
DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 1
www.i-maestro.org ver2.9, 20006-11-14

I-MAESTRO: Interactive Multimedia Environment for
Technology Enhanced Music Education and Creative

Collaborative Composition and Performance
 www.i-maestro.org, www.i-maestro.net

DE5.1.1
Model and Support for Cooperative Work and

SMR for Music Education

Version: 2.9
Date: 14/11/2006
Responsible: DSI (Francesco Frosini, Giovanni Liguori, Nicola Mitolo, Paolo Nesi)

Project Number: 026883
Project Title: I-MAESTRO
Deliverable Type: Public
Visible to User Groups: Yes
Visible to Affiliated: Yes
Visible to Public: Yes

Deliverable Number: DE5.1.1
Contractual Date of Delivery: M12
Actual Date of Delivery: 14 November 2006
Work-Package contributing to the Deliverable: WP1, WP2, WP3, WP4, WP5, WP10
Task contributing to the Deliverable: WP5
Nature of the Deliverable: Report
Author(s): DSI, IRCAM, UNIVLEEDS

Abstract:
This document reports the specification of the Model and Support for Cooperative Work and
Symbolic Music Representation (SMR) for music education.

Keyword List:
MPEG-SMR, Cooperative Work, Music Editor Support, MAX/MSP jitter, requirements, use cases,
test cases, content, interactive multimedia, education, music, creative, collaborative

http://www.i-maestro.org/
http://www.i-maestro.net/

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 2
www.i-maestro.org ver2.9, 20006-11-14

Table of Contents
1 EXECUTIVE SUMMARY AND REPORT SCOPE .. 4
2 GENERAL OVERVIEW OF I-MAESTRO ARCHITECTURE .. 4

2.1 I-MAESTRO CLIENT GENERAL OVERVIEW .. 5
3 INTEGRATED MUSIC SCORE EDITOR AND VIEWER TOOL.. 7

3.1 MPEG-4 MODEL.. 8
3.2 MPEG SMR AND MULTIMEDIA ... 9

4 GENERAL ASPECTS OF COOPERATIVE SUPPORT FOR MUSIC TRAINING 10
5 COMPUTER SUPPORTED COOPERATIVE WORK SERVICE.. 13

5.1 CLASS DIAGRAM OF COMPUTER SUPPORTED COOPERATIVE WORK SERVICE .. 14
5.2 CSCW SERVICE ... 14
5.3 MESSAGE LOG SERVICE ... 17
5.4 ERROR LOG SERVICE.. 18

6 P2P SERVICE.. 20
6.1 CLASS DIAGRAM OF P2P SERVICE.. 20
6.2 SEND MESSAGE SERVICE ... 21
6.3 RECEIVE MESSAGE SERVICE .. 22
6.4 SEND FILE SERVICE.. 23
6.5 RECEIVE FILE SERVICE... 24
6.6 DISCOVERY SERVICE.. 24
6.7 SYNCHRONISATION SERVICE.. 26

7 CLIENT MANAGER: STARTING LESSONS/WORKGROUPS.. 27
7.1 CLASS DIAGRAM OF CLIENTMANAGER AND ITS SERVICES... 32
7.2 DISTRIBUTE LESSON SERVICE .. 33
7.3 COOPERATIVE SESSION DATA .. 34

8 CLIENT MANAGER: MONITORING AND CONTROLLING COOPERATIVE WORK 36
8.1 VIEWING AND CHECKING THE LOG MESSAGES .. 36
8.2 VIEWING AND CHECKING THE ERROR MESSAGES ... 37

9 COOPERATIVE MUSIC EDITOR FOR SMR.. 38
9.1 STAND ALONE SMR MUSIC EDITOR .. 38

9.1.1 List of available functionalities... 39
9.2 STAND ALONE SMR MUSIC PLAYERS MPEG.. 42

9.2.1 List of available functionalities... 42
9.3 COOPERATIVE MUSIC EDITOR FOR SMR.. 43
9.4 SMR MUSIC PLAYER INTO MPEG4 ... 43

9.4.1 Integration of SMR in the MPEG-4 player ... 43
9.4.2 Authoring an MPEG-4 SMR application.. 46

10 MAX AND THE MUSIC EDITING SERVICE (MED) AND THE MUSIC EXECUTION SERVICE
(MEX) 49

10.1 MAX/MSP DATA TYPES... 50
10.2 MAX/MSP COOPERATIVE LESSON ... 50

11 MED: SMR MUSIC EDITOR GENERAL CONTROLS FOR MAX.. 51
11.1 INLETS FOR SET METHODS .. 51
11.2 INLETS FOR GET METHODS.. 56
11.3 INLETS FOR OTHER METHODS ... 60
11.4 EXAMPLES OF MED IN MAX/MSP FOR MUSIC GENERAL CONTROLS .. 65

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 3
www.i-maestro.org ver2.9, 20006-11-14

12 MED: SMR MUSIC EDITOR, MUSIC NOTATION ACCESS SUPPORT FOR MAX............................ 67
12.1 SCORE NAVIGATION METHODS ... 69
12.2 MEASURE INFO... 71
12.3 NOTE INFO ... 77
12.4 REST INFO .. 79
12.5 CHORD INFO ... 80
12.6 REFRAIN INFO... 80
12.7 KEYCHANGE INFO.. 81
12.8 CLEFCHANGE INFO... 81
12.9 ERROR CODES DESCRIPTION ... 81
12.10 MED IN MAX/MSP FOR MUSIC EDITING ... 82
12.11 EXAMPLES OF MED IN MAX/MSP FOR MUSIC NOTATION ACCESS ... 84

13 MEX: MUSIC EXECUTION SERVICE FOR COOPERATIVE WORK FOR MAX............................... 86
13.1 TIME CRITICAL COMMANDS... 87
13.2 GENERIC MESSAGES... 88
13.3 CSCW SPECIFIC CONTROLS... 89
13.4 EXAMPLES OF MEX FOR COOPERATIVE WORK AMONG MAX TOOLS ... 90

14 SCORE-FOLLOWING INTEGRATION MODEL (IRCAM) ... 91
14.1 MUTUAL POSITION CONTROL BETWEEN THE MED AND THE SCORE-FOLLOWER... 92
14.2 ALIGNED RENDERING OF PERFORMANCE DATA .. 92

15 MODELS FOR NON-SYMBOLIC PERFORMANCE DATA (IRCAM).. 93
16 MODELS FOR COLLABORATIVE INTERACTIVE AUDIO PROCESSING (IRCAM)....................... 94

16.1 SIMPLIFIED MODULAR INTERACTIVE AUDIO PROCESSING FRAMEWORK.. 94
16.2 SYNTHESIS CONTROL AND SYNCHRONISATION NETWORK PROTOCOL (IRCAM) .. 97

17 ACRONYMS.. 98
18 BIBLIOGRAPHY.. 99

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 4
www.i-maestro.org ver2.9, 20006-11-14

1 Executive Summary and Report Scope

This document reports the specification for the first 12 months of the Model and Support for Cooperative
Work and SMR for Music Education. It takes information from the WP2 of user requirements and from the
preliminary work performed by project partners and summarised in this proposal document. The
specification takes into account the general structure of the I-MAESTRO framework.

This document is focused on mapping the research and development work on the real needs provided by the
requirements, use cases and test cases.

2 General Overview of I-MAESTRO Architecture

In this section, the I-MAESTRO architecture and main components are described. The general architecture
of the I-MAESTRO is shown in the following figure:

At a high level, the I-MAESTRO architecture is composed of the following components:

• I-MAESTRO Client Tools which support Teacher and Students in following Lesson and
performing Exercises.

• I-MAESTRO Production Tools which are used by Teacher to create Exercises and package
Lessons.

• I-MAESTRO Other Applications and Tools which include applications such as: a Metronome, a
Tuner for instrument tuning, the Audio Recording Tool for audio analysis, the Video Recording Tool
and Tools for gesture and posture support, etc.

• I-MAESTRO School Server and Portal which contains all available I-MAESTRO contents for the
I-MAESTRO tools and all the information about registered users (Students and Teacher profiles).
The Portal also provides an external access for registration, and anonymous users for downloading I-
MAESTRO tools, manuals, user guides, information etc.

• Cooperative Support for Music Training which allows I-MAESTRO Tools to work in a
cooperative manner and to exchange information and contents.

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 5
www.i-maestro.org ver2.9, 20006-11-14

The list of I-MAESTRO tools, as described above, can access the cooperative support to exchange messages
and files during a cooperative session. The Client Tools are used to configure the lesson chosen for the
cooperative session and to manage user roles defined inside the lesson. Other I-MAESTRO Applications and
Tools represent instead any Max/MSP lesson with cooperative service which gives the cooperative capability
to each tool (video rendering, editor, metronome …) depending on the lesson structure defined during the
authoring phase.

The I-MAESTRO School Server and the I-MAESTRO Production Tools do not directly use the peer-to-peer
layer but they are available on the same network for the other tools to provide and to store lessons and user-
profiles (e.g. it is possible to search and download a lesson from the School Server using a Web Browser).

2.1 I-MAESTRO Client General Overview

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 6
www.i-maestro.org ver2.9, 20006-11-14

The I-MAESTRO Client is the tool used by Teachers and Students to execute Lessons and Exercises. It
includes these modules:

• I-MAESTRO Client User Interface, used directly by Teacher and Students to interact with I-
MAESTRO Applications (e.g. Tuner, Metronome, etc.), the Integrated Music Score Editor and
Viewer Tool, the Multimedia Rendering Tool and Music Training Exercise Processor.

• Music Training Exercise Processor. This is the core of I-MAESTRO Client and it is able to
manage (sending and receiving commands) the other modules of I-MAESTRO Client (i.e. Integrated
Music Score Editor and Viewer Tool, Multimedia Rendering Tool, Audio Processing and Gesture
and Posture Tools, I-MAESTRO Lesson Model). It also manages the Pupil Local History and data
and it can give assessments on performances depending on the evaluations of the Assessment
Support.

• I-MAESTRO Lesson Model. The model represents the Lesson content and it is used by the Music
Training Exercise Processor to follow the correct step during the performance. It also linked to the
Assessment Support to assess Student executions.

• Audio Processing. It provides the capability to acquire sound to record a performance and/or to
assess it.

• Gesture and Posture Tools. This is a set of tools to provide support and assess the Students’
performance (playing the instrument), using data from sensors and 3D Motion Data capturing
system.

• Score-follower. This is used in some type of exercises and it gives the capability to upload the score
viewer depending on the selected Tempo. Also it can upload in real time the score viewer depending
on the speed of the execution. In both cases it is able to collect information from Audio Processing,
sends command to the Integrated Music Score Editor and Viewer Tool and passes information to the
Assessment Support for performance assessment.

• Assessment Support. It collects information from the Lesson Model, Audio Processing and Gesture
and Posture Tools and it is able to give a response on some measure of the performance’s quality.

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 7
www.i-maestro.org ver2.9, 20006-11-14

3 Integrated Music Score Editor and Viewer Tool

The Integrated Music Score Editor and Viewer Tool is a tool developed to edit and execute a score in a
cooperative and single user way.

Students and Teachers use the I-MAESTRO client interface to interact with the Integrated Music Score
Editor and Viewer Tool.

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 8
www.i-maestro.org ver2.9, 20006-11-14

The Integrated Music Score Editor and Viewer Tool comprise of a set of functionalities that are:

• Renderer of MPEG SMR to update use GUI depending on changes made to the SMR
• Music Editor and Viewer Command Support used by Exercise Processor
• Music Editor and Viewer Command Manager, which collect commands given to manipulate SMR

Multi Instance Model
• Music Editor and Viewer Assessment Support, which provides assess support during the execution

and editing to highlight Students mistakes.
• SMR Multi Instance Model: the SMR model of the score used.

Also the Integrated Music Score Editor and Viewer Tool can receive command managed by the Music Editor
and Viewer Command Manager directly from:

• a user, through I-MAESTRO Client User Interface,
• the Exercise Processor, through the Music Editor and Viewer Command Support ,
• the Cooperative Support for Music Training, during a cooperative session,
• the Score-Follower, during a score execution,
• the SMR Multi Instance Model which represents the score loaded from the Loader and Saver of

MPEG SMR.

3.1 MPEG-4 Model

In the MPEG-4 model, audio-visual objects have both a spatial and a temporal extent. Temporally, all AV
objects have a single dimension. Each AV object has a local coordinate system in which the object has a
fixed spatio-temporal location and scale. AV objects are positioned in a scene by specifying one or more
coordinate transformations from the object's local coordinate system into a common, global coordinate
system, or scene coordinate system.

BIFS is an abbreviation for "BInary Format for Scenes". BIFS provides a complete framework for the
presentation engine of MPEG-4 terminals. BIFS enables to mix various MPEG-4 media together with 2D
and 3D graphics, handle interactivity, and deal with the local or remote changes of the scene over time. An
audio-visual object in a BIFS scene is usually represented by one BIFS node or a sub-tree of the BIFS scene
graph.

Scene description information is a property of the scene's structure rather than of particular AV objects.
Consequently, it is transmitted as a separate stream. This is an important feature for bitstream editing and one
of the essential content based functionalities in MPEG-4. For bitstream editing, one can change the
composition of AV objects without having to decode their bitstream and change their content. If the position
of the object were part of the object's bitstream, this would become very difficult.

The scene description can be dynamically changed at any time. An initial scene description is provided at the
beginning of an MPEG-4 stream. It can be as simple as a single node, or as complex as one wants (within
limits that are established for ensuring conformance). BIFS-Commands are used to modify a set of properties
of the scene at a given time. It is possible to insert, delete and replace nodes, fields and ROUTEs as well as
to replace the entire scene. For continuous changes of the parameters of the scene, BIFS-Anim can be used;
it specifically addresses the continuous update of the fields of a particular node. BIFS-Anim is used to
integrate different kinds of animation, including the ability to animate face models as well as meshes, 2D and
3D positions, rotations, scale factors, and colour attributes. The BIFS-Anim information is conveyed in its
own elementary stream.

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 9
www.i-maestro.org ver2.9, 20006-11-14

3.2 MPEG SMR and Multimedia

MPEG-4 permits the encoding of multimedia content, including many different kinds of object types and a
scene description allowing precise synchronisation among them and specifying object composition rules.

Symbolic representations of music have a logical structure consisting of: symbolic elements that represent
audiovisual events; the relationship between those events; and aspects of rendering those events. There are
many symbolic representations of music including different styles of Chant, Renaissance, Classic, Romantic,
Jazz, Rock, Pop, and 20th Century styles, percussion notation, as well as simplified notations for children,
Braille, etc.

Many music-related software and hardware products are currently available in the market. Some integrate
symbolic representations of music with multimedia content. Examples include:

• Interactive music tutorials
• Play training, performance training
• Ear training
• Compositional and theory training
• Multimedia music publication
• Software for music management in libraries (music tools integrating multimedia for navigation and

for synchronisation),
• Software for entertainment (mainly synchronisation between sound, text and symbolic information),
• Piano keyboards with symbolic music representation and audiovisual capabilities,
• Mobile devices with music display and editing capabilities.

MPEG Symbolic Music Representation (SMR) enables the synchronisation of symbolic music elements with
audio-visual events that are represented and rendered using existing MPEG technology.
The breadth of MPEG standards for multimedia representation, coding, and playback, when integrated with
symbolic representations of music provides content interoperability and an efficient high quality, peer
reviewed, standardized toolset for developers of these products.

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 10
www.i-maestro.org ver2.9, 20006-11-14

4 General Aspects of Cooperative Support for Music Training

Teachers and Students use I-MAESTRO Client User Interface or Accessible Interface (for impaired people)
to use tools and applications as the Integrate Music Score Editor and Viewer Tool, the Gesture and Posture
Tool, the Multimedia Rendering Tool and so on.

As shown in the figure above, Cooperative Support for Music Training contains of three layers:

• API for Connecting Cooperative Work Tools: each specific tool, which needs to work
cooperatively, has its own API to exploit Cooperative work services and exchange messages and
files with each other.

• Cooperative Work Service: services of this layer are used from the API to communicate in a
distributed system and they create log about message exchanged and error occurred.

