

Cloud Simulator,
Design, User Manual and Test

Versione 0.1
Data 16/09/2014

D3.27.3 - Cloud Simulator, design, user manual and test

Informazioni sul documento
ID Deliverable 3.27.3

Titolo Deliverable Cloud Simulator, design, user manual and test

ID Attività 3.5

N. Versione / Revisione 0.1

Natura: Bozza / Definitivo Definitivo

Partner responsabile UNIFI DISIT

Distribuzione: Riservato / Pubblico Pubblico

Riferimenti Autore DISIT lab

Data redazione 16-09-2014

Riferimenti revisore Paolo Nesi

Data revisione 16-09-2014

Riferimenti soggetto che approva Paolo Nesi

Data approvazione e consegna 16-09-2014

Controllo delle revisioni
Oggetto Numero Data

Final version 0.1 16-09-2014

Nota di riservatezza
Il presente documento sarà utilizzato esclusivamente ai fini del progetto ICARO, ha carattere
riservato e non potrà quindi essere divulgato se non in seguito ad esplicita autorizzazione scritta da
parte dell’ATS, salvo il caso in cui di richieste di ottemperare ad obblighi di legge o a richieste di
pubbliche autorità.

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 2 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

Index
1. Cloud Simulator Requirements ... 7

2. Cloud Simulator Domain Model .. 7

3. Architecture ... 10

3.1 Viewer ... 10

3.2 Controller... 12

3.3 DAO ... 13

3.4 Simulator ... 16

4. Sequence Diagram ... 17

4.1 Composite Component in Icaro Cloud Simulator .. 17

4.2 Add a new panel to “Create a DataCenter” web page .. 18

4.3 Create a New DataCenter XML File ... 21

4.4 Send the DataCenter XML File to KB ... 23

4.5 Fetch information of a DataCenter ... 24

5. Simulation .. 29

5.1 Real-time simulation ... 29

5.2 Fast simulation .. 31

6. JSF Framework ... 34

6.1 Facelets .. 35

7. User guide.. 37

7.1 Home ... 37

7.2 Create a DataCenter .. 37

7.2.1 Host Machine .. 38

7.2.1.1 Monitor Info .. 40

7.2.1.2 Local Network .. 41

7.2.1.3 Local Storage ... 42

7.2.1.4 Shared Storage .. 43

7.2.2 External Storage, Firewall, Router ... 43

7.2.2.1 Shared Storage .. 44

7.2.3 Create XML .. 45

7.2.3.1 Exception in XML file generation ... 47

7.3 Create a BusinessConfiguration .. 49

7.3.1 Choose DataCenter.. 49

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 3 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

7.3.2 Create Virtual Machine ... 50

7.3.3 IcaroApplication .. 54

7.3.3.1 Icaro Service .. 55

7.3.3.2 SLAgreement, SLObjective, SLAction e SLMetric ... 56

7.3.3.3 Creator ... 58

7.3.4 Create XML .. 59

7.3.4.1 Exception in XML file generation ... 59

7.3.4.2 Exception in XML file insertion to KB .. 59

7.4 Create ServiceMetrics ... 60

7.4.1 Create XML .. 61

7.5 Simulate DataCenter ... 61

7.5.1 Real Time Simulation ... 62

7.5.2 Fast Simulation .. 63

7.6 Analyze Metrics ... 67

8. References ... 68

Figure Index
Figure 1 – Domain model under Icaro Cloud Simulator .. 8
Figure 2 – Ontology under Knowledge Base ... 9
Figure 3 – Viewer class architecture .. 11
Figure 4 – Class DataCenerViewer and its methods .. 11
Figure 5 – Controller class architecture ... 13
Figure 6 – Two examples of controller classes .. 13
Figure 7 – DAO classes architecture .. 14
Figure 8 – Class DataCenerViewer and its methods .. 15
Figure 9 – Simulator Classes Architecture ... 16
Figure 10 – Example of one method containing the values to fill the attributes of a CC 18
Figure 11 – Sequence diagram that show how to add a panel to the dataCenter form 20
Figure 12 – Sequence diagram that show how the XML file of a DataCenter is create 22
Figure 13 – Example of one method that converts an object to an XML element (the code is
simplified) .. 23
Figure 14 – Sequence diagram that show how the XML file of a DataCenter is sent to the KB
 .. 25
Figure 15 – Comparison between “get” and “fetch” methods to retrieve a DataCenter by the
URI ... 26
Figure 16 – Sequence diagram that show how one DataCenter is fetched from the KB 27
Figure 17 – Sequence diagram that shows how is performed the real-time simulation 30
Figure 18 - Sequence diagram that shows how is performed the fast simulation 32
Figure 19 – Model-2 structure of a typical J2EE application .. 34
Figure 20 – Model-2 structure with JSF... 35
Figure 21 – Operations that is possible to execute with the Icaro Cloud Simulator 37
Figure 22 – Principal page of the dataCenter creation ... 37

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 4 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

Figure 23 – Entity that is possible to add in a dataCenter .. 38
Figure 24 –Creation form of a hostMachine group .. 40
Figure 25 – Creation form of a MonitorInfo entity .. 41
Figure 26 – Creation form of a LocalNetwork entity ... 42
Figure 27 – Creation form of a LocalStorage entity .. 42
Figure 28 – Single field on which insert URI of a SharedStorage ... 43
Figure 29 – Creation forms of ExternalStorage, Firewall, and Router groups 44
Figure 30 – Creation form of a SharedStorage entity .. 45
Figure 31 – Active CreateXML button ... 45
Figure 32 – Page of creation of XML file relative to a dataCenter entity 46
Figure 33 – Form for the sending of a new dataCenter to KB ... 46
Figure 34 – Message of successful sending to KB of a new DataCenter 47
Figure 35 – Message of unsuccessful sending to KB of a new DataCenter 47
Figure 36 – Exception generated if a localNetwork does not have enough IP addresses 48
Figure 37 – Exception generated if two localNetwork with same URI and different
information are inserted ... 48
Figure 38 – Exception generated if a SharedStorage associated to a HostMachine it is not
created in one ExternalStorage ... 48
Figure 39 – Insertion of the IP Address and the port of a working KB 49
Figure 40 – List of DataCenter contained in the KB achievable at 192.168.0.106:8080 49
Figure 41 – Creation form of a VirtualMachine group .. 50
Figure 42 – Entities that it is possible to add on a virtualMachine .. 52
Figure 43 – Principal creation page of a Business Configuration .. 53
Figure 44 – Creation form of an IcaroApplication entity ... 54
Figure 45 – Entities that is possible to add on an Icaro Application .. 54
Figure 46 – Creation form of an IcaroService entity ... 55
Figure 47 – Entities that is possible to add-on an Icaro Service .. 56
Figure 48 – Creation form of SLAgreement relative entities ... 57
Figure 49 – Creation form of a Creator entity .. 58
Figure 50 – Exception generated if two creations with same URI and different information are
inserted ... 59
Figure 51 – KB message to notify the missing icaroService necessary to XLMS
icaroApplication ... 60
Figure 52 – Creation form of a ServiceMetric entity ... 60
Figure 53 – Button to choose the simulation to perform.. 62
Figure 54 – Page of the real-time simulation ... 62
Figure 55 – DataCenter simulation with graphs of: CPU, Memory and Storage 62
Figure 56 – Simulation page with form to add VirtualMachines ... 63
Figure 57 – Simulation page with form to add BusinessConfiguration 63
Figure 58 – Alert message shows when there are not real data collected for fast simulation .. 64
Figure 59 – Web page where it is possible to see the real data collected and manage the
collection operations .. 64
Figure 60 – Example of a chart relative to real data collected ... 65
Figure 61 – In this page it is possible to associate one pattern to each VirtualMachine to
simulate .. 65
Figure 62 – Charts of the real data collected at the same time from all resources of a one
machine .. 66
Figure 63 – Page of fast simulation where it is possible to see the log of simulated entity 66
Figure 64 – Web page that allow to analyze the metrics in the SM ... 67

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 5 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

Legenda Acronimi e sigle
Acronimo /

Sigla
Dettaglio

SM Supervisor & Monitor

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 6 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

1. Cloud Simulator Requirements
• R1: The system should allow simple and fast generation of all entities connected to a data

center or a business configuration. It should be possible, therefore, the insertion of information
related to these entities and, with these data, the generation of an XML file described
syntactically by the schema provided by KB.

