objects)

Y Windows,
MacOSX

NA M1 Free of Charge
(FOC) in I-
MAESTRO
Framework

All for
usage in the
I-
MAESTRO
if needed

Licensing All To be defined
According to
applications

IRCAM Musique Lab : educational
software in 3 modules
(Annotation stand alone
application, Composition Open
Music based application, Live
performing Max/MSP based stand

Source code
accessible
(access to
patch edition)
with
OpenMusic

Y Windows
and
MacOSX

NA M1 Free of Charge
(FOC) in I-
MAESTRO
Framework

All for
usage in the
I-
MAESTRO
if needed

Licensing
Or
distribution

All To be defined
According to
applications

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 191
www.i-maestro.org ver2.3, 2006-04-28

alone application (Free
software) or
with
max/MSP
(commercial
software)

IRCAM Annotation tool Y SVG NA M1 Free of Charge
(FOC) in I-
MAESTRO
Framework

All for
usage in the
I-
MAESTRO
if needed

Licensing
Or
distribution

All To be defined
According to
applications

IRCAM Audio signal extractors : Timbre,
Tempo, Scales, Modes

MPEG7 XML
code

Y All NA M1 Free of Charge
(FOC) in I-
MAESTRO
Framework

All for
usage in the
I-
MAESTRO
if needed

Licensing
Or
distribution

All To be defined
According to
applications

Where:

• All: for accessing contractors, means also available for affiliate members, related subcontractors and partners associated with take-up actions.
• FOC: for licensing means Free Of Charge, that is on royalty free basis.
• I-MAESTRO Framework: means that the Source Code or the Binary code in discussion will be posted in the I-MAESTRO framework (it can

be posted there for the project duration and/or after the project conclusion, see last columns).
• Integrated in I-MAESTRO Framework: means that the Pre-existing know-how and tools under discussion will be integrated into the I-

MAESTRO model and tools and thus they will remain in the I-MAESTRO framework.
• IMF share, means I-MAESTRO Framework Share, the value and the licensing of this provided component will be estimated on the basis of the

influence of the component itself into the I-MAESTRO Framework Share, which is the Cost of code/tools that will finish in the I-MAESTRO
Framework.

DE3.1.1b – I-MAESTRO Specification: Architecture Specification

I-MAESTRO project 192
www.i-maestro.org ver2.3, 2006-04-28

Table of the Excluded Pre-existing know-how:

This table has to list the Pre existing know how and tools that are explicitly excluded from access and usage inside the I-MAESTRO project.

Contractor Provider Pre existing know how tool, description

IRCAM Pitch detection algorithm (code name : f(0))

DE3.1.1a – I-Maestro Specification: General overview

I-MAESTRO project 193
www.i-maestro.org ver2.3, 2006-04-28

22 Acronyms and Sources

22.1 Acronyms

The following are some abbreviations in common use:

ADL Advanced Distributed Learning
CWS Cooperative Work Service

GUI Graphical User Interface, is a method of interacting with a computer through a metaphor of
direct manipulation of graphical images and widgets in addition to text.

IEC The IEC is a similarly international organization that "prepares and publishes international
standards for all electrical, electronic and related technologies."

IEEE LTSC
Within the IEEE, the Learning Technology Standards Committee (LTSC) is chartered by the
IEEE Computer Society Standards Activity Board to "develop accredited technical standards,
recommended practices, and guides for learning technology”

IMS

“Instructional Management Systems (IMS) project”, also sometimes referred to as “Global
Learning Consortium, Inc.”, IMS/GLC. The IMS Global Learning Consortium, Inc. (IMS)
develops and promotes the adoption of open technical specifications for interoperable learning
technology"

ISO The International Standard Organization is a standardization body that is recognized
internationally, and was established under the auspices of the United Nations

LMS Learning Management System
LOM Learning Object Metadata" standard (IEEE 1484.12.1-2002)
RTE Run Time Environment
SCO Sharable Content Object
SCORM ™ Sharable Content Object Reference Model

URI Uniform Resource Identifier, is a short string that identify resources in the web: documents,
images, downloadable files, services, electronic mailboxes, and other resources.

22.2 Sources

• Advanced Distributed Learning (ADL), Sharable Content Object Reference Model (SCORM)
Content Aggregation Model, Version 1.3.2, 2006

• http://www.adlnet.gov/downloads/index.cfm?event=main.listing&categoryId=53

Overview:
• http://www.adlnet.gov/technologies/SCORM/index.cfm

HP SCORM:

• http://www.adlnet.gov
• http://www.adlnet.org
• http://www.ieee.org
• http://www.imsglobal.org
• http://www.ariadne-eu.org

DE3.1.1a – I-Maestro Specification: General overview

I-MAESTRO project 194
www.i-maestro.org ver2.3, 2006-04-28

• http://ltsc.ieee.org/wg12/
• http://www.reload.ac.uk/scormplayer.html
• http://koala.dls.au.com/scorm/
• http://www.scormplayer.com/
• http://www.e-learningconsulting.com/products/scorm-visualizer.html
• http://www.adlnet.gov/downloads/index.cfm?event=main.listing&categoryId=53

Overview:
• http://www.adlnet.gov/technologies/SCORM/index.cfm
• http://ltsc.ieee.org/wg12/
• Alliance of Remote Instructional Authoring & Distribution Networks for Europe (ARIADNE)

(http://www.ariadne-eu.org/)
• Aviation Industry CBT Committee (AICC) (http://www.aicc.org/)
• Institute of Electrical and Electronics Engineers (IEEE)
• Learning Technology Standards Committee (LTSC) (http://ltsc.ieee.org/)
• IMS Global Learning Consortium, Inc. (http://www.imsglobal.org/)
• http://www.cancore.ca/docs/intro_e-learning_standardization.html
• http://exelearning.org/?q=about
• http://www.docebolms.org/doceboCms/page/23/E_Learning_scorm_tutorial_samples_open_source.h

tml
• http://www.lsal.cmu.edu/lsal/expertise/projects/scorm/scormevolution/reportv1p02/report-

v1p02.html
• http://www.dotnetscorm.com/Home/tabid/36/Default.aspx

MAX Sources:

http://www.cycling74.com/download/ following Documents:

• AuthoringToolsApplicationGuidelines.pdf
• JavascriptInMax.pdf
• Jitter15Tutorial.pdf
• Max45ReferenceManual.pdf
• Max45TutorialsAndTopics.pdf
• MaxGettingStarted.pdf
• WhatsNewInMax/MSP455.pdf