• P2P Services: manages the low level P2P Network functionalities used by the higher layers. These
services are lunched when user logs on to P2P Network and it runs independently until the end of
cooperative session.

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 11
www.i-maestro.org ver2.9, 20006-11-14

Application Layer

P2P Service

Cooperative Work Service

API for Connecting Cooperative Work Tools

Music Execution Tool Integrated Music Score
Editor & Viewer Tool

Music Editing
Service

Distribute
Lesson
Service

Tuner Tool Metronome
Tool

Integrated
Muisc Score

Edit Tool

Posture and
Gesture acquisition
and processingTool

Mulitmedia
Rendering

Tool

Client Manager

Chat Tool File Sharing
Tool

Message
Log Service

Error Log
Service

Discovery
Service

Synchroniza
tion Service

Sensor and
Actuators

Management
Tools

Send
Message
Service

Receive
Message
Service

Send File
Service

Receive File
Service

Login/
Logout
Service

Music Execution
Service

This figure presents a more detailed view of the Cooperative Support layers. The Application Layer
represents the tools with cooperative functionalities. The API for Connecting Cooperative Work Tools is a
layer providing the cooperative functionalities which are implemented by the Cooperative Work Service
and the P2P Service.

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 12
www.i-maestro.org ver2.9, 20006-11-14

The following figure shows in detail the logic connection between services.

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 13
www.i-maestro.org ver2.9, 20006-11-14

5 Computer Supported Cooperative Work Service

Computer Supported Cooperative Work (CSCW) Service keeps information about active work groups inside
P2P network and manages the information exchange between peers of a specific work group. Applications
that use CSCW Service can join or leave work groups at any time and the information about members are
updated automatically whenever a configuration change happens.

At the moment of work group creation, it is possible to specify if the group must have an internal role
structure using an array of role names. In that way the work group can contain at most a number of members
equal to the size of the array.

If a new member tries to join the group with a wrong role name or if the role selected is busy, the join
procedure fails. Creating a work group without roles specification causes no limit on the maximum number
of group members.

CSCW Service uses an internal Member List for routing group information coming from and addressing the
upper layer. The following figure shows a generic example of CSCW Member List.

CSCW Service has the capability to support time consistent execution of commands through the network
using the P2P synchronisation service that periodically starts a synchronisation procedure. For time critical
applications, such as distributed sound playing, the user can also request an immediate synchronisation
procedure at any time.

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 14
www.i-maestro.org ver2.9, 20006-11-14

5.1 Class Diagram of Computer Supported Cooperative Work Service

CSCWPeer

MessageEventHandler

DecisonHandler

PeerEventHandler PeerManager

«uses»

«uses»

«uses»

1

1

ErrorLogService

MessageLogService
1 1

1

1

P2P Service

CSCW Service involves the following classes:

• CSCWPeer Class: it wraps CSCW Service and provides methods for groups management. It uses
P2P Services to exchange information between peers.

• MessageLogService: registers the information of every message that flows through CSCW Layer
• ErrorLogService: registers the information of every error that occurs in the CSCW Layer
• PeerManager: a class which links the CSCW work service with P2P service.

CSCWPeer also inherits from MessageEventHandler, DecisionHandler and PeerEventHandler to
manage event occurred in the beneath layer.

5.2 CSCW Service

login
Method login
Description Starts the services of P2P Layer.
Input
parameters

String module : the name of Module chosen (e.g CM, MEX, …)
String user : the User (nick name) chosen

Output
parameters

Boolean - TRUE if correctly logged in, FALSE otherwise

logout
Method logout
Description Disconnects the user stopping all the active services of the P2P Layer.
Input
parameters

None

Output
parameters

Boolean - TRUE if correctly logged out, FALSE otherwise

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 15
www.i-maestro.org ver2.9, 20006-11-14

createGroup

Method createGroup
Description Creates a new work group and optionally defines a set of roles. If roles are present, each

member must select a role for joining in the group.
Input
parameters

String group : the name of the work group to create
String Array roleList (optional): the list of possible roles

Output
parameters

Boolean - TRUE if correctly created, FALSE otherwise (e.g. the group already exists)

joinGroup
Method joinGroup
Description Joins in a work group as new member
Input
parameters

String group: the name of the work group to create
String role (optional): the Role chosen (empty means all roles)

Output
parameters

Boolean - TRUE if correctly joined, FALSE otherwise (e.g. the group does not exists)

leaveGroup
Method leaveGroup
Description Removes member from work group
Input
parameters

String group : the name of the work group to leave

Output
parameters

Boolean - TRUE if correctly removed, FALSE otherwise

getAvailableGroups
Method getAvailableGroups
Description Returns the list of active work groups on the P2P Network
Input
parameters

None

Output
parameters

String Array groupList : the active work groups list

getAvailableRoles
Method getAvailableRoles
Description Returns the list of available roles of a specific work group
Input
parameters

String group : the name of the selected work group

Output
parameters

String Array roleList : the available roles list (empty means all roles busy)

sendFile

Method sendFile
Description Uses the send file service of P2P Layer to deliver a file over the P2P Network. The file is sent

to every member of the group that matches with role, module and user parameters.
Input
parameters

String file : the path of the file to send
String role (optional): the Role the file is directed to (empty means all roles)
String module (optional): the Module the file is directed to (empty means all modules)

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 16
www.i-maestro.org ver2.9, 20006-11-14

String user (optional): the User the file is directed to (empty means all users)
Output
parameters

Boolean - TRUE if correctly sent, FALSE otherwise

sendCommand
Method sendCommand
Description Uses the send message service of P2P Layer to deliver a command over the P2P Network. The

command is sent to every member of the group that matches with role, module and user
parameters.

Input
parameters

String cmd : command to send
String anti_cmd : command that revokes the effect of cmd
String role (optional): the Role the command is directed to (empty means all roles)
String module (optional): the Module the command is directed to (empty means all modules)
String user (optional): the User the command is directed to (empty means all users)

Output
parameters

Boolean - TRUE if correctly sent, FALSE otherwise

setCommandHandler

Method setCommandHandler
Description Sets a user defined function that will be called on network command receive.
Input
parameters

Function pointer pF, that points to a function with no return values and these arguments
- String command : the name of the command
- int64 timestamp : the time stamped value

Output
parameters

None

setFileReceiveHandler

Method setFileReceiveHandler
Description Sets a user defined function that will be called on network file receive.
Input
parameters

Function pointer pF, that points to a function with no return values and this arguments
- String filePath : the path where the file has been saved

Output
parameters

None

setFileReceivedDir
Method setFileReceivedDir
Description Sets a user defined directory that will be used for saving receive files.
Input
parameters

String dir : the path to the specified dir

Output
parameters

None

setErrorLogDir

Method setErrorLogDir
Description Sets a user defined directory that will be used for saving error log files.
Input
parameters

String dir : the path to the specified dir

Output
parameters

None

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 17
www.i-maestro.org ver2.9, 20006-11-14

setMessageLogDir

Method setMessageLogDir
Description Sets a user defined directory that will be used for saving message log files.
Input
parameters

String dir : the path to the specified dir

Output
parameters

None

doSynchNow

Method doSynchNow
Description Requests an immediate execution of synchronisation round.
Input
parameters

None

Output
parameters

None

getSyncInterval

Method getSyncInterval
Description Returns the time interval between two consecutive syncronisations

Input
parameters

None

Output
parameters

Long Interval – time interval in milliseconds

setSyncInterval

Method setSyncInterval
Description Sets the time interval between two consecutive syncronisations

Input
parameters

Long Interval – time interval in milliseconds

Output
parameters

None

5.3 Message Log Service

Message Log Service maintains trace of all information passed through Cooperative Work Service Layer. It
is possible to set and get the file name where info will be saved. If no file name is set, the Service creates a
new file automatically with a default name with the current hour and date.

An instance of this class is created inside the PeerManger and it is used to log each message passed through
the services of the Cooperative Work Service layer. The file is a text one where each line is the log of a
message

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 18
www.i-maestro.org ver2.9, 20006-11-14

setFileName
Method setFileName
Description Sets the name of the file used to save messages passed through Cooperative Work
Input
parameters

String filename - name of the file where the log are saved

Output
parameters

None

getFileName

Method getFileName
Description Gets the name of the file set to save messages
Input
parameters

None

Output
parameters

String File Name - name of the file where the log are saved

writeMessage

Method writeMessage
Description Adds a line to the log file every time that a message leaves from Send Message Service or

arrives to Receive Message Service.
Input
parameters

String AddressPeer – ip address of the peer that has sent the message,
String service type – service recipient of the message
String message – the message sent
Timestamp – time and date of the message arrival

Output
parameters

Boolean: TRUE if the writing succeeds
FALSE otherwise

5.4 Error Log Service

Error Log Service maintains trace of all errors occurred in the Cooperative Work Service Layer and in the
P2P Service Layer. It is possible to set and get the file name where error messages will be saved. If no file
name is set, the Service creates a new file automatically with a default name with the current hour and date.
The Error file is a text file where each line is an error occurred inside the services of Cooperative Work
Service layer.

An instance of this class is created inside the PeerManager and it is used to log each error message happened
inside the services of Cooperative Work Service layer. The file is a text one where each line is the log of a
message.

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 19
www.i-maestro.org ver2.9, 20006-11-14

setFileName
Method setFileName
Description Sets the name of the file used to save error happened inside Cooperative Work Service
Input
parameters

String filename - name of the file where the log are saved

Output
parameters

None

getFileName

Method getFileName
Description Gets the name of the file set to save messages
Input
parameters

None

Output
parameters

String File Name - name of the file where the log are saved

writeMessage

Method writeMessage
Description Adds a line to the error log file every time that an error happen during the execution of a

service inside a Cooperative Work Service.
Input
parameters

String service type – service which has generated the error,
String error type – type of the error generated,
String Timestamp – hour and date of error

Output
parameters

None

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 20
www.i-maestro.org ver2.9, 20006-11-14

6 P2P Service

6.1 Class Diagram of P2P Service

 P2P Service involves the following classes:

• PeerManager Class: it wraps P2P Service and separates it from the Cooperative Work Layer. It has
methods to start and stop services and to exchange information between layers.

• PeerExplorer: define the behaviour of the Discovery Service using the classes Transponder and
Tempester.

• PeerCommunicator: for sending and receiving messages (Send Message Service and Receive
Message Service).

• FileReceiver and FileSender: for file sending and receiving
• SynchronisationService: it implements the algorithm and the thread to keep peers synchronised
• ThrSem: it provides support to threads implementation

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 21
www.i-maestro.org ver2.9, 20006-11-14

6.2 Send Message Service

PeerManager leans on PeerCommunicator Send InstMessage method to provide methods to send message.
Here, the methods of PeerManager are described.

This service takes a message arriving from the API layer and sends it to the specified peer, to all peers in a
Workgroup or to all peers in the P2P Network.

When a service wants to send a message to all peers over the network, it uses sendMessageBroadcast, which
sends a message to all registered peers in the P2P Network.

sendMessageBroadcast
Method sendMessageBroadcast
Description Method of PeerManager class: It sends a broadcast message to all peer in the P2P Network

Input
parameters

String Message – message to deliver

Output
parameters

Int 0 if the message is sent correctly, -1 otherwise

sendMessage

Method sendMessage
Description Method of PeerManager class: It sends a message to a specific Recipient
Input
parameters

String RecipientPeerID
String message – the message to deliver

Output
parameters

Int 0 if the message is sent correctly, -1 otherwise

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 22
www.i-maestro.org ver2.9, 20006-11-14

6.3 Receive Message Service

This module waits for any messages arriving from the peer of the network. Each message has to be notified
and passed to the Service of API Layer to process it. In the figure above we can see the methods of
PeerManger and PeerCommunicator involved in the Receive Message Service.

NotifyMsgRcv
Method NotifyMsgRcv

Description It notify the arrive of a new message
Input
parameters

String PeerIDSender

Output
parameters

None

EnbleRecvInstMsg

Method EnbleRecvInstMsg

Description It starts the thread waiting for message coming from peers of the P2P Network. When a new
message arrives it collects the message and it calls NotifyMsgRcv.

Input
parameters

None

Output
parameters

None

CloseAcceptMessageThread

Method CloseAcceptMessageThread

Description It stops the thread waiting for message coming from peers of the P2P Network
Input
parameters

None

Output
parameters

None

ReceiveMessage

Method ReceiveMessage

Description It provides the capability to receive the message coming from other peers.
Input
parameters

None

Output
parameters

String message - return the message arrived

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 23
www.i-maestro.org ver2.9, 20006-11-14

6.4 Send File Service

This service is a client module used to exchange files between peer in the P2P Network. A peer can request
a file to another peer and it is possible to receive the file automatically.

The connection between peer to exchange files, is a point to point connection using TCP protocol. If a peer
need to transfer the same file to more than one peer, it has to send a sequence of file one at time or it can
create more threads (one for each connection) and transfers file in parallel.

acceptingConnection
Method acceptingConnection
Description Accept the connection to send a file
Input
parameters

None

Output
parameters

TRUE if the file can provided
FALSE otherwise

trasferringFile

Method trasferringFile
Description Send a file to a specific peer
Input
parameters

String ipaddress - Ip address of the recipient,
String file_name - the complete path of the file to be transferred

Output
parameters

TRUE if file is correctly transferred
FALSE otherwise

getFileName

Method getFileName
Description It return the name of the file transferred
Input
parameters

None

Output
parameters

String file_name - the name of the file trasferred

getFileSize

Method getFileSize
Description It returns the size of the file trasferred
Input
parameters

None

Output
parameters

Long size – size of the file transferred

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 24
www.i-maestro.org ver2.9, 20006-11-14

6.5 Receive File Service

This service is the server side used to exchange files between peer in the P2P Network. It waits for
connection arriving from the peer of the P2P Network. Each request is granted by a specific thread and it can
create multiple threads to manage multiple requests.

startReceiveFile
Method startReceiveFile

Description It starts the thread waiting for connection coming from peers of the P2P Network for

transferring files.
Input
parameters

None

Output
parameters

TRUE if the service starts successfully
FALSE otherwise

stopReceiveFile

Method stopReceiveFile

Description It stops the thread waiting for connection coming from peers of the P2P Network
Input
parameters

None

Output
parameters

TRUE if the service stops successfully
FALSE otherwise

receivingFile

Method receivingFile

Description It receives the file sent.
Input
parameters

String – path of the file to receive

Output
parameters

TRUE if file is correctly received
FALSE if some error occur

6.6 Discovery Service

Discovery Service is used to interrogate the P2P Network to find all connected peer. When the service
discovers a new peer on the net, gets the IP address and PORT number, assigns an univocal PEER_ID and
adds this new information in the PeerList. It also communicates the new PEER_ID to the upper Layer.

PeerList allows the upper layers (e.g. CSCW) to refer to all peers only using their ID and not the IP-PORT
data, as shown in the following figure:

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 25
www.i-maestro.org ver2.9, 20006-11-14

P2P LAYER PeerList

192.168.0.045 4001
4005

4007
4003

192.168.1.019 4004

IP PORT

192.168.1.077
4001
4005

192.168.0.006 4002

192.168.0.045
5ku89lkj

lkjy3811

PEER_ID

s23r24tt

fzr654hv

dfe4hhrt
kk2hj25g

or660fcx
h2b8cd12

192.168.1.019
192.168.1.019

192.168.1.077
CSCW Layer NetworkPEER_ID IP, PORT

startStopScan
Method startStopScan
Description It starts Tempester thread which scans the range of host address and it start Transponder thread

waiting for connection from Discovery Client of the other peer of the network.
When a new peer is found, the address IP and his port number is added to the peer list.