• R2: The system should allow simple and fast generation of entities related to ServiceMetric, to
consent study of other tools that analyze the KB.

• R3: For all entities generated as XML, the system should allow saving files in local (in the device
that is used to access the system). Furthermore, it should be possible sending the XML file to KB
in order to make information persistent.

• R4: Business configurations should be created over an existing data center (contained in KB),
that is, the system should allow a choice of one data center contained in the KB, over which to
generate a business configuration.

• R5: The system should allow analysis of metrics, which are contained in KB and are associated
with host and virtual machines.

• R6: The system should allow the collection of data related to real working Host Machines. From
these data should be extracted patterns to obtain models of workload for using them during
simulation.

• R7: The system should provide two types of simulation
o A fast simulation in which is possible to select entities (host and virtual machine) that

are to be simulated and to which should be possible associate one of the models
generated at point R6.

o Simulated data must be written in an RRD file and must be sent to NAGIOS server, so
that another tool can calculate on simulated data, as well as real data, the High Level
Metrics to save in KB.

o A real-time simulation in which is possible to generate new patterns from those
calculated at point R6. The user should be capable to modify and to add entities to
simulated data center, for example, with the addition of new virtual machines. These
changes are necessary for analyzing workload generated on the real data center from
such modifications.

2. Cloud Simulator Domain Model
The domain model used by this cloud simulator is based on the ontology under the KB. For this
reason, many entities are similar, if not equal, to those contained on KB, except for few entities that
have been created to simplify development of the simulator.

In detail the classes that begin with word Group are used to take the data inserted by a user on the
forms and with these to create a determinate number (indicated by a user on the forms) of an object
whose name is indicated by the rest of the name of the creator class eliminating the word Group (i.e.
GroupHostMachine is the class responsible to create object of class HostMachine). While the
ontology is represented (Figure 2) in hierarchical schema, the domain model (Figure 1) highlights the
associations from the classes. A very important association to note is one that associates the
VirtualMachine class to IcaroService class: with this association is possible to connect the part of the
ontology/domain model describing business configuration to part describing data center. This
association allows connection from perspective of the virtual things to perspective of the physical
things.

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 7 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

Figure 1 – Domain model under Icaro Cloud Simulator

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 8 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

Figure 2 – Ontology under Knowledge Base

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 9 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

3. Architecture
In this chapter is described the architecture of classes belonging to Icaro Cloud Simulator.

The framework JSF was used (see chapter 7) to develop this system because it allows:

• A separation between the application logic and the presentation layer
• To write the system with Java and so it is possible to find some useful library to perform

operations required by the tool
• Simple develop of the web interface with reusable component called Composite Component

(https://docs.oracle.com/javaee/7/tutorial/jsf-advanced-cc.htm#GKHXA)
• Use of the Expression Language (https://docs.oracle.com/javaee/7/tutorial/jsf-

el.htm#GJDDD) , which provides an important mechanism for enabling the presentation layer
(web pages) to communicate with the application logic.

• Use of the Converters and Validators in every Input Text of the web pages
(https://docs.oracle.com/javaee/7/tutorial/jsf-page-core.htm#GJCUT)

To render this description as simple as possible classes are grouped by functions that they
implement. The domain model is not described another time: see chapter 3 for the description.

3.1 Viewer
Classes with Viewer suffix are responsible to interact with web pages adding and removing
everything is visible on the web application such as buttons, panels and input text.

Icaro Cloud Simulator allows insertion of information about entities described in the ontology. This is
achieved via panel containing form where users can insert information. On the web page, where is
possible to create a data center, each panel represents a group of entities that are indicated by the
name of the panel: for example, a panel with name “#1 groupHostMachine” allow defining
information about a group of host machines that have all the same features (CPU, RAM, OS, etc.).
The viewer classes allow the addition and the removal of panels for insert more information or
delete them if they are incorrect.

These classes are obviously associated to classes that are responsible for the control: those with
suffix Controller. In fact, any information inserted in the panel is passed to these classes to generate
the XML file, after a check on the data entered.

As already mentioned, in each viewer class are present methods that add panels. Each of this
method has a particular name, as it’s possible to see in Figure 4, formed by the prefix addPanel, the
name of the entity associated with that panel and the name of the entity associated with parent
panel. If an entity is associated with the principal panel the name of parent panel is null and it is not
inserted on the name. For example, GroupHostMachine is a principal entity and the method that can
add a panel for this entity is addPanelGroupMachine(). Instead, MonitorInfo is a secondary entity and
must be specified in which panel it must be inserted, this information can be extracted from the
parameters passed to function: the object htmlPanelParent that represents, as the name suggests,
the parent panel on which the new panel must be added and the index of it.

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 10 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

https://docs.oracle.com/javaee/7/tutorial/jsf-advanced-cc.htm%23GKHXA
https://docs.oracle.com/javaee/7/tutorial/jsf-el.htm%23GJDDD
https://docs.oracle.com/javaee/7/tutorial/jsf-el.htm%23GJDDD
https://docs.oracle.com/javaee/7/tutorial/jsf-page-core.htm%23GJCUT

D3.27.3 - Cloud Simulator, design, user manual and test

Figure 3 – Viewer class architecture

Similarly, also the methods that remove panels are created with the same rule: prefix removePanel,
the name of the entity associated with that panel and the name of the entity associated with parent
panel, from which will be removed the chosen panel. In this case, however, the parameters to pass
are more than two: the id of parent panel, the id of panel to remove and the respective indices.
When a panel is removed the methods, which delete it, perform the removal of all children of that
panel, avoiding reference to a nonexistent panel.

Figure 4 – Class DataCenerViewer and its methods
iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 11 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

Each panel, that is possible to add at the web page, is generated using the composite component
templates that are possible to define in a simple XHTML file. In Icaro Cloud Simulator is saved one
composite component for each level of panels that it should be possible to create in a determined
web page. For example, on the web page of creation of data center there are two levels of panel, the
first level is represented by panels associated with entities that start with prefix Group and the
second level is represented by panels associated with entities MonitorInfo and LocalNetwork. So, in
ICS there is a folder called datacenter containing two composite components called respectively
firstPanel.xhtml and secondPanel.xhtml.

In a composite component is possible to define the structure of the component and the attributes
that should be used to add it to a web page. The class CCUtility associated to all viewer classes search
in the repository classes the methods that can fill attributes of composite component (see section
5.1).

This architecture is designed to make the composite component as flexible as possible: in each
composite component is possible to add a no predetermined number of input text of each type
(input text for IP, input text for email, etc.) simply defines methods, in the repository class, that
return list of input text and then, to associate, this list to relative attribute in the composite
component. Not all attributes are mandatory, so if an entity does not require a type of input text just
does not create the method in the repository class.