Input
parameters

None

Output
parameters

None

disconnect

Method disconnect
Description Stop Transponder and Tempester
Input
parameters

None

Output
parameters

None

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 26
www.i-maestro.org ver2.9, 20006-11-14

6.7 Synchronisation Service

This module uses a specific synchronisation algorithm to maintain synchronisation between peers of P2P
Network. Each tool relies upon this service to execute cooperative, time critical, commands.

getSyncTime
Method getSyncTime
Description It returns the synchronised time.
Input
parameters

None

Output
parameters

int64 time – time in microseconds

doSync

Method doSync
Description It starts execution of the synchronisation algorithm.
Input
parameters

None

Output
parameters

None

getSyncInterval

Method getSyncInterval
Description It returns the time interval between two consecutive sincronisations

Input
parameters

None

Output
parameters

Long Interval – time interval in milliseconds

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 27
www.i-maestro.org ver2.9, 20006-11-14

setSyncInterval

Method setSyncInterval
Description Sets the time interval between two consecutive sincronisations

Input
parameters

Long Interval – time interval in milliseconds

Output
parameters

None

7 Client Manager: Starting Lessons/Workgroups

The Client Manager (CM) is the application required to start and manage a work session that can be single
user or cooperative. The Client Manager is a Win32 application providing the capability to allow:

• User login
• Displaying a list of Lessons available in the P2P network
• Displaying a list of Lessons available in the local PC
• Displaying a list of roles for selected lesson
• Selecting a role and downloading a cooperative lesson file linked to that role
• Automatic start of the lesson downloaded

After Client Manager starts, the User sees the login form and insert the username that identify the user into
the P2P network.

After the login the User has the possibility to see a list of lessons saved in the local machine (left list) and
the list of lessons shared in the P2P network (right list). To see the second one it is necessary to connect to
the P2P network using the menu “Connection”.

Using the “Local Lesson List” the User has the capability to see a description of the lesson selected and to
start a new cooperative lesson.

After this choice, the Client Manager communicates to the other peers that the role is not available and waits
until Users have covered their roles. When all Users have filled all available roles and depending on the
structure of the lesson, the cooperative lesson can start. Actors are free to leave the lesson simply closing the
active Lesson.

A cooperative Lesson contains generic roles (parts of a score, some type of exercise, other types of
substructures) and each of them can be assigned to one User. Each Lesson contains inside information of the
Workgroup and the max number of members of the Workgroup is given by the number of available roles in
the lesson.

When a User has chosen a role inside a lesson, the Client Manager provides the features to download the
content linked to the role, retrieving it using the URI specified into the XML file of the Lesson.

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 28
www.i-maestro.org ver2.9, 20006-11-14

Lesson downloaded is automatically started by the Client Manager as an independent process. Now, the
execution of the lesson doesn’t depend from the Client Manager anymore, but it follows the logic decided by
the lesson creator. Because we talk about cooperative lessons, each lesson has to have a Music Execution
Service to exchange information between peers.

i-Maestro Cooperative Client Manageri-Maestro Cooperative Client Manager

Name of
connected user

List of available
lesson inside user

local hard disk

Info about
lesson selected

Lesson 5
Lesson 10
Lesson 30

This lesson explain …

Open Lesson

Local Lesson List

BobUser name

Lesson 4 Lesson 2: Bill

Cello: READY
Cello: READY

Lesson 3: John
Lesson 4: Bob

Drum: Bob
Violin: Jack

List of available
roles for the

selected lesson

File Connection Log Help About

List of cooperative
lesson available in

p2p network

Active Lesson List

Close Lesson
Start Lesson

Execute the
downloaded
MAX/MSP

lesson

Sequence of operations to setup a cooperative Lesson

1) The User uses a Web Interface to search lesson inside a School Server and download its metadata
information in xml format. Information is saved in a specific directory. This point doesn’t concern the Client
Manager and P2P Network.

2) The User starts Client Manager giving its own user name

3) The Client Manager automatically searches for the xml file of the lesson inside a specific local folder.
When the xml file is found and loaded, the ClientManager creates a Lesson object in the Local Lesson List.
The Lesson objects are made by Roles objects and they are put in a Lesson list. Note that lesson and role info
are the same info described in the cooperative lesson metadata as in §13.5.

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 29
www.i-maestro.org ver2.9, 20006-11-14

4) When the User chooses “Connect”, from the “Connection” menu, all the P2P services start.

If the User starts one of the local lesson the Client Manager add this lesson in the Active Lesson List and
sends the xml Lesson file to all peers in the P2P Network using CSCW Service. In this way each Client
Manager on the network can see the available lessons for cooperative work.

5) When a peer receives this xml file it copies in a specific folder, parses the xml and creates the
correspondent lesson and roles objects in the Active Lesson List. Now the User receives the lesson arriving
from the other Client Manager peer and s/he can see roles linked to the lesson in her/his GUI.

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 30
www.i-maestro.org ver2.9, 20006-11-14

Package principale::User

Cooperative Work Service

 5 - User see the new Active Lesson

Receive Message Service

N
e
t
W
o
r
k

Client Manager

 3 - New Lesson received

Local HdLocal Hd

6) The User can select a lesson and see the list of available roles and can decide to associate only to one of
these roles (the roles with the status READY). When User selects his role, the information is sent in the P2P
network and all CM-peers update the role info. The role pass from the status READY to BUSY and the
lesson file linked to the role is downloaded from the URI specified inside the correspondent field in the
instance of the class of the Role chosen. When the lesson is downloaded, it is unzipped (if it is compressed)
and then it is automatically started by the Client Manager, lunching a new process executing the
correspondent executable file.

User is now ready to take part to the cooperative lesson depending on the logic specified by the lesson
creator. The format of the message is:

ROLECHOOSE <lessonId::teacher> <rolename> <username>.

The <lessonId::teacher> parameter corresponds to the “ID” parameter of the Cooperative Lesson description
metadata and name of the teacher that starts the lesson (see § 13.5); <rolename> and <username> are the
“RoleName” and “MemberName” parameters of the Role description.

When a peer receives a message as the previous one, it searches the lesson and role and updates the
username info.

7) All Client Manager peers receive info about roles status. Earlier the role was available for all, now the role
is booked and nobody can choose it again.

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 31
www.i-maestro.org ver2.9, 20006-11-14

The previous collaboration diagram shows the message exchange during the setup of a cooperative lesson.
As regards the single user lesson, the setup step is simpler: a single user lesson is a cooperative lesson with
only one role.

In this way user loads his lesson and choose the only one role available, then system download and/or open
the lesson. The lesson is not cooperative but it can contain Music Execution Service with CSCW Service and
P2P service for localhost communication.

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 32
www.i-maestro.org ver2.9, 20006-11-14

7.1 Class Diagram of ClientManager and its services

The figure shows the class diagram of the Client Manager and the services of the API layer that it uses.

Client Manager is a Wx application and it is composed by:

• CSCWPeer Class: it provides methods and functionalities to support cooperative work, such as
messages delivering for adding user to a selected role, removing user from a role, updating available
cooperative lesson in P2P Network

• DistributeLessonService: it gives the capability to download lesson after role user chosen and to
start it as an independent process.

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 33
www.i-maestro.org ver2.9, 20006-11-14

7.2 Distribute Lesson Service

This service is realized by the class DistributeLessonService and it provides methods to download lesson
given a specific Uri and to open it specifying the lesson path.

downloadLesson
Method downloadLesson
Description Download a lesson from the Uri specified in the input parameter
Input
parameters

String location – the Uri where it is possible to find the lesson

Output
parameters

TRUE if lesson is downloaded successfully
FALSE otherwise

openLesson

Method openLesson
Description Open the lesson using the path specified in the input parameter.
Input
parameters

String path – local path of the lesson to open

Output
parameters

TRUE if lesson is opened successfully
FALSE otherwise

decompressLesson

Method decompressLesson
Description It decompresses the lesson and recreates the original tree of lesson content.
Input
parameters

String path – local path of the lesson to decompress

Output
parameters

TRUE if lesson is opened successfully
FALSE otherwise

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 34
www.i-maestro.org ver2.9, 20006-11-14

7.3 Cooperative Session Data

In this section the information used to define a cooperative Lesson are described. Information is written into
lesson metadata and they are used during lesson setup. This information is present in every lesson, both
cooperative and single user lesson. For the single user lesson, there is only one role and user can complete
the lesson alone.

 CooperativeLesson

Description

Data Type Description
ID String Unambiguous code of the lesson
Description String Small description of the lesson
Note String Useful information to perform the lesson
Status String It specifies if the lesson is READY to start or if it is just

started, bringing back the USERNAME who has started
the lesson.

 Role description
RoleName String Role name
MemberName String Name of the Student who has joined the role
OptionalRole Boolean It specifies if the lesson role is optional or not to

perform the lesson. If it is mandatory, lesson cannot
start until the person has joined that role.

RoleStatus String The status of the role is READY if the role is free;
otherwise it is BUSY because somebody has chosen it.

Location String URL or path where it is possible to find the lesson
linked to the role

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 35
www.i-maestro.org ver2.9, 20006-11-14

Cooperative Lesson XML formalisation
The set of metadata defined previously formalised by means of the following XML Schema:

<xs:schema ...>
<xs:element name=" CooperativeLesson">

<xs:complexType>
<xs:sequence>

 <xs:element name="ID" type="xs:string"/>
 <xs:element name="Description" type="xs:string"/>

<xs:element name="Note" type="xs:string"/>
 <xs:element name="Status" type="xs:string"/>

 <xs:complexType>
<xs:element name="Role" maxOccurs="unbounded">

 <xs:sequence>
 <xs:element name="RoleName" type="xs:string"/>

 <xs:element name="MemberName" type="xs:string"/>
<xs:element name=”Status" type="xs:string"/>
 <xs:element name="OptionalRole" type="xs:boolean"/>
 <xs:element name="Location" type="xs:string"/>
 </xs:sequence>
 </xs:element>

</xs:complexType>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

Example of XML file:

<CooperativeLesson>
 <ID>Unambiguous code of the lesson</ID>

<Description>Description of the lesson</Description>
<Note> Some note about the lesson</Note>
<status>READY</status>
<Role>

<RoleName>Violin</RoleName>
<MemberName>Tom</MemberName>
<OptionalRole>TRUE</ OptionalRole >
<Status>BUSY</Status>
<Location>http://…</Location>

</Role>
< Role >

<RoleName>Cello</RoleName>
<MemberName></MemberName>
<OptionalRole>TRUE</ OptionalRole >
<Status>READY</Status>
<Location>http://…</Location>

</ Role >
…
</CooperativeLesson>

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 36
www.i-maestro.org ver2.9, 20006-11-14

8 Client Manager: Monitoring and Controlling Cooperative work

8.1 Viewing and checking the log messages

Using an Administrator version of Client Manager it is possible to monitoring all the information passed
through the Cooperative Work Service Layer (CSCW). For example it is possible to visualise the “Command
list”, as shown in the figure below.

Each line represents a message passed through the CSCW. Columns show the information contained in each
messages. A shortly description is shown below:

• Group: the name of the group that a user has joined;
• Role: the role chosen by the user;
• Tool: the name of the tool that is exchanging the message;
• IP: the sender IP address;
• Port: the communication port number used for connection;
• Date-Time: The date and the time of the message sent;
• CMD: command name;
• ACMD: the command to undo the previous one.

It is also possible to visualise the messages in a particular order clicking on the top of each column. For
example, ordering the messages for IP address or for tool type, etc.

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 37
www.i-maestro.org ver2.9, 20006-11-14

8.2 Viewing and checking the Error messages

In the same way it is possible to visualise the error log file created by the Cooperative Work Service and
containing both the errors of this layer and the P2P errors.

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 38
www.i-maestro.org ver2.9, 20006-11-14

9 Cooperative Music Editor for SMR

9.1 Stand Alone SMR Music Editor

The stand alone SMR Music Editor is the music editor used to produce music score in SMR format. The
functionalities of the SMR Editor are substantially the same of the Music Editor in MAX explained in the
following Section 10 and have the following major capabilities:
• Music editing and reading, Writing the music notation and trying to play, with some constraints
• music score editing, main score and parts. Main score it is useful for producing music to be played for

accompanying the pupil.
• music score printing, main score and parts. For producing the score that can be played without the

computer.
• Navigation in the Music Editor Help
• Change of Metronomic indication directly in the reference Music Notation Model
• Navigating from music notation symbols to other multimedia aspects and content contained in the

lesson. Active notes to get further explanation about the exercise: for example the explanation of an
expression symbol (how it has to be executed), a link to a theoretical description document, a link to a
video, to an animation, etc.

• Import from MIDI, from paper by using Optical Music Recognition, etc.
• Audio production from Music Notation, via MIDI, Play a music piece with different MIDI orchestrations
• Understand music notation structures and symbols, simulating their effects on expressive MIDI:

expressions, articulations, ornaments, etc.
• Split and merge of voices to staves
• Transposition exercise and verification with the algorithm
• Piano reduction exercise and verification with the algorithm
• Guitar: converting notes to tablatures and vice versa
• Music notation, definition of interpretation semantics and performance evaluation rules

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 39
www.i-maestro.org ver2.9, 20006-11-14

9.1.1 List of available functionalities

Menu “File”

• New
• Load
• Save
• Import MIDI
• Settings
• Encode SMXF
• Decode BitStream
• Close

Menu “Parts”: shows the list of the available single part of the score. The user can select which part
visualise.

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 40
www.i-maestro.org ver2.9, 20006-11-14

Menu “Edit”

• New Part
• Cut a Part
• Copy a Part
• Paste a Part
• Move Parts
• Transposition
• Spitting Layers -> Part
• Merging Parts -> Layers
• Joining Parts -> Multistaff
• Disjoin Multistaff -> Parts
• Move a Layer
• New Measure Column Before
• New Measure Column After
• Cut a Measure Column Before
• Copy a Measure Column
• Paste a Measure Column After
• New Single Measure Before
• New Single Measure After
• Cut a Single Measure
• Copy a Single Measure
• Paste a Single Measure Over
• Cut a Page Box
• Copy a Page Box
• Paste a Page Box

Menu “View”

• Computer View
• Print View
• Computer View Parameters
• Print Parameters
• Hide a Part
• Show Hidden Parts
• View/Identify Layer
• See Behaviour
• Fit Image to window

Menu “Lyric”

• New Lyric
• Edit Lyric
• Hide Lyric
• Select Lyric

Menu “Misc”

• Open All Menu Symbols
• Close all Menu symbols
• Jump to Symbolic
• See Links
• Edit Links

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 41
www.i-maestro.org ver2.9, 20006-11-14

Menu “Symbols”

• Time Signature
• Key Signature
• Metronome
• Dynamics
• Fretboards
• Annotations
• Generic Text
• Insert Page Text
• Insert Page Image
• Expressions
• Generic Symbols
• Ornaments
• Korean Ornaments
• Mutes
• Harmonics
• Fingering
• Strings
• Pedals
• Violin
• Percussions
• Breath/glass
• Beaming
• Repeats
• Barlines
• Clafs
• Brackets
• Horizontals
• Refrains

Menu “Format”

• Checking
• Justification
• Line Breaking
• Auto Beaming
• Beaming
• Up/Down Stem
• Edit Milla
• ReLoad Milla
• Debug Milla

o Debug Milla Insertion
o Debug Milla Positioning

• See Invisible Figures
• See Anchorages
• Edit Font Table

o Music Font 1
o Music Font 2
o Music Font 3
o Custom Font 1
o Custom Font 2
o Custom Font 3

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 42
www.i-maestro.org ver2.9, 20006-11-14

o Custom Percussions
o Custom Pedals

• Score Excerpt

Menu “Help”

• Help
• About

9.2 Stand Alone SMR Music Players MPEG

9.2.1 List of available functionalities

Menu “File”

• Load, to load a music score in SMR format
• Import MIDI, to import a MIDI file
• Key Change, to change and transpose a part of the score
• Exit, to close the SMR Viewer

Menu “View”: shows the list of the available parts. It is possible to select the part to be visualised

Menu “Move”

• Top (Ctrl-T), to go at the first measure of the score
• Forward 1 measure (Ctrl-F)
• Forward 5 measures (Ctrl-Shift-F)
• Backward 1 measure (Ctrl-B)

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 43
www.i-maestro.org ver2.9, 20006-11-14

• Backward 5 measures (Ctrl-Shift-B)
• Bottom (Ctrl-M), to go at the last measures of the score
• Jump (Ctrl-J), to go at the chosen measure

Menu “Play”

• Play MIDI (Ctrl-P), to play the MIDI version of the score
• Pause (Ctrl-U), to pause the playing
• Stop (Ctrl-S), to stop the playing

9.3 Cooperative Music Editor for SMR

Cooperative work functionalities will be implemented for the stand alone Music Editor.

9.4 SMR Music Player into MPEG4

MPEG-4 technology covers a huge media domain through the concept of synthetic and natural hybrid coding
(SNHC) audio, and “symbolic” audio (like e.g. MIDI) content can be rendered and synchronised with other
forms of media: images, video, graphic animations, etc. It further allows structured descriptions of audio
content through a normative algorithmic description language associated with a score language more flexible
than the MIDI protocol (MPEG-4 Structured Audio, SA). All these tools, though allowing to derive in
someway a symbolic representation out of the information they carry, are to a large extent not enough to
guarantee a correct coding of music notation as they lack for instance all kind of information about visual
and graphic aspects, many symbolic details, a thorough music notation modelling, and many necessary hooks
for a correct human-machine interaction. MPEG-7 also provides some symbolic music related descriptors;
but they are not meant to be a means for coding symbolic music representation as a form of content. On the
other hand, MPEG SMR content stream contains a complete Symbolic Music Representation and it may be
rendered in synchronisation with other audio-visual elements, video, audio, images, animations, 2D and 3D
scenes, etc.

MPEG SMR permits the realization of new applications in which multimedia and music notation may take
advantage and enrich each other in terms of functionalities. For example in the areas of edutainment,
entertainment, courseware production, music notation subtitles during concerts and operas, music rendering
in archives, piano keyboards with symbolic music representation and audiovisual capabilities, mobile
devices with music display capabilities, etc.

All these applications may take advantage from the MPEG-4 technology with SMR.

9.4.1 Integration of SMR in the MPEG-4 player

Symbolic Music Representation (SMR) is going to be integrated into MPEG-4 format by:
• defining a toolset including as its main part an XML format (Symbolic Music eXtensible Format or SM-

XF) for a text based symbolic music representation, to be used for interoperability with other symbolic
music representation/notation formats and as a source for the production of an equivalent binary
information that may be stored in files and/or streamed through a suitable transport layer as the other
MPEG-4 data; the other tools are a Symbolic Music Formatting Language (SM-FL) and the simple
Symbolic Music Synchronisation Information (SM-SI);

• adding an SMR Object Type for the delivery of a binary stream containing SMR, synchronisation
information, and rendering rules; the associated SMR decoder allows to manage the received information
to add the necessary “musical intelligence” for the interaction with the user according to the spirit of
MPEG-4 in terms of interactive capabilities;

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 44
www.i-maestro.org ver2.9, 20006-11-14

• specifying the interface and the behaviour for the symbolic music representation decoder and its
relationship with the MPEG-4 synchronisation and interaction layer (MPEG-4 BIFS nodes, where BIFS
stands for Binary Format for Scenes description, a mark-up binary language with an equivalent textual
format defined in MPEG-4 XMT).

The MPEG SMR content can be produced by using an appropriate converters and/or a native SMR music
editor which is a coder for the SMR format. One instance is already available in the MPEG forum as derived
from the WEDELMUSIC editor.

Then, an MPEG-4 SMR-enabled encoder tool can multiplex the different SMR files into an MPEG-4 binary
stream (standard XML binarization is also available in MPEG). The SMR binary stream contains in one
stream information about music symbols (SM-XF), their synchronisation with other media in time and space
(SM-SI), and possible rendering rules for formatting music symbols (SM-FL).

It is also possible to enhance the flexibility of the SMR toolset by means of the direct usage of MIDI, being
this latter a protocol based on symbolic information. A native support inside MPEG-4 Structured Audio
(through which MIDI information can be carried over MPEG-4) allows this synergy: the SMR decoder
provides a direct support of SA streams containing MIDI objects.

MPEG-4 Player Architecture

The figure above represents the structure of an MPEG-4 player endowed of MPEG-4 SMR decoder. The
player uses the MusicScore SMR Node (a node is the basic element of MPEG-4 Scene Description
hierarchical trees) to attach the symbolic music information to the scene (or even by exploiting functionality
of other BIFS nodes) as decoded by the SMR decoder. The user can interact with the SMR content (to
change a page, view, transpose, and so on) using sensors in association with other nodes defining the
audiovisual, interactive content and routing them to the music score. The user sends commands from the
SMR node fields to the SMR decoder (dashed lines in the figure), which generates a new view to be
displayed in the scene. In addition, user client tool automatically converts MIDI files (through a specific
algorithm) into SMR on the client side and render them. Similarly, the server might only deliver the SMR.

The SMR decoder is activated when an SMR elementary stream or file is received. The configuration of the
SMR decoder is in its stream or file header.

The SMR decoder is capable to cope with different kind of chunks: main score (the SM-XL coding itself),
single parts (SM-XL coding of the single part), formatting rules (SM-FL), synchronisation information
(coded according to SM-SI), lyrics (coded as SMR multilingual lyric SMR code in XML), and fonts.

Internally the decoder contains the SMR object oriented model and an engine for the automatic formatting of
SMR on the visual domain. That engine is capable of processing statements written Symbolic Music
Formatting Language to learn the rules that have to be applied to format the music information [2]. The

MPEG-4 player

AAC Decoder

AAC Decoder

AAC Decoder

AAC DecoderAAC Decoder

SMR Decoder

SA Decoder

SA Decoder

……

AAC Decoder BIFS Scene AAC
Decod

er

D
M

IF

MusicScore node

Audio nodes

Sensors and other
BIFS nodes

End
user

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 45
www.i-maestro.org ver2.9, 20006-11-14

formatting engine of the SMR decoder for SMR rendering includes two main subsystems and algorithms.
One for the positioning of symbols and a second for the arrangement of music symbols according to the
justification and line-breaking parameters. The information coded into Symbolic Music Formatting
Language allows encoding and thus providing specific rules for each SMR information. Thus the decoder
can take decisions about the positioning and the justification of music notation symbols in the visual domain,
according to the shape of it. This is very important in an interactive environment such as the MPEG-4 player
in which the size of the view may change, since the internal window in which the SMR is show may be
different from one case to another from one instant to another. The SMR decoder architecture is shown in the
figure below:

MPEG-4 SMR Decoder

AAC DecoderSMR Manager AAC Decoder
BIFS Scene

B
in

ar
y

D
ec

od
er

MusicScore

node
MPEG-SMR

Stream
SMR

Model

Rendering
Rules

SM-SI

SM-XL

SM-FL

SM
R

 R
en

de
re

r

SMR
Decoder
Buffer

User Input
MusicScore

fields

SMR events

MPEG-4 SMR Decoder Architecture

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 46
www.i-maestro.org ver2.9, 20006-11-14

9.4.2 Authoring an MPEG-4 SMR application

In order to create an MPEG-4 application based on SMR a specific BIFS (MPEG-4 Scene Description) coder
is needed. It may include the simple integration of the SMR information to represent it in the visual domain
as well as a set of other BIFS nodes and commands to create and enable the user interface and the related
interaction prepared to create the needed feedback from the user to the SMR decoder, via the SMR node.

For example, the music editing score application reported below presents a set of elements that have been
created in BIFS as described in the following coding example.

#MUSIC SCORE
 Transform2D {
 translation 0 0
 children [
 DEF SCORE_TS TouchSensor {}
 ScoreShape {
 score DEF SCORE MusicScore {
 url 5
 size 800 600
 startTime -1
 stopTime -1
 loop true
 hyperlinkEnable true
 }
 geometry Bitmap {}
 }] }

#PLAY Button
 Transform2D {
 translation -550 -270
 children [
 DEF PLAY_TS TouchSensor {}
 Shape {
 appearance Appearance
 { Texture ImageTexture { url 9 } }
 geometry Bitmap {}
 }
]
 }
 DEF PLAY_SEL Conditional {
 buffer {
 REPLACE SCORE.stopTime BY -1
 } }

#PARTS
 Transform2D {
 translation -610 120
 children [
 Shape {
 appearance Appearance {
 material Material2D {
 emissiveColor 0 0 0
 filled TRUE
 }
 }
 geometry Text { string ["Parts:"]
 fontStyle FontStyle {
 family ["Arial"]
 justify ["LEFT"]
 size 18
 style "BOLD"
 } } }]
 }
 Transform2D {
 translation -610 90
 children [
 Shape {
 appearance Appearance {
 material Material2D {
 emissiveColor 0 0 0

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 47
www.i-maestro.org ver2.9, 20006-11-14

 filled TRUE
 }
 }
 geometry DEF PARTS Text {
 string ["Elaborating..."]
 fontStyle FontStyle {
 family ["Arial"]
 justify ["LEFT"]
 size 16
 } } }
]
 }

MPEG-4 SMR applications coded in BIFS

For example, with the MPEG-4 SMR application of SMR it is possible to perform several interactive
operations with the SMR model. For example, other BIFS elements are accessible by means of the mouse
click; such as the Play button for music education with integrated music score editing/interaction capabilities
reported in Figure above which presents a set of elements that have been created in MPEG-4 BIFS as
described in the associated coding segments. In this example, there are other elements coded in BIFS, such
as the slider, the measure count, links, commands, etc., in practical all the graphics is obtained by using BIFS
coding.

In the above described MPEG-4 application of SMR it is possible to perform several interactive operations
with the SMR model. The BIFS elements which are accessible by means of the mouse click are the
• Play button to start the execution (it is synchronised with the scene using the synchronisation

information stored in the SM-SI), the "current" playing position is shown by using a BIFS made
indicator (a red line and a red arrow);

• Stop button to stop the player execution;
• Slider (on the bottom) to browse the score by scrolling the measures from the first to the last;
• Labels on the left to jump at the corresponding label assigned to the score measures, the visual

representation is redrawn consequently;
• Parts on the left to select different views of the same information, in this case, the view corresponding to

the rendering of the single parts (in the figure the main score is presented);

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 48
www.i-maestro.org ver2.9, 20006-11-14

• Available views on the let can be used for activating the rendering of the SMR information according to
different modalities, for example: Braille format, tablature representation, piano roll, etc.;

• Commands list on the rights allows the user to send commands to the SMR decoder and model. For
example to add or change music notation symbols, or to set some parameters. A quarter note can be
inserted into the score selecting the command and then clicking in the score position in which the note
has to be placed.

The user may interact with the visual representation of SMR in the visual frame with mouse clicking. This
interaction allows sending to sending at the SMR decoder the position of the mouse that is used to identify,
for example, the selected position for a symbolic element to be added, or the selected symbolic element to
interact with it, and/or to provoke other events. For example, clicking on a note that present an additional
link (such as notes marked in blue in the example) the link associated with a note is shown on the right side.
The provoked event can be used to start other audio visual effects such as the play of a video, the play of an
audio or of an animation, to change the scene, to navigate in a tutorial, or a as a menu button, etc.

With the proposed example we have demonstrated that the usage of the MPEG-SMR allows producing a
large range of music related applications coded in MPEG-4. This permits to avoid addressing the need of
creating/coding different software tools every time a new application has to be created. In fact, with this
approach the focus is move from the tools to the content. The application is in effect a simple MPEG-4 file,
which can be streamed from a broadcast service provider to your TV set top box or any other compliant
decoder.

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 49
www.i-maestro.org ver2.9, 20006-11-14

10 MAX and the Music Editing Service (MED) and the Music Execution

Service (MEX)

Music Editing Service and Music Execution Service are two Max/MSP externals that provide cooperative
work support for Max/MSP environment. The MEX external is use for binding cooperatives tools on
different peers, such as distributed metronome, so each cooperative Max/MSP external can exchange
messages with other tools on the P2P network. It is mandatory the presence of one and only one MEX
external for each cooperative lesson.

The MED external provides distributed music editing and viewing support, including a set of commands for
score navigation and information handling. Each lesson can contain up to eight MED externals, numbered
with unique ID in order to avoid addressing problems.

The following figure shows a basic cooperative lesson configuration in Max/MSP environment.

Network

(Max/MSP) LESSON_1

Routing

Tool 1 Tool 2 Tool 3

MEX MED 2MED 1

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 50
www.i-maestro.org ver2.9, 20006-11-14

10.1 Max/MSP Data Types

The following table shows the four basic atomic Max types (bang, int, float, symbol) and the list type used as
multi-type collector. A data of any type is like a message that flows from an object to another, bringing
information. The bang message has no information. It tells the receiver only to execute immediately its
functionality.

Max Type “C” Type Use

Bang - Action
Int Long Integer number

Float Float Real number
Symbol Char* (string) “One word” string

List - MultiType Array

10.2 Max/MSP Cooperative Lesson

First of all it is mandatory that P2P and CWS layer in the Music Execution Service has to be started using
different ports for server modules, respect of the same modules of the Client Manager, otherwise there will
be a conflict during connection start-up of the Music Execution Service.

After that a cooperative lesson is executed as an independent process by the Client Manager, the Music
Execution Service inside the lesson starts its Computer Work Support Layer and P2P Layer.

The first operation of the Music Execution Service is sent a localhost message to the client manager to
receive lessonId of the lesson chosen from the user in the Client Manager. The knowledge the lesson id is
useful when the Music Execution Service starts up the services of CSCW layer. Client Manager replies with
such message:

<lessonId::teacher>: ID values of the lesson loaded and defined inside the metadata followed by name of the
user that activate the lesson (a teacher or student supervisor). This value represents the name of the group
that Music Execution Service will join for group working. Moreover, at the time of group joining, Music
Execution Service registers itself to a specific lesson role, provided by the lesson that uses it.

The Music Execution Service can also ask CSCW the list of active roles of the lesson. With these info, it is
possible to manage the lesson execution, for example waiting for the arrival of all role-users. Obviously this
feature depends on the lesson logic defined by the lesson creator.

Then, when message comes, it is parsed to understand:

1) The type of the command (START or STOP command, generic SENDMESSAGE command)
2) the recipient role (RoleName parameter inside role description metadata)
3) the recipient tool name
4) and possible tools parameters

Then the command is sent to the outlet of the Music Execution Service and a routing Max/MSP object is
used for delivering message to the correct cooperative tool (Max object).

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 51
www.i-maestro.org ver2.9, 20006-11-14

11 MED: SMR Music Editor General Controls for MAX

This module is an External Max/MSP graphic object, which gives the capability of score editing and score-
following. This module supplies the synchronisation support to edit music score between workgroup
members. The module doesn’t use the Music Execution Service to exchange information between peers; the
structures and the services used to manage the cooperative editing are embedded in the module itself.

Cooperative editing can involve mainly scores where user can insert, delete, modify notes and symbols. It
manages a commands log executed by each user to keep trace of notes and symbols modified.

Teacher or Coordinator Student can choose to save cooperative work at any time; in this case all group
members receive new document version and the change log is reset.

The API to interact with the Music Editor is defined by Max/MSP Inlets which represent the input to send to
the Music Editor.

The following methods are available to interact with the Music Editor. They can be grouped in three
principal groups:

1. “Get” methods to recover information about parameters and info of the score
2. “Set” methods to set parameters of the score
3. “other” methods

All three groups are linked to a specific inlet and there is an outlet to send info from the Music Editor to the
other objects. So, there is an inlet for each group and only one outlet as shown in the following figure:

MED

GET SET OTHER

RETURN

General Editing Controls

11.1 Inlets for set methods

The inlet for “Set” methods (the fourth from the left) receives as input the name of the method (without the
“set” prefix) and the list of the parameters. If there are more then one parameter (for example an array
string), the call to method is send as

<methodname without “set” prefix> <value1> <value2> <value3> …

For example, to set the first visible measure, the message sent to the “Set” inlet is:

FirstVisibleMeasure 9
Or to set the size of the score the message is:

Size 640 480

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 52
www.i-maestro.org ver2.9, 20006-11-14

setArgumentOnExecute

Method setArgumentOnExecute
Description It indicates arguments for the commandOnExecute command.
Input
parameters

List of arguments (depending on the type of command)

Output
parameters

List (“ArgumentOnExecute” args):
- args: List of arguments (depending on the type of command)

setCommandOnExecute

Method setCommandOnExecute
Description It indicates the command to be executed by the user
Input
parameters

Symbol command_sym – command to execute

Output
parameters

List (“CommandOnExecute” command_sym):
- Symbol command_sym – command to execute

List of
possible
commands

• "ADD_TEXT_ANNOTATION"
the first value in argumentsOnExecute contains the text to be added to the score in the
position where the user will click via the mouseOnExecute

• ”ADD_LABEL"
the first value in argumentsOnExecute contains the label text to be added to the
measure where the user will click via the mouseOnExecute if the measure already has
a label the label is substituted

• "ADD_NOTE"
the first value in argumentsOnExecute contains the note duration: D1, D1_2, D1_4,
D1_8,D1_16,D1_32,D1_64; the second value indicates the notehead type:
"CLASSIC", … the note is inserted where the user clicks or it is added to a chord if
sufficiently near to another note/chord.