Differences between Dynamic and Static repository class depend on when the lists of attributes are
created: static repository can create the lists at every time because they are predefined in the code
and dynamic repository creates the lists after a precise operation and at run-time.

This solution is necessary to make composite components dynamic. If the panels must be fixed on
the web page and if they are associated each to one entity, the composite components can be
inserted with a simple tag definition in the principal xhtml file.

3.2 Controller
Classes with Controller suffix are responsible to interact with classes belonging to the domain, in a
manner to create the objects associated with entities inserted from a user on the web pages:
obviously before is executed a check on the inserted information. Once these objects are created, it
is possible to write an XML file to save information that is in the objects: sending it directly to KB via
RestAPI or downloading it on the computer. Furthermore, these classes must be able to retrieve
information about entities that are requested by a user from the KB and they perform this operation
using DAO classes present on the system.

These classes are important because the other classes that implement different functions must
access them to catch the information about entities. For example, the viewer classes must access
their respective controller to take object associated to view and it is the same for the simulator
classes described in the following sections.

An example about methods that user can find in the controller classes is possible to see it in Figure 6.

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 12 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

Figure 5 – Controller class architecture

There are many differences between the classes in Figure 6. These differences are due to the
different type of information that a user can insert on web application.

In fact, when a user would like to create a DataCenter he can insert information about groups of
entities, such as ExternalStorage, Router, Firewall and HostMachine and for this reason, in the class
DataCenterController are present methods to create each entity from information about the group;
whereas is possible to add a BusinessConfiguration only in an existing DataCenter and therefore it is
necessary the method loadDataCenter which allows retrieving information about DataCenter salved
on KB. At last the method called simulate is responsible to start a simulation.

Figure 6 – Two examples of controller classes

3.3 DAO
Classes with DAO suffix are responsible to retrieve entities from KB. In these classes there are not
methods that allow adding entities in the KB, because the addition of entities to KB is merely an
operation of XML file generation and it is performed by the controller classes. In the DAO classes
there are methods that consent to interrogate the KB with SPARQL query and getting desired
information about entities.

In Figure 7 is possible to see the associations between DAO classes. Starting to DataCenterDAO, this
class, whose methods are shown in Figure 8, can access only to DataCenter entity information or can
access to information about HostMachine entities. The first access is a simple SPARQL query,
iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 13 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

whereas the second access is formed by the first simple SPARQL query followed by other queries that
attempt to retrieve information about other entities and in this case about HostMachines. Analyzing
methods present in each class is possible to understand because there is need of all the associations
in Figure 7.

Each DAO class has similar methods to DataCenterDAO. In fact, in each class there is a method, such
as getURIDataCenterListByKB, that allow retrieving a list of URI of desired entities present in the
“parent entity”. For example, the “parent entity” of a HostMachine is the DataCenter and in the class
HostMachineDAO there is the method getURIHostMachineListbyDataCenter.

Figure 7 – DAO classes architecture

There is, also, a method to retrieve the list of objects, contained in a parent entities, instead that only
the URI: for each entity are retrieved simple information as name and identifier and are not retrieved
information about associated entities. So this method is useful when a user does not want to retrieve

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 14 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

information about a single entity contained in the list that is returned, but he would like to retrieve
only the information which is faster to retrieve.

The previous method uses another method present in DAO classes: the method that retrieves simple
information about a single entity and returns an object instead a list of objects.

In the end, there is a method that starts with the prefix fetch and that retrieves all the possible
information, present in the KB, associated with desired entity. This method can explain the visible
associations in Figure 7, in fact, when the information about a DataCenter is requested, the class
DataCenterDAO retrieve simple information about DataCenter entity and then it calls method to
fetch information on class HostMachineDAO. In turn, HostMachineDAO retrieve simple information
about HostMachine entity and then it calls method to fetch information on class VirtualMachineDAO
and so on.

Figure 8 – Class DataCenerViewer and its methods

There are classes that have more/fewer than 4 methods.

Those that have more methods, such a UserDAO or IcaroServiceDAO, it is due to the structure of
ontology, in fact, the entities User and IcaroService can be considered in more than one parent
entities: User can be part of BusinessConfiguration, IcaroApplication or IcaroTenant and IcaroService
can be part of IcaroApplication or VirtualMachine. In these classes there are two additional methods
for each parent entity more first.

Those that have fewer methods, such a MonitorInfoDAO or NetworkAdapterDAO, it is due in the
same way to the structure of ontology, in fact, the entities MonitorInfo and NetworkAdapter have
not a visible URI and cannot be considered as stand-alone entities, rather these entities can be
retrieved only knowing the parent entity that contains them. In these classes there are not the
methods using the URI as parameter.

When a query response is returned it is in XML SPARQL form and it is necessary a converter utility to
perform conversion from XML to object. In the system the converter utility is contained in the class
whose name start with the prefix XmlSparqlTo and the rest indicates the entity converted by the
class.

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 15 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

3.4 Simulator
The web application allows simulating the behavior of a dataCenter in two ways: a fast simulation
and a real-time simulation. At the moment, the difference between the simulations is not merely on
the time of the simulation but also on how the values are generated. In fact, in the real-time
simulation the values are randomly generated at the level of IcaroService and they are added to
make the workload of the virtualMachine where the IcaroServices run. In the fast simulation, in a
different way, the values are replicated by the past values collected from real hostMachines present
in a real dataCenter. These differences explain the architecture in

Figure 9.

The left part of the

Figure 9 represents the classes that perform the fast simulation: there are a central class
DataCenterSimulationFaster that is responsible of the simulation, a NagiosServer class that contains
information about the host where the simulated values will be sent and a DataCenter class that
represents the data center that must be simulated.

Figure 9 – Simulator Classes Architecture

The right part of the

Figure 9 represents the classes that perform the real-time simulation: there are a central class
DataCenterSimulationRealTime that is responsible to start (they are runnable classes) one
HostMachineSimulator for each host machine presents on the data center that must be simulated, a
HostMachineSimulator class that is responsible to start one VirtualMachineSimulator for each virtual
machine presents on the data center that must be simulated and so on until the
IcaroServiceSimulator class that is responsible to randomly generate the workload values.
Furthermore, there are a DataCenterSimulatorMonitor class that is responsible to update the
CartesianChartModel, which class is associated to chart viewed from the user and a
DataCenterMetricSender class, whose purpose is to send the metrics calculated on the generated
values to the KB. In future the metrics must be sent to the NagiosServer as the metrics generated by
the fast simulation.

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 16 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

4. Sequence Diagram
In this chapter are reported the most significant sequence diagrams, to show how the classes,
described in the previous chapters, and the web pages interact with each other.

4.1 Composite Component in Icaro Cloud Simulator
In the JSF framework (Chapter 7) it is possible to create a Composite Component (CC) so that it is
feasible to have a new desired tag representing an object that is frequently used in the developed
system. In IcaroCloudSimulator there are CCs for the panels that are added on the web pages of
creation of DataCenter, BusinessConfiguration and VirtualMachine. The CCs are organized in the
folder WebContent/resources/panelComponent that contains one folder for each page that uses the
CCs. In each of these folders there is one CC for every level of panels that must be in the three web
pages of creation: in the DataCenter and VirtualMachine web page the maximum level of panel is
two and therefore there are two CCs in the sub-folders dataCenter and virtualMachine and in the
businessConfiguration web page the maximum level of panel is five and therefore there are five CCs
in the sub-folder businessConfiguration.

To add a CC in a web page the simplest way is to insert the associated tag directly on the page, but
this is a static insertion and in the IcaroCloudSimulator the insertion must be dynamic and it must
leave to user the control on how many panels there are in a determined moment on the current web
page. To do this, the CC must be inserted dynamically through the java classes and not directly on the
xhtml pages and it can be done with insertion of information about: attributes to set in the CC and
the filename of the file where the CC is saved. If a panel of first level is taken as example the
attributes that can be inserted are:

• idCC – indicates the id to associate at the whole CC
• indexPanel – indicates the index that has the panel in the CC. It is necessary to

remove the correct parent panel and to add o to remove a child panel.
• titlePanel – the title that is shown on the header of the panel
• removeAction – method that performs the removal of the whole CC
• listInputIP – list of inputText that allow inserting and checks address IP correctness
• listInputDate – list of inputText that allow inserting and checks date correctness
• listInputEmail – list of inputText that allow inserting and checks email correctness
• listInputText – list of inputText that allow inserting text
• listInputNumber – list of inputText that allow inserting number
• listInputSelectOneMenu – list of selectOneMenu that allow selecting a value from a

menu
• listInputSelectOneMenuDynamic – list of selectOneMenu that allow selecting a

value from a menu (difference to previous is how the menu is filled)
• listDropDownMenu – list of DropDownMenu that should allow the choice of entities

to add at the entity associated with the current CC
• objectLinkToPanel – indicates the object that must be filled with the information

inserted in the current panel

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 17 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

• bindingToBody – creates a binding between an object in the Viewer classes and the

current CC to add new child

To avoid the creation of one method for each panel that can be inserted in the web page and to
avoid method duplication due to possibility that one panel can be added to two or more different
parent panel, the creation of CC is performed as described in section 5.2.

Note that StaticAttributeRepository and DinamicAttributeRepository classes are created to group all
the possible values for the attributes in one single point: to maintain and to change them more
efficiently.

public List<InputText> getGroupHostMachineListInputText() {
 return new ArrayList<InputText>(Arrays.asList(
 new InputTextHtml5("prefixName", "hasPrefixName", "Insert prefixName of host"),
 new InputTextHtml5("prefixIdentifier","hasPrefixIdentifier", "Insert prefixIdentifier of host"),
 new InputTextHtml5("CPUType", "hasCPUType", "Insert the type (Model) of each CPU in the host"),
 new InputTextHtml5("domain", "isInDomain", "Insert domain of host"),
 new InputTextHtml5("username", "hasAuthUserName", "Insert username of host"),
 new InputTextHtml5("password", "hasAuthUserPassword", "Insert password of host")));
 }

Figure 10 – Example of one method containing the values to fill the attributes of a CC

In Figure 10 it is possible to see an example of a method contained in the StaticAttributeRepository
class. This method is responsible to create the list of inputText (that accept every type of text) that
must be present in the panel of the entity GroupHostMachine. InputTextHtml5 is a class that is useful
to fill the attributes of a CC representing a Bootstrap style InputText contained in the panel. For this
class the first string is the label that must have the InputText, the second string is the name of the
field contained in the object indicates by the objectLinkToPanel that must be filled with the value
inserted in this InputText and the last string is the placeholder that is shown if nothing is inserted in
the InputText.

4.2 Add a new panel to “Create a DataCenter” web page
The sequence diagram in Figure 11 is an example that represents how it is possible to add a new
panel in an existing form (in this case a dataCenter form) and it shows how the methods of a viewer
class work to perform this operation. Furthermore, the few operations, that must be performed each
time that the user changes page, are shown.

The operation starts when the user click the link Create a DataCenter on the page home.jsf and he is
redirected on the page dataCenter.jsf. This page at the generation of the event preRenderView calls
two methods of the Navigator class: beginConversation() and goToDataCenter().

The first method allows starting a new conversation to keep the beans (declared to be
ConversationScope https://docs.oracle.com/javaee/7/tutorial/cdi-basic008.htm#GJBBK) alive until
the conversation is not closed.

The second method simply sets a Boolean variable to true and a string variable to Create a
DataCenter: these variables are used in the web page to show or to hide buttons and links based on

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 18 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

https://docs.oracle.com/javaee/7/tutorial/cdi-basic008.htm%23GJBBK

D3.27.3 - Cloud Simulator, design, user manual and test

which web page is shown at the user (Boolean variable) and to set the proper title on the navigation
bar (String variable).

The new page is loaded and the user can choose in the drop down menu shown in Figure 23, what is
the entity that he wants to add at the dataCenter. Assuming that the user click to add a HostMachine
panel, system calls the AddPanelGroupHostMachine method on the class DataCenterViewer.

In this method there is a call to method setFirstPanel of CCUtility class that needs as parameters:

• indexPanel – The index of panel that the system will add at the end of this operation
• panelDataCenterBody – The parent panel where the new panel will be added
• “groupHostMachine” – The name of the entity associated to the new panel
• “dataCenter” – The name of the principal entity associated with the current web page

The CCUtility class is so called because it is useful to fill the attributes of the CCs and to add it in the
current web page. In fact, once that the method setFirstPanel is called this creates a map that
associates the name of an attribute contained in the CC to the value that the attribute must have. To
fill the map, the method checks, on the class StaticAttributesRepository, the existence of some
method containing the name of entity associated to the panel that must be added. The methods in
StaticAttributeRepository class are named in such a way that it is possible to simply associate them to
the attributes of the CCs (see Figure 10). If the method exists none exception is generated and the
name of the method is associated with the correct attribute presents in the CC.

For example, in the stage of filling the attributes of the CC of groupHostMachinePanel, the method
setFirstPanel (through the method setDefaultAttributes that in turn uses the method
setOneStaticAttribute) checks if there is a method named getGroupHostMachineListInputText in the
class StaticAttributeRepository: as it is possible to see in Figure 10 this method exists and its name is
inserted in the map associated to the listInputText attribute.

In Figure 11 it is possible to see the interactions between the classes and the control operations
performed: at first for the attribute listDropDownMenu then for all the attributes whose name starts
with listInput, before those that are in the StaticAttributesRepository and after those that are in the
DynamicAttributesRepository. Once the map is filled the method includeCompositeComponent is
called and it is responsible to retrieve the file xhtml containing the CC, to fill the attributes in the CC
with the values contained in the map and to add the CC created in the parent panel.

At the end of this chain of operations and calls the DataCenterViewer class checks if all panels,
necessary to create a DataCenter XML file, are inserted in the web page with the method
controlForButtonCreateXMLand in any case the web page is refreshed to show the new panel to the
user.

If the control succeeds then the necessary panels are inserted and the button CreateXML is enabled
to allow the user to create the XML file with the inserted information. The operations to create the
XML file are described in the next section.

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 19 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

Figure 11 – Sequence diagram that show how to add a panel to the dataCenter form

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 20 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

4.3 Create a New DataCenter XML File
In the Figure 12 there is the sequence diagram that explains the operations that must be performed
to create correctly the XML file of a DataCenter.

As first operation the user must press the button CreateXML after he inserted the minimum
information to enable the button (without this basic information, the XML file does not pass the
control against the XML Schema).