• "ADD_REST"
the first value in argumentsOnExecute contains the rest duration: D1, D1_2, D1_4,
D1_8, D1_16, D1_32, D1_64;the rest is inserted where the user clicks via the
mouseExecute.

• "SET_ALTERATION"
the first value in argumentsOnExecute contains the alteration to be set on the note, it
can be: "SHARP","DSHARP","FLAT","DFLAT","NATURAL". The alteration is set
to the note where the user clicks via the mouseExecute.

• "SET_DOTS"
the first value in argumentsOnExecute contains the number of dots to be set on the
note, it can be: "0","1","2". The dots are set to the note where the user clicks via the
mouseExecute.

• "ADD_SYMBOL"
the first value in argumentsOnExecute contains the symbol to be added on the
note/rest/measure, it can be: "STACCATO","TENUTO" or any symbol defined using
the formatting language. The symbol is added where the user clicks via the
mouseExecute.

• "ADD_MEASURE"
adds a measure to the score, the first value in argumentsOnExecute can be:
"BEFORE", "AFTER" or "APPEND", the second value in argumentsOnExecute
indicates the measure with respect to the new measure is added. The second value is
necessary only for execute eventIn and it is not necessary for mouseClickExecute in
fact in this case the measure where the user clicks indicates the measure with respect
to the new measure is added.

• "DEL_MEASURE"

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 53
www.i-maestro.org ver2.9, 20006-11-14

removes a measure of the score; the first value in argumentsOnExecute indicates the
measure number to be removed. The value is necessary only for execute eventIn and it
is not necessary for mouseClickExecute in fact in this case the measure where the user
clicks indicates the measure to be removed.

• "CHANGE_CLEF"
changes the clef of a measure and for all the following until another clef change or to
the end. The first value in argumentsOnExecute contains the clef type, it can be:
"TREBLE", "SOPRANO", "BASS", "TENOR"…, The clef change applies to the
measure where the user clicks via the mouseExecute

• "CHANGE_KEYSIGNATURE"
changes the key signature of a measure and for all the following until another key
signature change or to the end. The first value in argumentsOnExecute contains the
key signature type, it can be: "DOdM", "FAdM", "SIM", … The key signature change
applies to the measure where the user clicks via the mouseExecute

• "CHANGE_TIME"
changes the time of a measure and for all the following until another time change or to
the end. The first value in argumentsOnExecute contains the time, it can be: "4/4",
"3/4", "2/4", "C" or "C/". The time change applies to the measure where the user
clicks via the mouseClickExecute

• "SET_METRONOME"
sets the metronome for the whole piece. The first value in argumentsOnExecute
contains the reference note duration (D1, D1_2, D1_4,…) the second value contains
"TRUE" if the reference note is with augmentation dot ("FALSE" or empty
otherwise), the third value indicates the number of reference notes in one minute. For
example ["D1_4", "TRUE", "100"] sets a metronome with 100 dotted quarters in one
minute. The metronome is set using the execute eventIn.

• "DELETE"
allows deleting any symbol, note, rest, alteration, label and annotation added by the
user in the position where the user clicks via the mouseExecute

setFirstVisibleMeasure

Method setFirstVisibleMeasure
Description It sets the first measure currently visible
Input
parameters

Int number_of_measure

Output
parameters

List (“FirstVisibleMeasure” number_of_measure):
- Int number_of_measure

setHyperlinkEnable

Method setHyperlinkEnable
Description When it is set to 1 hyperlinks are shown; when the user clicks on a link an activatedLink is

generated
Input
parameters

Int flag: 1 to activate Hyperlink
0 otherwise

Output
parameters

List (“HyperlinkEnable” flag):
- Int flag

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 54
www.i-maestro.org ver2.9, 20006-11-14

setPartLyrics

Method setPartLyrics
Description It is a list of symbols indicating for which part to view the lyrics and in which language (e.g.

[ita eng ""] to view lyrics for part 1 in Italian and for part 2 in English and no lyric for part 3)
Input
parameters

List of symbols of language for part lyrics (the position represents the number of part, the
symbol represents the language)

Output
parameters

List (“PartLyrics” language_list):
- List(symbols) language_list

setPartShown

Method setPartShown
Description It is a list of integers indicating which parts have to be shown; the number is the position in the

array of parts names; if partShown is empty all parts will be invisible (e.g. [] to view empty
main score, [2] to view single part number 2, [1,3] view main score with parts 1 and 3, etc.).

Input
parameters

List (int): list of numbers of the parts to show

Output
parameters

List (“PartShown” parts_list):
- List(int) parts_list

setScoreOffset

Method setScoreOffset
Description It indicates the initial (or point 0) offset from the beginning of the score; it may be used to

change page or move inside the score before starting it, or in pause etc. scoreOffset is
indicated in seconds from the beginning of the score. scoreOffset can be used only if
synchronisation information is provided or a metronome indication is present in the score.

Input
parameters

Float time

Output
parameters

List (“ScoreOffset” time):
- Float time

setChronometricPosition

Method setChronometricPosition
Description It sets the chronometric position (in millisecond) in the SMR object
Input
parameters

Float position

Output
parameters

List (“ChronometricPosition” position):
- Float position

setComputerViewParams

Method setComputerViewParams
Description It sets params for ComputerView
Input
parameters

List (Top Bottom Left Right Staff):
- Int Top
- Int Bottom
- Int Left
- Int Right
- Int Staff

Output
parameters

List (“ComputerViewParams” param):
- List (Int) param

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 55
www.i-maestro.org ver2.9, 20006-11-14

setMetricPosition

Method setMetricPosition
Description It sets the position depending on a metric (a metric is a time interval defined as a specific

fraction of a minute) in the SMR object.
Input
parameters

Int position

Output
parameters

List (“MetricPosition” position):
- Int position

SetPrintViewParams

Method SetPrintViewParams
Description It sets params for PrintView
Input
parameters

List (NPage Top Bottom Left Right Magnify Linelenght NStaffs NSystems Distance):
- Int NPage
- Int Top
- Int Bottom
- Int Left
- Int Right
- Float Magnify
- Int Linelenght
- Int NStaffs
- Int NSystems
- Int Distance

Output
parameters

List (“PrintViewParams” param):
- List param

setSize

Method setSize
Description It expresses the width and height of the music score in pixels.
Input
parameters

List (width height):
- Int width
- Int height

Output
parameters

List (“Size” dim):
- List (Int) dim

setSpeed

Method setSpeed
Description It indicates how fast the score shall be played. It can be a positive tempo multiplier (>0), so a

speed of 2 indicates the score plays twice as fast the tempo metronomic indication.
Input
parameters

Float value

Output
parameters

List (“Speed” value):
- Float value

setViewType

Method setViewType
Description It indicates the kind of view to be used (one of the availableViewTypes).
Input
parameters

Symbol value

Output
parameters

List (“ViewType” value):
- Symbol value

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 56
www.i-maestro.org ver2.9, 20006-11-14

11.2 Inlets for get methods

The inlet for “Get” methods (the third from the left) receives as input only the name of the method (without
“get” prefix). The method is executed by the Music Editor and it returns from the Return outlet (the second
from the left) the name of the method (without the “get” word) and the parameters defined in the Output
Parameters. If there are more than one parameter (for example, an array string), the Return outlet returns a
sequence as:

<methodname without “get” prefix> <value1> <value2> <value3> …

For example, to get the first visible measure, the message sent to the “Get” inlet is:

FirstVisibleMeasure

And the output of Return outlet is: FirstVisibleMeasure 25

getArgumentOnExecute
Method ArgumentOnExecute
Description It returns arguments for the current commandOnExecute command.
Input
parameters

None

Output
parameters

List (“ArgumentOnExecute” args):
- args: List of arguments (depending on the type of command)

getAuthor

Method getAuthor
Description It returns the author of the SMR loaded
Input
parameters

None

Output
parameters

List (“Author” name):
- Symbol name

getAvailableCommands

Method getAvailableCommands
Description It gives a list of commands that can be performed on the score by the user when the user clicks

on the score (e.g. ["ADD_LABEL", "ADD_TEXT_ANNOTATION", "DELETE"])
Input
parameters

None

Output
parameters

List (“AvailableCommands” commands):
- List (symbol) commands

getAvailableLabels

Method getAvailableLabels
Description It gives a list of strings with labels (e.g. ["A", "B", "SEGNO", "CODA"]).
Input
parameters

None

Output
parameters

List (“AvailableLabels” labels):
- List (symbol) labels

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 57
www.i-maestro.org ver2.9, 20006-11-14

getAvailableLyrics

Method getAvailableLyrics
Description It gives a list of symbols where for each part there is the list of (e.g. ["eng ita" ita ""]) (this

field may or may not be filled by the scene author, which is supposed to know the SMR
content and thus languages that are available).

Input
parameters

None

Output
parameters

List (“AvailableLyrics” lyrics):
- List (symbol) lyrics

getAvailableViewTypes

Method getAvailableViewTypes
Description It gives an array of strings describing which view types are available for the score and for the

decoder (e.g. [CWMN braille neumes]).
Input
parameters

None

Output
parameters

List (“AvailableViewTypes” views):
- List (symbol) views

getChronometricPosition

Method getChronometricPosition
Description It provides the present chronometric position (in millisecond) in the SMR object
Input
parameters

None

Output
parameters

List (“ChronometricPosition” position):
- Float position

getCommandOnExecute

Method getCommandOnExecute
Description It returns the current command set with the setCommandOnExecute method
Input
parameters

None

Output
parameters

List (“CommandOnExecute” command):
- Symbol command

List of
possible
commands

• "ADD_TEXT_ANNOTATION"
• ”ADD_LABEL"
• "ADD_NOTE"
• "ADD_REST"
• "SET_ALTERATION"
• "SET_DOTS"
• "ADD_SYMBOL"
• "ADD_MEASURE"
• "DEL_MEASURE"
• "CHANGE_CLEF"
• "CHANGE_KEYSIGNATURE"
• "CHANGE_TIME"
• "SET_METRONOME"
• "DELETE"

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 58
www.i-maestro.org ver2.9, 20006-11-14

getFirstVisibleMeasure

Method getFirstVisibleMeasure
Description It returns the first measure currently visible
Input
parameters

None

Output
parameters

List (“FirstVisibleMeasure” number_of_measure):
- Int number_of_measure

getLastVisibleMeasure

Method getLastVisibleMeasure
Description It returns the last measure currently visible
Input
parameters

None

Output
parameters

List (“LastVisibleMeasure” number_of_measure):
- Int number_of_measure

getHighlightPosition

Method getHighlightPosition
Description It outputs the highlight position in local coordinates.
Input
parameters

None

Output
parameters

List (“HighlightPosition” position):
- List (three floats) position

getHyperlinkEnable

Method getHyperlinkEnable
Description When it is set to 1 hyperlinks are shown; when the user clicks on a link an activatedLink is

generated
Input
parameters

None

Output
parameters

List (“HyperlinkEnable” active):
- Int active: 1 if Hyperlink is activated, 0 otherwise

getMetricPosition
Method getMetricPosition
Description It provides the position depending on a metric (a metric is a time interval defined as a specific

fraction of a minute) in the SMR object.
Input
parameters

None

Output
parameters

List (“MetricPosition” position):
- Int position:

getMousePositionOnExecute

Method getMousePostionOnExecute
Description It is used to indicate the point where the user has clicked, the position will be considered when

the executeCommand will be issued.
Input
parameters

None

Output
parameters

List (“MousePostionOnExecute” position):
- List (three floats) position

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 59
www.i-maestro.org ver2.9, 20006-11-14

getClick
Method getClick
Description It is used to indicate the point coordinates in pixels (x,y) where the user has clicked.
Input
parameters

None

Output
parameters

List (“Click” position):
- List (two ints) position

getNumMeasures
Method getNumMeasures
Description It gives the number of measures in the score.
Input
parameters

None

Output
parameters

List (“NumMeasures” number_of_measure):
- Int number_of_measure

getPartLyrics

Method getPartLyrics
Description It is a list of symbols indicating for which part to view the lyrics and in which language (e.g.

[ita eng ""] to view lyrics for part 1 in Italian and for part 2 in English and no lyric for part 3)
Input
parameters

None

Output
parameters

List (“PartLyrics” language_list):
- List(symbols) language_list

getPartNames

Method getPartNames
Description It gives a list of symbols with part names (instruments, e.g. [soprano baritone piano])
Input
parameters

None

Output
parameters

List (“PartNames” names):
- List(symbols) names

getPartShown

Method getPartShown
Description It is a list of integers indicating which parts are shown; the number is the position in the array

of parts names; if partShown is empty all parts will be invisible (e.g. [1,3] main score shows
parts 1 and 3, etc.).

Input
parameters

None

Output
parameters

List (“PartShown” parts_list):
- List(int) parts_list

getScoreOffset

Method getScoreOffset
Description It returns the initial (or point 0) offset from the beginning of the score; it may be used to

change page or move inside the score before starting it, or in pause etc. scoreOffset is
indicated in seconds from the beginning of the score. scoreOffset can be used only if
synchronisation information is provided or a metronome indication is present in the score.

Input
parameters

None

Output
parameters

List (“ScoreOffset” time):
- Float time

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 60
www.i-maestro.org ver2.9, 20006-11-14

getSize
Method getSize
Description It returns the width and height of the music score in pixels.
Input
parameters

None

Output
parameters

List (“Size” width height):
- Int width
- Int height

getSpeed

Method getSpeed
Description It returns the present speed of the score. It can be a positive tempo multiplier (>0), so a speed

of 2 indicates the score plays twice as fast the tempo metronomic indication.
Input
parameters

None

Output
parameters

List (“Speed” value):
- Float value

getSymPartName

Method getSymPartName
Description It returns a description of a Symbolic Score
Input
parameters

None

Output
parameters

List (“SymPartName” desc):
- Symbol desc

getTitle

Method getTitle
Description It returns the title of the SMR loaded
Output
parameters

List (“Title” desc):
- Symbol title

getViewType

Method getViewType
Description It returns the view used (one of the availableViewTypes).
Input
parameters

None

Output
parameters

List (“ViewType” type):
- Symbol type

11.3 Inlets for other methods

The inlet for “Other” methods (the fifth from the left) receives as input the name of the method following (if
required) by the parameter declared in the Input Parameters.

The method is executed by the Music Editor and, if the method has some parameters to return, it returns from
the Return outlet (the second from the left) the name of the method and the parameters defined in the Output
Parameters. If there are more than one parameters (for example an array string), the Return Outlet returns a
sequence as:

<methodname> <value1> <value2> <value3> …

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 61
www.i-maestro.org ver2.9, 20006-11-14

For example, to load a file, the message sent to the “Other” inlet is:

Load nomefile

And the output of Return outlet could be: Load 1 (to confirm the correct file loading) or Load 0 (if there is a
problem to load the file)

Another example is the sequence of messages to execute a command to insert a note in the score (“Set” and
“Other” inlets and Return outlet are involved):

step Get Set Other Return
1 “CommandOnExecute” ADD_NOTE
2 “ArgumentOnExecute” D1_8 CLASSIC
3 “ExecuteCommand”

4 “ExecuteCommand” 1

In the first step it arrives at the “Set” Inlet the message to set the type of command to perform, then arrive
also the command to set the parameters for the command itself. In the third step is sent the message to the
“Other” inlet to execute the command previously set and at the end, from the Return Outlet, the message
arrives with the confirmation of correct execution of the command.