When the button is pressed the system calls the createDataCenterXML method (in the
DataCenterController class) which, in turn, check with the method controlInputConsistency if there is
a possible inconsistency between a SharedStorage URI inserted in the form of a HostMachine group
and the relative entity SharedStorage that must be inserted in the form of an ExternalStorage group.
If there is an inconsistency, then a message is shown to the user to inform him of the error, else the
method createDataCenterXML continues with the other operations.

The next operation is performed by the method createDataCenter which, with the information
contained in the form filled by the user, creates the objects relative to the entities indicated in the
form: if in the form the user has decided to have 1000 HostMachines then in this method 1000
objects of the class HostMachine are created and they are associated to the correct DataCenter
object which is also created from this method.

These objects, which are created by the last operation, are reachable from the DataCenter object
containing all of them and, for this reason, this last object is passed to the createDataCenterXmlRdf
method that is responsible to create the XML RDF file: this method is in the utility class called
XmlRdfCreator.

The method createDataCenterXmlRdf as first step creates the object documentXmlRdf to which will
be appended elements created later: the element RDF is added at the beginning because it contains
the root tag (<rdf:RDF>) and the namespace which will be used by the following elements. After the
rdfElement are added the elements relative to the objects contained in the DataCenter object.

The creation of the element DataCenter is different to the other elements: the method
createDataCenterElement of the DataCenterToXmlRdf class inserts in the element only the
information that can be represented as a string; in this case the name, the identifier and the URI. The
other information that requires more than one row in the DataCenter element, as the information
about the HostMachine, the ExternalStorage, the Firewall and so on, is inserted with calls to
create[nameEntity]Element methods contained in the [nameEntity]ToXmlRdf class where nameEntity
can be: ExternalStorage, Firewall, Router, LocalNetwork and HostMachine. In each of these methods
is created an element with the information that can be represented as a string and the information
relative to other sub-entities contained in the considered entity: for example in the method
createHostMachineElement of the class HostMachineToXmlRdf are inserted in the HostMachine tag:
the information that can be represented as a string (CPU, Memory, username, etc…) and the
information about entities as MonitorInfo and NetworkAdapter. To perform the insertion of these
last entities, in the method createHostMachineElement are called the methods
createMonitorInfoElement and createNetworkAdapterElement that perform insertion as the method
createHostMachineElement.

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 21 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

Figure 12 – Sequence diagram that show how the XML file of a DataCenter is create

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 22 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

In the Figure 13 there is one example of the methods that create XML Element. In this case the code
is cleaned from the code that is not necessary to explain what operations are performed by these
methods. As mentioned there is a part in the method where is appended the information that can be
represented as a string such as the name and the identifier of the considered entity and there is a
part where are appended other entities calling the method associated to them, in this case the
MonitorInfo entity. The order, of insertion of the information, is performed as indicated in the XML
Schema, so it is possible have elements of different type alternated between them.

public static Element createFirewallElement(final Namespace nameSpace, final Document documentParent, final Firewall firewall) {

 Element firewallElement = documentParent.createElementNS(nameSpace.getURI(), nameSpace.getPrefix() + ":Firewall");
 firewallElement.setAttributeNS(NameSpaceRepository.RDF.getURI(), NameSpaceRepository.RDF.getPrefix() + ":about", firewall.getUri());
 firewallElement.appendChild(XmlUtility.createSimpleTextElement(nameSpace, documentParent, "hasName", firewall.getHasName()));
 firewallElement.appendChild(XmlUtility.createSimpleTextElement(nameSpace, documentParent, "hasIdentifier", firewall.getHasIdentifier()));
 …
 Element hasMonitorInfoElement = documentParent.createElementNS(nameSpace.getURI(), nameSpace.getPrefix() + ":hasMonitorInfo");
 for (MonitorInfo monitorInfo : firewall.getHasMonitorInfoList()) {
 if (monitorInfo != null) {
 hasMonitorInfoElement.appendChild(MonitorInfoToXmlRdf.createMonitorInfoElement(nameSpace, documentParent, monitorInfo));
 }
 }
 return firewallElement;
}

Figure 13 – Example of one method that converts an object to an XML element (the code is simplified)

It is called the method finishAndCleanDocumentXmlRdf, when all the objects are transformed in XML
element and added to the XML RDF document. The method is responsible to add the header of the
XML file (finish) and to escape some character written incorrectly and (unnecessary).

At the end of the previous operations the whole document is validated in the web application before
to send it to the KB and because so it is possible to avoid the multiple requests that there would be
validating the XML file directly by the KB. If the operation of validation does not throw any exception,
then the string that represent the XML document is inserted in a determined variable, of the class
DataCenterController, associated to the TextArea where the user is redirected. If an exception is
generated, then the user is also redirect to the same page, but he will not see the TextArea, but a
message that informs him on the error occurs: the variable that chooses from the two pages is the
variable okXmlRdf in the DataCenterController.

4.4 Send the DataCenter XML File to KB
If the user has performed the operations described in the previous chapter, he should be in the web
page visualizeXMLDataCenter.jsf, where it is possible to send the generated DataCenter XML file to
the KB, so that, a new DataCenter entity is created in the ontology. It is possible to see the sequence
diagram of this operation in the Figure 14.

To perform this new operation the user must press the button SendToKB that, as first step, will show
a new form where the user can insert information, about the KB to which the XML file must be sent,
as: IP address and port of the KB (It is supposed that every KB in different machine has the same
RestAPI name and this information is not modifiable). The user confirms or changes the information

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 23 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

that there is in the form and then he clicks the button Send: it will call the method
sendXmlRdfOfDataCenter in the DataCenterController class.

The method hides the form where the user has just inserted the information and then it calls the
method sendXmlToKb on the KBDAO class passing, as principal parameter, the string that represents
the XML file to send the KB. This last method, in turn, calls the method sendString on the RestAPI
class because, as mentioned, the XML file has been transformed into a string.

To insert the string in the KB it is necessary to perform an httpRequest of type PUT at the RestAPI
exposed by the KB: the httpResponse that is returned from the httpRequest is used to fill the fields in
an object of the class responseMessageString. This object is returned back through methods calls to
DataCenterController class and according the values contained by the object, a success or a failure
panel is shown to the user, to inform him of the result of the insertion.

4.5 Fetch information of a DataCenter
This section describes the operations, performed to fetch the information about a selected
DataCenter, that are shown in the sequence diagram in Figure 16.

The whole sequence diagram starts when the system shows the user the web page of choice of the
DataCenter: once that the user selects a DataCenter, this last is fetched from the KB with the
information about each entity associated with the DataCenter.

On the dataCenterChoice.jsf page, is shown to the user an InputText containing the IP address and
the port of the default KB, if these data are incorrect, the user can change them and then he can
press the button OK. When the button is pressed, it calls the method InvertIPInserted that inverts the
Boolean value, in the class DataCenterController, of a variable indicating if the IP address is inserted.

At the same time, the web page tries to retrieve the list of the DataCenters contained in the
indicated KB with a call to the method getDataCenterChoiceSelectOneMenu in the class
DynamicAttributeRepository. The web page will show information about the DataCenter, as the
name and the identifier of each DataCenter, in the SelectOneMenu that it must create. To retrieve
this information in addition to the URI, it is necessary that the method
getDataCenterChoiceSelectOneMenu calls the method getDataCenterListByKB, whose purpose is to
retrieve the list of the DataCenters contained in the KB with information that does not involve other
entities: in this way is retrieved the necessary information without useless queries.

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 24 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

Figure 14 – Sequence diagram that show how the XML file of a DataCenter is sent to the KB

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 25 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

Figure 15 – Comparison between “get” and “fetch” methods to retrieve a DataCenter by the URI

public DataCenter getDataCenterByURI(final String ipAddressOfKB, final String uriDataCenter) {
 String select = "select ?hasName ?hasIdentifier where { <"
 + uriDataCenter + "> rdf:type icr:DataCenter . <"
 + uriDataCenter + "> icr:hasName ?hasName . <"
 + uriDataCenter + "> icr:hasIdentifier ?hasIdentifier}";

 String result = executeQuery(ipAddressOfKB, select);

 return XmlSparqlToDataCenter.createDataCenter(result, uriDataCenter);
}

public DataCenter fetchDataCenterByURI(final String ipAddressOfKB, final String, uriDataCenter) {

 DataCenter dataCenter = getDataCenterByURI(ipAddressOfKB, uriDataCenter);

 HostMachineDAO hostMachineDAO = new HostMachineDAO();
 for (String uriHostMachine : hostMachineDAO.getURIHostMachineListByDataCenter(ipAddressOfKB,
uriDataCenter)) {
 dataCenter.getHostMachineList().add(hostMachineDAO.fetchHostMachineByURI(ipAddressOfKB,
uriHostMachine));
 }

 LocalNetworkDAO localNetworkDAO = new LocalNetworkDAO();
 for (String uriLocalNetwork : localNetworkDAO.getURILocalNetworkListByDataCenter(ipAddressOfKB,
uriDataCenter)) {
 dataCenter.getLocalNetworkList().add(localNetworkDAO.fetchLocalNetworkWithUsedIPByURI(ipAddressOfKB,
uriLocalNetwork));
 }

 return dataCenter;
}

Taking the information from the KB to create the list of the DataCenter it is performed as follows:

• The getURIDataCenterListByKB method is called to retrieve the list of the URI of each
DataCenter contained in the indicated KB

• For all URI in the previously created list, it is called the method getDataCenterByURI that
retrieves only simple information about the DataCenter (That does not involve other entities)
as it is possible to see in Figure 15 (Only name and identifier are retrieved):

o The query to send to the KB is created and it is executed calling the method queryKB
on the RestAPI class

o The query response is returned in XML SPARQL and the information contained is
parsed to create a DataCenter object with the method createDataCenter in the class
XmlSparqlToDataCenter

• Each retrieved DataCenter is inserted in a list and it is returned by the getDataCenterListByKB
method

The getDataCenterChoiceSelectOneMenu method uses the list of the DataCenter to create a menu
where the user can choose one of the DataCenter contained in the KB: once that he chooses the
DataCenter, he must press the button Load to retrieve the chosen DataCenter from the KB and view
the entities contained in it.

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 26 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

Figure 16 – Sequence diagram that show how one DataCenter is fetched from the KB

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 27 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

The Load button calls the LoadDataCenter method in the DataCenterController class that, in turn, call
the fetchDataCenterByURI method (Figure 15) in the DataCenterDAO class, which, at the first step,
retrieves the basic information of the DataCenter, as mentioned above, and then it tries to retrieve
information about the associated entities. To retrieve information of the associated entities, such as
HostMachine, the fetch method, in the DataCenterDAO class, calls the method that returns the URI
list of the entities of type that is considered: for all URI in this list it is called the fetch in the
respective DAO of the type that is considered. Each of these fetch methods work as described for the
fetchDataCenterByURI method in a manner that retrieve all the entities associated with the principal
entity, in this case a DataCenter, and other entities associated with the second entities and so on. In
case of entities that do not have any entity associated such as, MonitorInfo, NetworkAdapter and
LocalStorage, only the method get is called as it possible to see in Figure 15 and it can also see the
difference between these entities and, for example the VirtualMachine entity.

When the DataCenter is loaded with all the associated entities, it is shown at the user that can
choose another DataCenter or he can press the Next button to pass to another operation which will
be performed in the chosen DataCenter.

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 28 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

5. Simulation
The classes that perform the simulation are described in the section 4.4 and in this chapter will be
detailed the operations that must be performed to simulate the chosen DataCenter in the two kinds
of simulation offers by Icaro Cloud Simulator.

5.1 Real-time simulation
In this type of simulation the values are generated in real-time, so five minutes of the simulation
correspond to five minutes of metrics that it is possible to insert in the KB. At the moment to realize
this simulation, one thread is created for each entity involved in the simulation: i.e. each thread for
each HostMachine, each VirtualMachine and each IcaroService. Missing the models to represent the
workload of the entities (It is a future work), the mechanism that, at the moment, allows the
simulation is the following that it is possible to see in Figure 17:

• When the user presses the button Start, the system calls the method startSimulation() of the
class DataCenterSimulationRealTime

• This method, for each HostMachine contained in the chosen DataCenter, starts a thread
based on the HostMachineSimulator class

• Each HostMachineSimulator thread, for each VirtualMachine contained in the HostMachine
associated to this thread, starts a thread based on the VirtualMachineSimulator class

• In turn each VirtualMachineSimulator thread, for each IcaroService run in the VirtualMachine
associated to this thread, starts a thread based on the IcaroServiceSimulator class

This last class is responsible to generate the workload for each IcaroServiceSimulator thread: every
second it updates the three variables that represents the CPU, the memory and the storage
workloads (respectively in Mhz, GB and in GB) with random values generate by three Gaussian
Generators (In the future works it will be replaced by another generator). At the moment the
simulator does not consider the workload caused by the OS or the hypervisor.

Each VirtualMachineSimulator thread every two seconds updates its three variables, which represent
the workload, adding the workload generated by the IcaroServiceSimulators associated to
IcaroServices that run in the VirtualMachine associated to the considered VirtualMachineSimulator.
In a similar way, each HostMachineSimulator thread every four seconds updates its three variables
adding the workload generated by the VirtualMachineSimulators associated to VirtualMachines
contained in the HostMachine associated to the considered HostMachineSimulator.

Returning to the previous operations, the method startSimulation() in the
DataCenterSimulationRealTime class, in addition to start the HostMachineSimulator threads it also
starts another thread based on the class DataCenterSimulatorMonitor: with this class the system can
show charts for all the workloads calculated by each HostMachineSimulator.

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 29 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

Figure 17 – Sequence diagram that shows how is performed the real-time simulation

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 30 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

The refresh time is chosen by the user, but knowing that a HostMachineSimulator updates its
workload each four seconds it does not make sense to go below this threshold.
DataCenterSimulatorMonitor thread can extract the values of the HostMachine workload because
when it was started the DataCenterSimulationRealTime class passes to it the list of the
HostMachineSimulator threads started

Furthermore, the user can decide in any moment to send metric of the generated workload to the
KB, inserting the KB address (IP and Port) and the sampling period (In the future works these metrics
will be sent to the Nagios Server as RRD files (Round Robin Database)) and pressing the button
SendToKB. The system, when the button is clicked, calls the method startSendToKB() in the
DataCenterSimulationRealTime class that starts one thread based on the DataCenterMetricSender
class. This thread, at the period indicated by the user, samples the workload values from all
HostMachineSimulator and VirtualMachineSimulator running threads, creates the XML file with all
the necessary information needed to the KB to insert correctly the metrics. To improve the
performances, before are sampled the metrics of all the resources simulated and after only one XML
file are sent to the KB.

5.2 Fast simulation
In this type of simulation the values are generated as quickly as possible depending on the machine
where the IcaroCloudSimulator is executed. The values, in this case, are generated from real data
that are collected from various machine (Host and Virtual) of a real DataCenter with the periods of
one day, seven days and 30 days and that are saved in XML files.