ExecuteCommand
Method ExecuteCommand
Description It is an input event indicating that the command set in commandOnExecute has to be

performed.
Input
parameters

None

Output
parameters

List (“ExecuteCommand”flag):
- Int flag: 1 if the command is correctly performed, 0 otherwise

GoBackward

Method GoBackward
Description It shows previous score page
Input
parameters

None

Output
parameters

Symbol “GoBackward”

GoForward

Method GoForward
Description It shows next score page
Input
parameters

None

Output
parameters

Symbol “GoForward“

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 62
www.i-maestro.org ver2.9, 20006-11-14

GoBottom

Method GoBottom
Description It shows the bottom of the score
Input
parameters

None

Output
parameters

Symbol “GoBottom”

GoTop

Method GoTop
Description It shows the top of the score
Input
parameters

None

Output
parameters

Symbol “GoTop”

GotoLabel

Method GotoLabel
Description It positions the score on the page containing the specified label (one of the availableLabels).
Input
parameters

Symbol label

Output
parameters

List (“GotoLabel” label):
- Symbol label

GotoMeasure

Method GotoMeasure
Description positions the score on the page containing the specified measure
Input
parameters

Int measure

Output
parameters

List (“GotoMeasure” measure):
- Int measure

HighlightTimePosition

Method HighlightTimePosition
Description It highlights the time position indicated relative to the scoreOffset field
Input
parameters

None

Output
parameters

Symbol “HighlightTimePosition”

Justify

Method Justify
Description It justifies (logarithmic or linear) the current score depending on entry parameters
Input
parameters

List (fromMeasure toMeasure logarithmic):
Int fromMeasure
Int toMeasure
Int logarithmic (1 is logarithmic, 0 is linear)

Output
parameters

List (“Justify”, param):
List(int) param

Load

Method Load

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 63
www.i-maestro.org ver2.9, 20006-11-14

Description Load a file from disk or from a URL
Input
parameters

Symbol file – name or path of the file to load

Output
parameters

List (“Load”flag):
- Int flag: 1 if the file is correctly loaded, 0 otherwise

Pause

Method Pause
Description It pauses the current file execution
Input
parameters

None

Output
parameters

Symbol “Pause”

Play

Method Play
Description It plays the file previously loaded
Input
parameters

None

Output
parameters

Symbol “Play”

PlaySync

Method PlaySync
Description It plays a synchronous file
Input
parameters

None

Output
parameters

Symbol “PlaySync”

PlaySyncFromTo

Method PlaySyncFromTo
Description It executes an synchronous file from the measure x to the measure y
Input
parameters

List(startMeasure endMeasure):
-Int startMeasure
-Int endMeasure

Output
parameters

List (“PlaySyncFromTo”, param):
List(int) param

Print

Method Print
Description Print the current score
Input
parameters

None

Output
parameters

Symbol “Print”

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 64
www.i-maestro.org ver2.9, 20006-11-14

Stop

Method Stop
Description It stops the execution of a file loaded
Input
parameters

None

Output
parameters

Symbol “Stop”

Transpose

Method Transpose
Description It transposes notes in the score.
Input
parameters

List (daBat aBat partnumber clef translation interval up numofstaff sharps adjust):
-Int daBat – start measure to execute transposition
-Int aBat – final measure to execute transposition
-Int partnumber – number of the part to transpose
-Int clef – number of the clef to change
-Int translation – it point how much the note have to be tranlated
-Int interval – type of interval
-Int up – it points if the translation is up or down
-Int numofstaff – it gives the capability to transpose using more then one staff
-Int sharps
-Int adjust

Output
parameters

List (“Transpose”, param):
List(int) param

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 65
www.i-maestro.org ver2.9, 20006-11-14

11.4 Examples of MED in Max/MSP for Music General Controls

For a visual programmer in MAX, the model contained in the MED-SMR contains the music as modelled
with a hierarchical organisation. A music score is made of parts and each part consists of a list of measures
containing several voices. Each voice may contain events of various types: Notes, Chords made by notes,
Rests, Refrains, Key Changes, Clef Changes. MED allows to access the SMR model by means of a set of
functionalities.

For the MED, there are two groups of commands for accessing the SMR model and for its navigation. Each
group of command can be accessed via a specific inlet and MED uses first outlet for sending information to
other visual objects of the MAX visual environment.

The navigation/access to the SMR modelling information allows to realize patch programs in MAX to
perform symbolic analysis of music and to read the SMR model that could be used to feed score-following
algorithms.

A first command group is useful to recover information about score structure and events, such as the pitch of
a specific note, the time signature of a measure or the number of parts inside the score. These commands
have to be routed to the first inlet.

When a message is sent to MED through this inlet, MED takes this message as a getting information request.

The second group contains commands for setting the cursor position on a particular element of the score
structure, such as moving cursor position on the third part of the score or at the beginning of the second
measure of the first part. Once the cursor position is set, it is possible to retrieve element selected
information using first inlet. These commands have to be routed to the second inlet.
On this basis it is possible to:

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 66
www.i-maestro.org ver2.9, 20006-11-14

• get the number of elements of each structure’s level;
• set the cursor position; in this case the cursor is only a position to start navigating into the SMR model;
• get measure information (metronome, barlines type, labels, key signature type, time signature data, clef

type, etc.);
• get event type;
• get note info (pitch, duration, ties);
• get rest info (duration);
• get chord info (duration, pitches);
• get refrain info (type);
• get key change info (type);
• get clef change info (type).

The following table shows an example of message sequence for getting the pitch of the fifth event (a note) on
the second voice of the first measure in the third part of the score.

First Inlet Second Inlet First Outlet
 “Part 3”
 “Measure 1”
 “Voice 2”
 “Event 5”
“Pitch”
 “Pitch G#2”

Example to access the SMR model information

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 67
www.i-maestro.org ver2.9, 20006-11-14

12 MED: SMR Music Editor, Music Notation Access Support for MAX

The following is the schema of the structure of a score. Score is made by single parts (from one to n) and
each part is made by voices. Each voice can contain one ore more events. There are various type of events:
Note, Chord made by notes, MeasureChange, Rest, Refrain, KeyChange, ClefChange and TimeSignChange.

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 68
www.i-maestro.org ver2.9, 20006-11-14

The following methods represent the interface provided by the Music Editor to the Score-Follower to interact
with the score.

Score

Part

Voice

Voice

TimeSignChange Label KeyChange

Chord

Part
Name

Note (tied)

ClefChange RestMeasureChange

An example of access to the score viewed in the figure above can be the access to the duration of each note
of lower voice in the “Violin” part.

SetPart(3);
SetMeasure(2);
SetVoice(1);
for (i=1, i<getNumEvents(), i++)
{
 setCurrentEvent(i);
 event_type=getEventType();
 if (event_type==1) //the event is a note
 {
 currenteNoteDuration=getDuration();

}
}

Calling a setter method of a particular level causes cursor setting on the first element of lower levels, leaving
upper levels unchanged (e.g. SetMeasure(2) moves the cursor on the first event of the first voice of measure
2). By default the score cursor is set on the first element of each level.

The following methods are available to access the Music Score. They can be grouped in two groups:

1. “Get” methods to recover information about score structure and events
2. “Set” methods to select a position inside the score structure

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 69
www.i-maestro.org ver2.9, 20006-11-14

The groups are linked to a specific inlet and there is an outlet to send info from the Music Editor to the other
objects. So, there is an inlet for each group and only one outlet as shown in the following figure:

MED

GET

RETURN

SET

Notation Access Support

12.1 Score navigation methods

getNumParts
Method getNumParts
Description It returns the total parts number inside the score ordered bottom-up. There are at least one part

in a score ordered from the lower to the higher.
Input
parameters

None

Output
parameters

List(“NumParts” total_parts_number):
-Int total_parts_number

setPart

Method setPart
Description It selects the part inside the score
Input
parameters

Int part_number

Output
parameters

List(“Part” flag):
-Int flag : 0 if no error, -1 otherwise

getScoreName

Method getScoreName
Description It returns the name of the score (if present)
Input
parameters

None

Output
parameters

List(“ScoreName” score_name):
Symbol score_name

getNumStaves

Method getNumStaves
Description It returns the total staves number inside the part.
Input
parameters

None

Output
parameters

List(“NumStaves” total_staves_number):
-Int total_staves_number, -2 if error occurs

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 70
www.i-maestro.org ver2.9, 20006-11-14

setStaff

Method setStaff
Description It selects the staff inside the part
Input
parameters

Int staff number

Output
parameters

List(“Staff” flag):
-Int flag: 0 if no error, -1 otherwise

getNumMeasures

Method getNumMeasures
Description It returns the total measures number inside the part.
Input
parameters

None

Output
parameters

List(“NumMeasures” total_measures_number):
-Int total_measures_number, -2 if error occurs

setMeasure

Method setMeasure
Description It selects the measure inside the part
Input
parameters

Int measure_number

Output
parameters

List(“Measure” flag):
-Int flag : 0 if no error, -1 otherwise

getNumVoices

Method getNumVoices
Description It returns the total voices number inside the part. There are from 1 to 4 voices in a part ordered

from the lower to the higher.
Input
parameters

None

Output
parameters

List(“NumVoices” total_voices_number):
-Int total_voices_number, -3 if error occurs

setVoice

Method setVoice
Description It selects the voice inside the part
Input
parameters

Int voice_number

Output
parameters

List(“Voice” flag):
-Int flag : 0 if no error, -1 otherwise

getPartName

Method getPartName
Description It returns the name of the part (if present)
Input
parameters

None

Output
parameters

List(“PartName” name):
Symbol name

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 71
www.i-maestro.org ver2.9, 20006-11-14

getNumEvents

Method getNumEvents
Description It returns the total events number inside the voice. There is atleast one event in a voice.
Input
parameters

None

Output
parameters

List(“NumEvents” total_events_number):
-Int total_events_number, -4 if error occurs

setEvent

Method setEvent
Description It selects an event inside the voice
Input
parameters

Int event_number

Output
parameters

List(“Event” flag):
-Int flag : 0 if no error, -1 otherwise

getEventType

Method getEventType
Description It returns the type of the event selected
Input
parameters

None

Output
parameters

List(“EventType” event_type):
-Int event_type, -5 if error occurs

eventType Int

Label 0
Note 1
Rest 2
Chord 3
Refrain 4
KeyChange 5
ClefChange 6

12.2 Measure Info

getMetro
Method getMetro
Description It define the metronome speed of the current measure
Input
parameters

None

Output
parameters

List (“Metro”durationRef speed):
- Int durationRef: symbolic positive note duration (whole note = 4096), -6 if error occurs
- Int speed: beat per_minute, -6 if error occurs

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 72
www.i-maestro.org ver2.9, 20006-11-14

getBarType

Method getBarType
Description It returns the type of the barline of the measure
Input
parameters

None

Output
parameters

List(“BarType” bar_type):
-Int bar_type, -6 if error occurs

Bar_Type Int Example

SINGLE 0

DOUBLE 1

END 2

END_REFRAIN 3

START_END_REFRAIN 4

START_REFRAIN 5

INVISIBLE 6

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 73
www.i-maestro.org ver2.9, 20006-11-14

getLabel

Method getLabel
Description It returns the label symbol
Input
parameters

None

Output
parameters

List(“Label” label_sym):
- Symbol label_sym if no error, empty otherwise

Label Symbol Example

Coda CODA

Segno SEGNO

Da Capo DC D.C.

Da Capo al Fine DCAF D.C. al Fine

Dal Segno DS D.S.

Dal Segno al Fine DSAF D.S. al Fine

Da Capo al Segno DCAS D.C. al Segno

Dal Segno al Coda DSAC D.S. al Coda

Fine FINE Fine

Letter label A…Z, 0...9 A

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 74
www.i-maestro.org ver2.9, 20006-11-14

getKey

Method getKey
Description It returns the key signature type.
Input
parameters

None

Output
parameters

List(“Key” key_type):
-Int key_type, -6 if error occurs

Key_Type Example
Major Int Minor Int

DOdM 7 LAdm 22

FAdM 6 REdm 21

SIM 5 SOLdm 20

MIM 4 DOdm 19

LAM 3 FAdm 18

REM 2 SIm 17

SOLM 1 MIm 16

DOM 0 Lam 15

FAM 8 REm 23

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 75
www.i-maestro.org ver2.9, 20006-11-14

SIbM 9 SOLm 24

MIbM 10 Dom 25

LAbM 11 FAm 26

REbM 12 SIbm 27

SOLbM 13 MIbm 28

DObM 14 LAbm 29

getTimeSign
Method getTimeSign
Description It returns the time signature of a measure
Input
parameters

None

Output
parameters

List (“TimeSign” numerator denominator):
- Int numerator: the numerator part of the time signature, -6 if error occurs
- Int denominator: the denominator part of the time signature, -6 if error occurs

getClef

Method getClef
Description It returns the clef signature type.
Input
parameters

None

Output
parameters

List(“Clef” clef_type):
-Int clef_type, -6 if error occurs

Clef_Type Int Example

BARITONE 0

BASS 1

BASSOLD 2

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 76
www.i-maestro.org ver2.9, 20006-11-14

ALTO 3

MEZZOSOPRANO 4

SOPRANO 5

TENOR 6

TENOR8 7

TREBLE 8

TREBLE8 9

8TREBLE 10

BASS8 11

8BASS 12

EMPTY(questo non
è un cambio chiave) 13

PERCUSBOX 14

PERCUS2LINES 15

TAB 16

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 77
www.i-maestro.org ver2.9, 20006-11-14

12.3 Note Info

getPitch
Method getPitch
Description It returns the pitch of note
Input
parameters

None

Output
parameters

List(“Pitch” pitch_sym):
Symbol pitch_sym (Format: XYZ; X is the char representing the basic pitch, Y is the optional
sharp or flat, Z is the octave number – E.g. A#3, Bb4, E_1, C_3 = middle C) if no error, empty
symbol otherwise

getDuration

Method getDuration
Description It retuns the symbolic positive note duration calculated depending on the duration of a whole

note. (whole note duration = 4096)
Input
parameters

None

Output
parameters

List(“Duration” dur):
-Int dur, -6 if error occurs

Duration Example

8192

4096

2048

1024

512

256

128

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 78
www.i-maestro.org ver2.9, 20006-11-14

64

32

getIsTied
Method getIsTied
Description It returns 1 if the note is tied with the next one (with the same pitch).
Input
parameters

None

Output
parameters

List(“IsTied” tie):
-Int tie: 1 if the note is tied, 0 if not and, -6 if error occurs

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 79
www.i-maestro.org ver2.9, 20006-11-14

12.4 Rest info

getDuration
Method getDuration
Description It retuns the symbolic positive rest duration calculated depending on the duration of a whole

rest. (whole rest duration = 4096)
Input
parameters

None

Output
parameters

List(“Duration” dur):
-Int dur, -6 if error occurs

Duration Example

16384

8192

4096

2048

1024

512

256

128

64

32

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 80
www.i-maestro.org ver2.9, 20006-11-14

12.5 Chord info

getNumNotes
Method getNumNotes
Description It returns the total number of notes inside the chord.
Input
parameters

None

Output
parameters

List(“NumNotes” total_notes_number):
-Int total_notes_number, -6 if error occurs

setNote

Method setNote
Description It selects a note inside the chord.
Input
parameters

Int note_number

Output
parameters

List(“Note” flag):
-Int flag : 0 if no error, -1 otherwise

12.6 Refrain info

getRefrain
Method getRefrain
Description It returns the type of refrain.
Input
parameters

None

Output
parameters

List(“Refrain” refrain_type):
-Int refrain_type, -6 if error occurs

refrainType Int Example

FIRSTTIME 7

SECONDTIME 8

THIRDTIME 9

ENDTIME 10

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 81
www.i-maestro.org ver2.9, 20006-11-14

12.7 KeyChange info

getKeyChange
Method getKeyChange
Description It returns the key signature type.
Input
parameters

None

Output
parameters

List(“KeyChange” key_type):
-Int key_type, -6 if error occurs(see 12.2)

12.8 ClefChange info

getClefChange
Method getClefChange
Description It returns the clef signature type.
Input
parameters

None

Output
parameters

List(“ClefChange” clef_type):
-Int clef_type, -6 if error occurs(see 12.2)

12.9 Error codes description

The following table shows the correspondence between error code number and their description.