The user can see and associate a real pattern to one VirtualMachine, whose workload must be
simulated: to associate a pattern to a VirtualMachine means that all the values simulated for the
VirtualMachine for all resources as CPU, disk and storage are taken from the XML collected at the
same period from the same VirtualMachine, so that it is possible to maintain the correlation between
the workloads of different resources. If the user does not associate any pattern to one or more
VirtualMachines, then the patterns are randomly chosen between those collected.

When the user clicks the button start, the system calls the method simulate() in the
DataCenterController class that initializes one thread based on the class DataCenterSimulatorFaster
(see Figure 18). The thread, for each VirtualMachine contained in the DataCenter, takes the values
from XML file containing the pattern associated, by the user or randomly, to the VirtualMachine that
must be simulated and with these values it creates a RRD file so that it can be read by the NAGIOS
server. The values taken from the XML file are added to create the workloads of the HostMachines
and to create, also in this case, the RRD files.

If the simulation period chosen by the user is less than the pattern period then only the first values
are taken to simulation else, the pattern is replicated a number of times necessary to cover the
entire simulation period.

In this type of simulation the main problem is how to write the RRD files, in fact this type of file is
dependent of the file system and a RRD file written in Windows cannot be read in Linux.

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 31 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

Figure 18 - Sequence diagram that shows how is performed the fast simulation

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 32 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

To avoid this problem it is possible to use rrd4j library (https://code.google.com/p/rrd4j/), but there
is the problem that the files written with this library must be read with the same library and Nagios
does not use this library. So in IcaroCloudSimulator is used the library java-rrd that manages the RRD
files with command-line operations through rrdtool. It is possible a workaround to read RRD files
written in Windows by Nagios: dumping the RRD files to XML, sending these files to Nagios and
dumping the XML back to RRD files in the server. The main problem of this solution is the increased
dimension of the XML file dumped respect to the original RRD file. In the end the best solution is to
run IcaroCloudSimulator in a Linux machine.

To send the RRD file and the description XML file (each RRD file must have one XML associated that
contains meta-information about the RRD) in the Nagios server, IcaroCloudSimulator used the JSch
library (http://www.jcraft.com/jsch/) that allows SSH connection to another host and allows
execution of command through this secure connection: it is possible to copy the file created locally to
the Nagios server with the scp command.

Once sent the RRD files to Nagios it is possible to see the charts created by the values contained in
these files with the “Supervisor & Monitor” tool.

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 33 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

https://code.google.com/p/rrd4j/
http://www.jcraft.com/jsch/

D3.27.3 - Cloud Simulator, design, user manual and test

6. JSF Framework
Java Server Faces (https://docs.oracle.com/javaee/7/tutorial/jsf-intro.htm#BNAPH) is a framework
for the realization of web applications; it provides to programmer tools for the realization of user
interfaces and for the management of the navigation flow of the application: in the first case it offers
a set of default component ready to use and in the second case using an event logic.

It is composed, basically, by:

• A set of API to represent and to manage the state of the interface components, to handle the
events generated by these components and to validate data inserted by the user.

• A specific tag library to insert in the web pages the interface components

The management logic of the application is delegated to the Backing Bean: specific annotated Java
classes that presents a series of data member associated to the various interface components
containing dynamic information to represent on the page (or on the pages) to manage or
accountable to receive information that is inserted by the user through the associated component
(i.e. a form).

Figure 19 – Model-2 structure of a typical J2EE application

Furthermore, specific methods can be present to be invoked in response to an event generated by
one of the element of the interface, for example through a selection of a link or the click on a button.

The JSF applications are structured according to MVC paradigm, in particular according to the so-
called Model-2 variant. A generic Model-2 application requires the presence of a single centralized
controller that receives all requests submitted by the user (via the web browser), interprets them,
interacts with the data model and determines to which view pass the control and if the generated
output is correct; each view can, if it is necessary, interact with the model to retrieve the necessary
data.

In typical Model-2 applications, made with platform J2EE, the role of the controller is delegated to a
servlet, the model consists of normal Java classes and JavaBean (In addition, for example, to any
classes dedicated to interaction with the Database) and the views are realized through JSF pages, as
shown in the diagram in Figure 19. In a JSF application the views are represented by the tree
components associated to each page, consisting of the components used in the same page; a specific

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 34 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

https://docs.oracle.com/javaee/7/tutorial/jsf-intro.htm%23BNAPH

D3.27.3 - Cloud Simulator, design, user manual and test

servlet, called Faces Servlet, plays a role of front controller: it receives the client requests and it pass
the control to the correct view, updating the values of the bean properties that have changed due to
interaction of the user or the user are inserted some data.

The servlet is responsible to invoke the validators of the various components, in order to control the
correctness of information inserted by the user, and to execute the ActionListeners associated to
components that have generated some kind of event.

Figure 20 – Model-2 structure with JSF

The controller role is therefore subdivided between Faces Servlet and various listener, as it is shown
in Figure 20. Each view can interact with the model through the methods of its backing bean, to
which are delegated all the operations of data retrieval and data handling. The bean, therefore, plays
a role of mediator between the view and the application model, with functionality that can be seen
in the middle between a viewer and a controller.

6.1 Facelets
For the definition of the structure of the pages of a Web application can be used several templating
languages: JSF provides the standard JSP, however, can also be used XML-based languages, such as
Facelets (https://docs.oracle.com/javaee/7/tutorial/jsf-facelets.htm#GIEPX). The life cycle of Java
Server Faces is composed of several phases and, unlike JSP, which processes the elements of a page
in the order in which these appear, JSF organizes them in a complex tree structure. These differences
lead to a series of incompatibility linked to the fact that the components operated by JSP are
displayed in order of appearance within while those of the page JSF as defined by the phase

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 35 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

https://docs.oracle.com/javaee/7/tutorial/jsf-facelets.htm%23GIEPX

D3.27.3 - Cloud Simulator, design, user manual and test

RenderResponse. Facelets is created to replace the JSP page creation, overcoming such
incompatibilities. With Facelets, using the tools offered by JSF, it is possible to create custom
interface components and place them within the pages calling them with the associated tags. These
components can in turn be combined to create new ones, or can be collected in real libraries,
reusable in other applications.

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 36 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

7. User guide
In this chapter is described how to use Icaro Cloud Simulator.

7.1 Home
When a user access to the web application that realize Icaro Cloud Simulator, he can see a blank page
with a navigation bar where he can choose what operation he wants to perform between those
present (Figure 21).

7.2 Create a DataCenter

The principal part of each cloud platform is the data center and it is necessary to have a tool that
allows insertion in the KB of a new DataCenter which is possible to analyze. This operation can be
performed using the link “Create a DataCenter” present on the start navigation bar. Once click on the
operation link the user accesses to the web page shown in Figure 22

With the form of Figure 22 is possible to insert the following information about the desired
dataCenter:

• urn:cloudIcaro:DataCenter: the KB is realized through an ontology and in this kind of
database each entity is unequivocally identified by URI. With regard to DataCenter the URI
prefix is always the same, but the final part is variable and it can be chosen by the user,
inserting it in this field.

Figure 21 – Operations that is possible to execute with the Icaro Cloud Simulator

Figure 22 – Principal page of the dataCenter creation

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 37 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

• hasName: in this field is possible to insert the name that the user want to assign to the data

center that is being created

• hasIdentifier: it is possible to associate an identifier to data center and user can do it using
this field

As it is possible to see in Figure 22 this information are not sufficient to create a DataCenter: the
yellow alert indicates other entities that, necessarily, must be inserted to create a representative
XML file of just created DataCenter.