Description Code (Int)
Out of bounds -1
Part not set -2
Measure not set -3
Voice not set -4
Event not set -5
Wrong type event -6

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 82
www.i-maestro.org ver2.9, 20006-11-14

12.10 MED in Max/MSP for Music Editing

The Music Editor Max module provides two specific inlets and one specific outlet, available for score
exploring. The first inlet receives string commands corresponding to each ‘get’ methods and the second
receives string commands corresponding to the ‘set’ methods previously described. The outlet returns a
couple containing the name of the command sent and a value that can be also an error code if fault occurred.

Music Editor

Get Set

Return

Scorename
NumParts
Partname
NumVoices
NumEvents
Eventype
Label
Pitch
Duration
isTied
BPM
DurationRef
Bartype
NumNotes
Refrain
Key
Clef
TimeNum
TimeDen

Part int
Voice int
CurrentEvent int
Note int

(string_type, value)

The following command sequence is an example of interaction with Music Editor using the previously
methods. The example score is made of 3 parts containing each a single voice, there are 10 figures (only
notes and rests) per voice.

The table below presents the sequence of command to recover the duration of a note; the steps are explained
to give an idea of the sequence progress. In the first step it is selected the part 3 of the score, and Return
Outlet sends the method name with number of the part. Then in the step 3, it is selected the voice two (of the
part 3 previously set). But now Return Outlet returns the name of the method with the number -1 which

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 83
www.i-maestro.org ver2.9, 20006-11-14

represents the presence of the error “Out of bounds” because there isn’t the voice number 2 in the part 3. In
the step 5 the voice 1 is set and now the return value is correct.

The sequence continues with the step 7 where the command setCurrentEvent selects the event number 5 in
the voice 1. The event type is get calling the Eventype method in the step 9. The return value from the Return
outlet is “Eventype 1”. Looking at the event type code, the number 1 corresponds to the Note type.

Then in step 11, the method Label is called to the current event (Note); the return value is an error (the
number -5) because the note doesn’t have a label. In the end, the last method called is Duration which returns
the duration of the note (step 14).

step Get Set Return
1 “Part” 3
2 “Part” 3
3 “Voice” 2
4 “Voice” -1
5 “Voice” 1
6 “Voice” 1
7 “CurrentEvent” 5
8 “CurrentEvent” 5
9 “Eventype”
10 “Eventype” 1
11 “Label”
12 “Label” -5
13 “Duration”
14 “Duration” 256
15
16
17

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 84
www.i-maestro.org ver2.9, 20006-11-14

12.11 Examples of MED in Max/MSP for Music Notation Access

MED has an interactive way of editing score symbols. It provides a set of user selectable commands (e.g.,
adding notes, rests, accidentals, deleting a symbol) with relative parameters. Once a programmer has
specified a command to execute (e.g., add a quarter note), it is possible to set up a specific user interface in
terms of coded MAX patch to interact with the MED by means of the mouse click (see the following figure).
In the figure, the sequence diagram depicting the protocol established by the user, Max/MSP and the MED
SMR model is reported. In this view, the user interacts with the MAX patch to send a command to the MED
(for example the command to add a rest “CommandOnExecute ADD_REST” of 1/8 of duration on voice 1 of
the part selected by the user interaction). Once this command has reached the MED, it waits for a mouse
click on the MED SMR visual rendering. This action provokes the sending of a message from the MED to
the MAX environment including the relative coordinates X,Y of the clicked position. This event in
Max/MSP could be used to start a large range of different actions (such as activation of play, or, etc.), while
in this case the effective visualization of the rest with the sending of “Execute Command” to the MED is
performed. This, in turn realizes in MED by the redraw of the visual representation on the screen.

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 85
www.i-maestro.org ver2.9, 20006-11-14

Sequence diagram User-MAX-MED

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 86
www.i-maestro.org ver2.9, 20006-11-14

13 MEX: Music Execution Service for Cooperative Work for MAX

Music Execution Service provides all cooperative function available for tools working inside a cooperative
lesson (e.g. metronome, gesture and posture tool, multimedia rendering tools, sensors…).
The service is implemented as Max External Object and only one copy of this object can be included inside a
cooperative Lesson. To use this service is mandatory to create an object inside Max Designer Interface.

The Object has Inlets used to receive information from other Max Object and Outlets used to send
information to other objects. Inlets are the way to exchange messages from Max to the P2P network; Outlets
are the way to exchange messages from P2P Network to Max. MEX external has three different
communications “channels” divided by the service kind they offer:

• Time Critical Commands (left inlet/outlet): commands that peers have to execute at the same time,
such as starting a distributed tool.

• Generic Messages (middle inlet/outlet): every message that needs not to be strictly synchronised,
like parameter setting.

• CSCW Specific Controls (right inlet/outlet): work group management information.

The following figure shows MEX External appearance in Max/MSP Environment.

MEX

CSCW Specific ControlsTime Critical Commands Generic Messages

An example of possible connection with the Music Execution Service Inlets. On the left Inlet two commands
for distributed start/stop of a metronome (Metro1); on the middle one a message for Metro1 bpm change and
a generic message prototype; on the right one a message of synchronisation request:

tone

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 87
www.i-maestro.org ver2.9, 20006-11-14

The following figure shows an example of the execution of a start command in a cooperative lesson. MEX
receives a command from the P2P Network and pulls it out from the first outlet (in this case “Metro1 start
700”). The route object provides the correct metronome selection using the “Metro1” word. The value 700 is
used by a delay unit that sends out a “start” command after 700 (milliseconds).

MEX

route Metro1 Metro2 route Metro1 Tool5

Metro1

Tool5

delay_unit

Metro1 start 700

start 700

start

bpm 120

Metro1 bpm 120

The same kind of logic (routing object) is used for the delivery of “Metro1 bpm 120”. The message “bpm
120” set the new metronome frequency. In these examples we have used the “route” object of Max/MSP to
parse the command and forward the correct message to the correct tool. It is only an example; it is possible
using some other objects to have the same behaviour.

13.1 Time Critical Commands

Inlet – Send Command
Method Inlet – Send Command
Description Sends a command in a cooperative way specifying the delay time to wait before starting, the

command will be executed at the same time. Max/MSP will provide logic for scheduling
commands.

Input
parameters

List(role command delay):
Symbol role: One of the roles defined inside the lesson. If role=ALL the message is for all
roles in the lesson; if role=SELF the message is for all users having role equal to the sender
role.
Symbol command: The name of the command to execute
Int delay (optional): The delay to wait before start execution (milliseconds)

Sample
Message

Cello “Metro start” 500

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 88
www.i-maestro.org ver2.9, 20006-11-14

Outlet - Send Command

Method Outlet - Send Command
Description It sends out the command coming from the P2P network. Max/MSP will provide a logic for

scheduling and routing the command to the correct tool and/or role.
Output
parameters

List(command delay):
Symbol Command: The name of the command to execute
Int delay(optional): The delay to wait before start execution (milliseconds)

Sample
Message

“Metro start” 500

13.2 Generic Messages

Inlet- Send Message
Method Inlet- SendMessage
Description Send a generic message in a cooperative way to a specified role
Input
parameters

List(role command undo_cmd):
Symbol role: One of the role defined inside the lesson. if role=ALL the message is for all
roles in the lesson; if role=SELF the message is for all users having role equal to the sender
role.
Symbol command: It contains the message to deliver. The message is parsed by the specific
tool.
Symbol undo_cmd (optional): It contains the message to revoke the effect of command. It is
used by CSCW Layer logic for keeping the stream of commands exact the same on each peer.

Sample
Message

Bass “Metro bpm 120” “Metro bpm 90”

Outlet – Receive Message

Method Outlet - ReceiveMessage
Description It sends out the message coming from the P2P network. Max/MSP will provide a logic for

routing the command to the correct tool and/or role.
Output
parameters

Symbols List command: It contains the message to deliver. The message is parsed by the
specific tool.

Sample
Message

Bass Metro bpm 100 (if receiver role is ALL)
Metro bpm 100 (otherwise)

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 89
www.i-maestro.org ver2.9, 20006-11-14

13.3 CSCW Specific Controls

Inlet - Join
Method Inlet - Join
Description Starts a cooperative session
Input
parameters

List(“join” user_name group_name role_name):
-Symbol user_name: the name that the user choose on the peer network
-Symbol group_name: the name of a workgroup to join in.
-Symbol role_name: the name of the role chosen inside workgroup, ALL means every role

Sample
Message

join jack lesson2 violin

Inlet - Leave

Method Inlet - Leave
Description Ends a cooperative session
Input
parameters

Symbol “leave”

Sample
Message

leave

Inlet - Sync

Method Inlet - Sync
Description Sets the time interval between two consecutive synchronisations
Input
parameters

List(“sync” interval):
- Int Interval (optional): time interval in milliseconds, if absent one sync round is performed
immediately

Sample
Message

sync 1000

Outlet - WorkGroupStatus
Method Outlet - WorkGroupStatus
Description Monitors the cooperative session
Output
parameters

List members: the list of members in the specified workgroup, empty if the user is not joined

Sample
Message

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 90
www.i-maestro.org ver2.9, 20006-11-14

13.4 Examples of MEX for Cooperative Work among MAX Tools

The following image shows an example of cooperative interaction.

The image is divided in two boxes: the upper one represents the cooperative view of the lesson that each
student connected can see. The second box shows the Console view of the lesson where the student can
manage the lesson execution, interacting with this and sending messages to the other students connected.

In the Cooperative view the student can see for example a video played synchronously in all the peer
connected. The “Drawing” small box shows in real time what all the students connected are drawing. Finally
the “Incoming Message” box the students receive message from the other students.

In the Console view the user can send messages to the other peers and interact with the lesson. Pressing the
Join/Leave button he can start or stop to work in the cooperative session joining a group or leaving it and
selecting a role (for example violin or cello). The number in the little box represents the total number of
peers connected in the same group.

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 91
www.i-maestro.org ver2.9, 20006-11-14

Using the “Drawing” box the user can draw freely lines using the mouse as a pen. The drawing is sent in real
time to the other peers in the group. Pressing the “clear” button all signs in his “Drawing” box in the Console
view are deleted and the user can start to draw in a cleared area. Pressing the “Pict clear” button all the
drawing in the “Drawing” box in the “cooperative View” of all the peers in the group are cleared.

As a teacher, the Console view has a number of commands reserved to him. For example using the “Video
start”, “Video Stop”, “Video Resume” the teacher can simply interact with the video playing of all the peers
connected in the group. Also he can write a text in the “Send Msg” box and send it to all the peers or only to
one selected user.

14 Score-following integration model (IRCAM)

The score model of the MED (constructed by loading a score file) is accessed in real-time by the score-
follower in order to construct an internal representation of the score for following.

The score-follower is constructs and updates in real-time an internal representation corresponding to a
segment of the score around the current position of the performance input starting from an initial position.
This internal representation corresponds to a Hidden Markov Model (HMM) used by the score-following
algorithm.

The score-follower has to be provided with the following parameters before starting following:

• the voice to follow (in case of an SMR display of multiple voices)
• the initial position to start from
• a tempo factor (optional parameter that can lead to better performance of the follower just after the

start in the case that the performance tempo derives very much from the tempo indicated in the
score)

Data and control flow between the MED and the score-follower (imo.suivi~)

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 92
www.i-maestro.org ver2.9, 20006-11-14

14.1 Mutual position control between the MED and the score-follower

An obvious user requirement is the control of the starting position and voice (in case of an SMR display of
multiple voices) of the score-follower from the score display by a direct graphical interaction with the Music
Editor.

Further more, its often desirable that the score-follower controls the score display in order to make the
display of the score, following the performers interpretation. This feature is often referred to by “automatic
page turning” or “automatic page scrolling”. (Note that two cases have to be distinguished here: 1. the
rendering of the score for a third person – not requiring an anticipation of the displayed position, and 2. the
rendering of the score for the performer himself – requiring a complex anticipation of the score position.)

Data and control flow including the mutual position control between MED score-follower

14.2 Aligned rendering of performance data

Multiple user scenarios of the I-MAESTRO tools include the rendering of performance data sets from
sensors (e.g. bow strokes) and audio extractors (e.g. loudness or pitch) spatially aligned to the display of the
SMR corresponding to the given performance. The performance data sets are modelled as streams of events
with time tags (see below).
In general, real-time and off-line rendering can be distinguished. Both cases require an alignment in two
steps:

1. alignment of the performance chronometric data set to the metric of the score
(provided by the score-following/score-alignment)

2. alignment of the metric of the score to the spatial score rendering
(provided by the MED)

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 93
www.i-maestro.org ver2.9, 20006-11-14

Visual alignment of performance data to a given score in two steps

15 Models for non-symbolic performance data (IRCAM)

As mentioned above, multiple user scenarios of the I-MAESTRO tools include the rendering of performance
data sets from sensors (e.g. bow strokes) and audio extractors (e.g. loudness or pitch).

The I-MAESTRO developments for Sensor Support and Practice Training Paradigm Support are based on
the SDIF, Sound Description Interchange Format, and extensions of FTM library developed in the
framework of the I-MAESTRO project for the handling and representation of SDIF files. SDIF is an
established standard for the well-defined and extensible interchange of a variety of sound descriptions
including spectral, sinusoidal, time-domain, and higher-level models and applies also to sensor and motion
capture data. SDIF consists of a basic data format framework and an extensible set of standard sound
descriptions. The SDIF standard has been created in collaboration by IRCAM, CNMAT, and IUA-UPF.
A complete specification of the format and documentation of the IRCAM SDIF library and related tools can
be downloaded from the IRCAM SDIF home page1.

FTM is a shared library for Max/MSP providing a small and optimized real-time object system and a set of
basic services to be used within Max/MSP externals. The latest FTM release including the documentation
can be downloaded on the FTM home page2.

In the FTM library, SDIF files are handled by two specific classes:

• track, sequence of time-tagged values or objects
• fmat, matrix of floating point values

In general, an SDIF file is represented by one or multiple track objects containing fmat objects. A set of
Max/MSP external modules allowing to access to SDIF data stored in FTM objects is provided by the FTM
library.

The visualisation and editing of SDIF data sets within Max/MSP is handled by graphical Max/MSP modules
accessing the FTM SDIF data representations. These modules handle also the alignment to the I-MAESTRO
SMR display as described above.

1 SDIF home page at IRCAM: http://www.ircam.fr/sdif/
2 FTM home page at IRCAM: http://www.ircam.fr/ftm/

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 94
www.i-maestro.org ver2.9, 20006-11-14

16 Models for collaborative interactive audio processing (IRCAM)

WP 5 contains several tools to be inserted into the framework of collaborative work throughout the project
although most of the pedagogical paradigms are still to be defined.

The pedagogical field most advanced in terms of collaborative work with technology is that of innovative
pedagogy working with Creative Interfaces and sound synthesis as well as sound transformations.

Here the challenge is to provide frameworks allowing collaborative work based on pertinent representations
and open protocols.

16.1 Simplified modular interactive audio processing framework

A first version of a simplified modular audio processing framework has been developed in the framework of
the MusicLabs II project in collaboration between IRCAM and the French Ministry of Education. The basic
design has been elaborated in vivid interaction with a group of selected music teachers teaching classes in
secondary school (pupils’ age from 12 to 18 years).

In the framework of the I-MAESTRO project the tool has been extended and will be further adapted to the
tools in the I-MAESTRO system.

The tool supports pedagogical work with the following objectives;

• Comprehension of and experimentation with basic notions of audio transformation and synthesis
techniques

• Musical control of audio processing by gestures (sensor and motion capture data)
• Sonification of gestures (based on sensors and motion capture data)
• Collaborative creation of audio processing instruments
• Collaborative performance of audio processing instruments

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 95
www.i-maestro.org ver2.9, 20006-11-14

Screenshot of the simplified modular interactive audio processing framework

The finalised framework has the following basic features:

• Simplified selection and routing of audio processing modules in a 3 x 3 matrix including complete
saving and recall (persistence) of a given selection, routing and parameterisation.

• Access to a wide range of audio processing modules including VST plug-ins (see below)
• Easy parameterisation of the modules via intuitive representations (display and visualisation)
• Possibility of modulation by inbuilt unit generators as well as external controllers such as gestural

interfaces

For specifically supporting collaborative work the following features are envisaged:

• Synchronisation of the module selection, routing and parameterisation of two or more frameworks
over the network (P2P)

• Synchronisation of modulation sources and rhythmic aspects over the network (P2P, while one client
can be assigned as synchronisation master)

• Support of multiple control sources and interfaces also over network for collaborative playing

For the final version of the tool, the following inbuilt processing modules are planned.

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 96
www.i-maestro.org ver2.9, 20006-11-14

Inbuilt sound synthesis modules:

Name/description Parameters Inbuilt interface/display
wave-form generator choice of wave form

frequency
pulse width

single wave form display
sliders/knobs

soundfile player playing speed wave form display
sliders/knobs

granulator choice of source sound
duration of grains (min/max)
reading speed (min/max)

wave form display with
highlighted grain segments

additive synthesis frequency
levels of harmonics
phases of harmonics (opt.)

spectral (harmonics) display
wave-form display

simple FM synthesis FM carrier/modulator routing
carrier frequencies
frequency ratios
modulation factors

routing display
sliders/knobs

Inbuilt sound transformation modules:

Name/description Parameters Inbuilt interface/display
Granulation duration of grains (min/max)

reading speed (min/max)
wave form display with
highlighted grain segments

distortion by down-sampling quantization (in bits) quantized sine table
distortion by clipping amplification factor clipped wave-form
Harmoniser transposition (in cent) slider/knob
frequency Shifter frequency shift (in Hz) slider/knob
ring modulator modulation freq. (in Hz) slider/knob
source-filter cross-synthesis choice of source -
generalised cross-synthesis choice of source

mixing factors
2D mixing controller

spectral compressor/exciter threshold
ratio
gain

level translation curve
sliders/knobs

fixed recursive delay line delay time
feedback level

sliders/knobs

variable delay line (incl.
chorus/flanger)

modulation depth
modulation frequency

sliders/knobs

Filter filter type (LP, HP, BP etc.)
filter parameters

sliders/knobs
frequency responds

Reverb reverb time schematised room
Doppler effect max distance

source speed

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 97
www.i-maestro.org ver2.9, 20006-11-14

Inbuilt sound analysis/visualisation modules:

Name/description Display
wave form display wave form
Spectroscope frequency bands
Sonogram scrolling sonogram
pitch detection approx. note in piano notation

16.2 Synthesis control and synchronisation network protocol (IRCAM)

Max/MSP supports the Open Sound Control (OSC) protocol. Open Sound Control is a protocol for
communication among computers, sound synthesizers, and other multimedia devices that is optimized for
modern networking technology and has been used in many application areas. It is highly compatible with the
Max/MSP programming paradigm.

OSC is an open standard that has been widely adapted by and computer music community and the audio
software industry. It claims the following features:

• Open-ended, dynamic, URL-style symbolic naming scheme
• Numeric and symbolic arguments to messages
• Pattern matching language to specify multiple targets of a single message
• High resolution time tags
• "Bundles" of messages whose effects must occur simultaneously
• Query system to dynamically find out the capabilities of an OSC server and get documentation

A complete specification of the OSC protocol and the documentation of the IRCAM SDIF library and related
tools can be downloaded from the OSC home page3.

3 OSC home page: http://www.cnmat.berkeley.edu/OpenSoundControl/

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 98
www.i-maestro.org ver2.9, 20006-11-14

17 Acronyms

The following are some abbreviations in common use:

ADL Advanced Distributed Learning
CWS Cooperative Work Service

GUI Graphical User Interface is a method of interacting with a computer through a metaphor of
direct manipulation of graphical images and widgets in addition to text.

IEC The IEC is a similarly international organisation that "prepares and publishes international
standards for all electrical, electronic and related technologies."

IEEE LTSC
Within the IEEE, the Learning Technology Standards Committee (LTSC) is chartered by the
IEEE Computer Society Standards Activity Board to "develop accredited technical standards,
recommended practices, and guides for learning technology”

IMS

“Instructional Management Systems (IMS) project”, also sometimes referred to as “Global
Learning Consortium, Inc.”, IMS/GLC. The IMS Global Learning Consortium, Inc. (IMS)
develops and promotes the adoption of open technical specifications for interoperable learning
technology"

ISO The International Standard Organisation is a standardization body that is recognised
internationally, and was established under the auspices of the United Nations

LMS Learning Management System
LOM Learning Object Metadata" standard (IEEE 1484.12.1-2002)
OSC Open Sound Control
RTE Run Time Environment
SCO Sharable Content Object
SCORM ™ Sharable Content Object Reference Model

URI Uniform Resource Identifier, is a short string that identify resources in the web: documents,
images, downloadable files, services, electronic mailboxes, and other resources.

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 99
www.i-maestro.org ver2.9, 20006-11-14

18 Bibliography

• Advanced Distributed Learning (ADL), Sharable Content Object Reference Model (SCORM)
Content Aggregation Model, Version 1.3.2, 2006

• http://www.adlnet.gov/downloads/index.cfm?event=main.listing&categoryId=53

Overview:
• http://www.adlnet.gov/technologies/SCORM/index.cfm

MPEG-SMR:
• B. W. Pennycook, “Computer-Music Interfaces: A Survey”, ACM Computing Surveys, June 1985,

17(2):267-289.
• CANTATE project, Deliverable 3.3: Report on SMDL evaluation, WP3, 1994. http://projects.fnb.nl
• Capella, 2005, CAPXML: http://www.whc.de/capella.cfm
• CAPXML: http://www.whc.de/capella.cfm
• CUIDADO: Processing of Music and Mpeg7: http://www.ircam.fr/cuidad/
• D. A. Byrd, Music Notation by Computer, Department of Computer Science, UMI, Dissertation

Service, Indiana University, USA, http://www.umi.com, 1984
• D. Blostein, and H. S. Baird, “A Critical Survey of Music Image Analysis” in Structured Document

Image Analysis, (H. S. Baird and H. Bunke and K. Yamamoto, eds.), Springer Verlag, NewYork,
USA, 1992, pp. 405-434.

• D. Blostein, and L. Haken, “Justification of Printed Music”, Communications of the ACM, March
1991, 34(3):88-99.

• D. Crombie, D. Fuschi, N. Mitolo, P. Nesi, K. Ng, , and B. Ong, Bringing Music Industry into the
Interactive Multimedia Age, 1st AXMEDIS International Conference, Florence, Italy, 2005.

• E. Selfridge-Field (Ed.), Beyond MIDI - The Handbook of Musical Codes, The MIT Press, London,
UK, 1997.

• F. Pereira, and T. Ebrahimi (Eds.), The MEPG-4 Book, IMSC Press, 2002.
• Freehand: http://www.freehandsystems.com/
• G. M. Rader, “Creating Printed Music Automatically”, IEEE Computer, June 1996, pp.61-68.
• I-MAESTRO EC IST project, URL: http://www.i-maestro.net, http://www.i-maestro.org,

http://www.i-maestro.eu
• IMUTUS: http://www.exodus.gr/imutus/
• J. S. Gourlay, “A Language for Music Printing”, Communications of the ACM, May 1986,

29(5):388-401.
• K.C. Ng, (ed), Journal of New Music Research (JNMR) special issue on Multimedia Music and the

World Wide Web, 34(2), ISSN: 0929-8215, Routledge, 2005.
• M. Good, “MusicXML for Notation and Analysis”, In the Virtual Score Representation, Retrieval,

Restoration, (W. B. Hewlett and E. Selfridge-Field, eds.) MT: The MIT Press, Cambridge, 2001, pp.
113-124. http://www.recordare.com

• MOODS project. http://www.dsi.unifi.it/~moods
• MOODS project. http://www.dsi.unifi.it/~moods
• MPEG SMR AHG web page: http://www.interactivemusicnetwork.org/mpeg-ahg
• MUSICALIS: http://www.musicalis.fr/
• N. Mitolo, P. Nesi, and K. C. Ng (eds.), Proceedings of the 5th MUSICNETWORK Open

Workshop, Universität für Musik und darstellende Kunst Wien, Vienna, Austria, 2005.
• NIFF Consortium, “NIFF 6a: Notation Interchange File Format”, 1995.
• Notation, http://www.notation.com
• OPENDRAMA: http://www.iua.upf.es/mtg/opendrama/

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 100
www.i-maestro.org ver2.9, 20006-11-14

• P. Bellini , J. Barthelemy, I. Bruno, P. Nesi, and M. B. Spinu, “Multimedia Music Sharing among
Mediateques, Archives and Distribution to their attendees”, Journal on Applied Artificial
Intelligence, Taylor and Francis, 2003, http://www.wedelmusic.org .

• P. Bellini, and P. Nesi, “WEDELMUSIC FORMAT: An XML Music Notation Format for Emerging
Applications”, Proceedings of the 1st International Conference of Web Delivering of Music, IEEE
press, 23-24 November 2001, Florence, Italy, pp. 79-86.

• P. Bellini, Della Santa, R., Nesi, P. (2001). Automatic Formatting of Music Sheet. Proc. of the First
International Conference on WEB Delivering of Music, WEDELMUSIC-2001, IEEE Press, 23-24
November, Florence, Italy, pages 170-177.

• P. Bellini, F. Fioravanti, and P. Nesi, “Managing Music in Orchestras”, IEEE Computer, September
1999, pp. 26-34, http://www.dsi.unifi.it/~moods/.

• P. Bellini, I. Bruno, P. Nesi, “Automatic Formatting of Music Sheets through MILLA Rule-Based
Language and Engine”, under publication on Journal of New Music Research.

• P. Bellini, Nesi, P., Spinu, M. B. (2002). Cooperative Visual Manipulation of Music Notation. ACM
Transactions on Computer-Human Interaction, September, 9(3):194-237,

• P. Bellini, P. Nesi, G. Zoia, "Symbolic Music Representation in MPEG", IEEE Multimedia, IEEE
Computer Society press, ISSN 1070-986X, Vol. 12, N. 4, pp. 42-29, October-December 2005.

• P. Bellini, P. Nesi, G. Zoia, “Symbolic Music Representation in MPEG for new Multimedia
Applications”, IEEE Multimedia, 2005.

• R. B. Dannenberg, “A Brief Survey of Music Representation Issues, Techniques, and Systems”,
Computer Music Journal, 1993, 17(3):20-30.

• R. B. Dannenberg, “A Structure for Efficient Update, Incremental Redisplay and Undo in Graphical
Editors”, Software Practice and Experience, February 1990, 20(2):109-132.

• Sibelius Music Educational tools: http://www.sibelius.com/
• SMDL ISO/IEC, Standard Music Description Language. ISO/IEC DIS 10743, 1995.
• WEDELMUSIC: http://www.wedelmusic.org
• Yamaha tools: http://www.digitalmusicnotebook.com/home/

HP SCORM:
• http://www.adlnet.gov
• http://www.adlnet.org
• http://www.ieee.org
• http://www.imsglobal.org
• http://www.ariadne-eu.org
• http://ltsc.ieee.org/wg12/
• http://www.reload.ac.uk/scormplayer.html
• http://koala.dls.au.com/scorm/
• http://www.scormplayer.com/
• http://www.e-learningconsulting.com/products/scorm-visualizer.html
• http://www.adlnet.gov/downloads/index.cfm?event=main.listing&categoryId=53

DE5.1.1 – Model and Support for Cooperative Work and SMR for Music Education

I-MAESTRO project 101
www.i-maestro.org ver2.9, 20006-11-14

Overview:
• http://www.adlnet.gov/technologies/SCORM/index.cfm
• http://ltsc.ieee.org/wg12/
• Alliance of Remote Instructional Authoring & Distribution Networks for Europe (ARIADNE)

(http://www.ariadne-eu.org/)
• Aviation Industry CBT Committee (AICC) (http://www.aicc.org/)
• Institute of Electrical and Electronics Engineers (IEEE)
• Learning Technology Standards Committee (LTSC) (http://ltsc.ieee.org/)
• IMS Global Learning Consortium, Inc. (http://www.imsglobal.org/)
• http://www.cancore.ca/docs/intro_e-learning_standardization.html
• http://exelearning.org/?q=about
• http://www.docebolms.org/doceboCms/page/23/E_Learning_scorm_tutorial_samples_open_source.h

tml
• http://www.lsal.cmu.edu/lsal/expertise/projects/scorm/scormevolution/reportv1p02/report-

v1p02.html
• http://www.dotnetscorm.com/Home/tabid/36/Default.aspx

MAX Sources:
http://www.cycling74.com/download/ following Documents:

• AuthoringToolsApplicationGuidelines.pdf
• JavascriptInMax.pdf
• Jitter15Tutorial.pdf
• Max45ReferenceManual.pdf
• Max45TutorialsAndTopics.pdf
• MaxGettingStarted.pdf
• WhatsNewInMax/MSP455.pdf

SDIF Sources:

• Home page at IRCAM: http://www.ircam.fr/sdif/
• Project page at Berkeley: http://www.cnmat.berkeley.edu/SDIF/

FTM Sources:

• Home page: http://www.ircam.fr/ftm/

OSC Sources:

• Home page: http://www.cnmat.berkeley.edu/OpenSoundControl/
• Specification: http://www.cnmat.berkeley.edu/OpenSoundControl/OSC-spec.html
• Java library: http://www.illposed.com/software/javaosc.html
• OSCpack C++ library: http://www.audiomulch.com/~rossb/code/oscpack/

	1 Executive Summary and Report Scope
	2 General Overview of I-MAESTRO Architecture
	2.1 I-MAESTRO Client General Overview

	3 Integrated Music Score Editor and Viewer Tool
	3.1 MPEG-4 Model
	3.2 MPEG SMR and Multimedia

	4 General Aspects of Cooperative Support for Music Training
	5 Computer Supported Cooperative Work Service
	5.1 Class Diagram of Computer Supported Cooperative Work Service
	5.2 CSCW Service
	5.3 Message Log Service
	5.4 Error Log Service

	6 P2P Service
	6.1 Class Diagram of P2P Service
	6.2 Send Message Service
	6.3 Receive Message Service
	6.4 Send File Service
	6.5 Receive File Service
	6.6 Discovery Service
	6.7 Synchronisation Service

	7 Client Manager: Starting Lessons/Workgroups
	7.1 Class Diagram of ClientManager and its services
	7.2 Distribute Lesson Service
	7.3 Cooperative Session Data

	8 Client Manager: Monitoring and Controlling Cooperative work
	8.1 Viewing and checking the log messages
	8.2 Viewing and checking the Error messages

	9 Cooperative Music Editor for SMR
	9.1 Stand Alone SMR Music Editor
	9.1.1 List of available functionalities

	9.2 Stand Alone SMR Music Players MPEG
	9.2.1 List of available functionalities

	9.3 Cooperative Music Editor for SMR
	9.4 SMR Music Player into MPEG4
	9.4.1 Integration of SMR in the MPEG-4 player
	9.4.2 Authoring an MPEG-4 SMR application

	10 MAX and the Music Editing Service (MED) and the Music Execution Service (MEX)
	10.1 Max/MSP Data Types
	10.2 Max/MSP Cooperative Lesson

	11 MED: SMR Music Editor General Controls for MAX
	11.1 Inlets for set methods
	11.2 Inlets for get methods
	11.3 Inlets for other methods
	11.4 Examples of MED in Max/MSP for Music General Controls

	12 MED: SMR Music Editor, Music Notation Access Support for MAX
	12.1 Score navigation methods
	12.2 Measure Info
	12.3 Note Info
	12.4 Rest info
	
	12.5 Chord info
	12.6 Refrain info
	

	12.7 KeyChange info
	12.8 ClefChange info
	12.9 Error codes description
	12.10 MED in Max/MSP for Music Editing
	12.11 Examples of MED in Max/MSP for Music Notation Access

	13 MEX: Music Execution Service for Cooperative Work for MAX
	13.1 Time Critical Commands
	13.2 Generic Messages
	13.3 CSCW Specific Controls
	13.4 Examples of MEX for Cooperative Work among MAX Tools

	14 Score-following integration model (IRCAM)
	14.1 Mutual position control between the MED and the score-follower
	14.2 Aligned rendering of performance data

	15 Models for non-symbolic performance data (IRCAM)
	16 Models for collaborative interactive audio processing (IRCAM)
	16.1 Simplified modular interactive audio processing framework
	16.2 Synthesis control and synchronisation network protocol (IRCAM)

	17 Acronyms
	18 Bibliography