Clicking on button Add is possible to add further entities, optional or mandatory to file creation
(Figure 23), to DataCenter.

The button Clear, which is positioned at the top on the navigation bar in Figure 23, allows resetting
all filled forms: once pressed will not be possible to recover the data inserted.

The button Back, which is positioned at the top right on the navigation bar in Figure 23, allows
returning at Home to choose another operation to execute with the web application.

From this point is shown how is possible to add entities to DataCenter, starting from HostMachine
entity that it is mandatory to the creation of XML file.

7.2.1 Host Machine
To speed insertion of information, the form of the creation of HostMachine entities (Figure 24),
allows inserting groups of hostMachine, instead to insert of each single HostMachine.

Unlike inserted information about the dataCenter, in this case is not necessary the insertion of the
HostMachine URI: being a multiple insertion the URI is generated automatically and it is based on:
the data center where are situated the host machines, the number of the group which is created and

Figure 23 – Entity that is possible to add in a dataCenter

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 38 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

the number of host machines present in the group. For example, if a group of HostMachine is
generated with information inserted on the form in Figure 24, in a DataCenter generated with
information inserted on the form in Figure 23, will be generated the following URI:

 urn:cloudicaro:HostMachine:Test-012_HM01

 urn:cloudicaro:HostMachine:Test-012_HM02

 urn:cloudicaro:HostMachine:Test-012_HM010

Other fields must be filled with following information:

• prefixName: prefix name of all HostMachine that will be created by this form. At the prefix,
as do for the URI, will be added a final number indicating the HostMachine in the group

• prefixIdentifier: prefix identifier of all HostMachine that will be created by this form. At the
prefix, as do for the URI, will be added a final number indicating the HostMachine in the
group

• CPUType: the type of CPU that is installed in each HostMachine of the group (e.g. Intel Xeon)

• domain: domain within which are situated the host machines. At the moment when this
document is written the KB accepts as value for domain DC01 (Figure 24)

• username: the username to access at the host machines. It will be inserted identical for all
the HostMachine in the group.

• password: the password to access at the host machines. It will be inserted identical for all
the HostMachine in the group.

• # Host: number of HostMachine that will be created with all features inserted in the other
fields.

• CPU: number of CPUs in each HostMachine

• CPUSpeed: speed in GHz of each CPUs inserted in the previous field

• memorySize: size of principal memory ('RAM') in GB, in each HostMachine

• capacity: generic capacity of each HostMachine

• operatingSystem: operating system installed in each HostMachine

• monitorState: it shows if the monitor is on or off on each HostMachine. It is possible to
choose between these values: Enabled indicates a working monitor and Disabled indicates a
no working monitor

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 39 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

Each HostMachine can has associated entities and in the following sections it is possible to see what
entities can be added.

7.2.1.1 Monitor Info
This entity represents useful information for the SM that must monitor the metrics of real
host machine present on data center. With the creation of the group of host machine at
each HostMachine belonging to group will be associated an own MonitorInfo entity with the
same information of the other.

The form for the insertion of a monitorInfo entity is what it can be seen in Figure 25, and the
information that must be included is:

• metricName: name of the metric that SM must keep under control

• arguments: whatever it may be useful to control performed by

• warningValue: value that can trigger actions to prevent problems if reached by the metric

• criticalValue: value that can trigger actions to prevent problems if reached by the metric

• maxCheckAttemps: number of attempts that must be performed on the value of the metric
before taking corrective action

Figure 24 –Creation form of a hostMachine group

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 40 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

• monitorState: it shows if the monitor is on or off on this MonitorInfo. It is possible to choose

between these values: Enabled indicates a working monitor and Disabled indicates a no
working monitor

• checkMode: it shows how the control must be performed. It possible to choose two values:
Passive e Active

7.2.1.2 Local Network
Each host machine can have one or more network adapter: they vary according to number of local
network to which host machine is connected. Given that the system will generate a group of
HostMachine and not a single HostMachine, it was considered appropriate not to include the same IP
address for each HostMachine. Entering data on local network which leads the HostMachine group
and application:

• automatically generate IP addresses to be associated with the NetworkAdapter of each
HostMachine

• check that no two LocalNetwork inserted with the same URI and different data

• Check that the availability of IP addresses of each LocalNetwork is able to meet the request
of IP addresses, based on the number of entities that must have a NetworkAdapter to access
a specific LocalNetwork.

The data of each local network can be inserted through the form of Figure 26 entering the following
data:

• networkAddress: the address of LocalNetwork which is being created

• subNetMask: the subnet mask of LocalNetwork which is being created. With this value the
system can know how much IP address it is possible to generate in the new LocalNetwork

Figure 25 – Creation form of a MonitorInfo entity

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 41 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

• urn:cloudIcaro:LocalNetwork: as just seen for the data center, also in this case it must be

inserted the variable part of the URI of LocalNetwork. Such variable part must be
unequivocal respect to other LocalNetwork

• name: name of the LocalNetwork

• identifier: identifier of the LocalNetwork

7.2.1.3 Local Storage
This entity behaves exactly as the entity monitorInfo: each created entity will be inserted in each
HostMachine of the group is being generated. Each LocalStorage entity, unlike monitorInfo, will have
an own URI automatically calculated by the system, considering DataCenter and HostMachine within
which is situated and number of LocalStorage created in a HostMachine group:

urn:cloudicaro:LocalStorage:Test-012_HM01_LS0

The information that must be inserted in the form of Figure 27 is:

• name: name of the LocalStorage

• identifier: identifier of the LocalStorage

• diskSize: size in GB of disk in LocalStorage

Figure 26 – Creation form of a LocalNetwork entity

Figure 27 – Creation form of a LocalStorage entity

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 42 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

7.2.1.4 Shared Storage
Unlike other entities associated to a HostMachine, SharedStorage entity is not completely defined in
the form of the creation of HostMachine group. In this form the user can only insert the URI of a
SharedStorage, to associate it at each HostMachine of the group that is generating, through the field
visible in Figure 28.

In the following sections, it is described where it is possible to define such entity and the controls
that are executed so that a SharedStorage URI inserted in the form of the creation of a HostMachine
group, it is equal to a really created sharedStorage.

7.2.2 External Storage, Firewall, Router
The forms to insert entities ExternalStorage, Firewall and Router are identical. The only difference is
in the ExternalStorage form with an additional entry on dropDown menu: this entry is relative to
insertion of SharedStorage entity described in the previous section. For this similarity the forms are
described together and they are shown in Figure 29.

For these entities it is valid what claimed for HostMachine: to speed the insertion of the entities of
testing DataCenter, in the form is not inserted a single entity at a time but it is inserted information
about a group of entities to create single entity automatically. Naturally to create a group with
dimension 1 it is equal to create a single entity.

The information that must be inserted to create these entities:

• prefixName: name that must have the entity is being created. As the entity HostMachine the
text inserted will represent the prefix of the name, followed by a number that identify the
group itself and the entity in the group

• prefixIdentifier: identifier that must have the entity is being created. As the entity
hostMachine the text inserted will represent the prefix of the identifier, followed by a
number that identify the group itself and the entity in the group

• model: the mode(p.es. Cisco xxxx, WesternDigital 12345) of the entities that is being created

• # Entity: the number of entity that the user want create with the features inserted in other

• monitorState: it shows if the monitor is on or off on each HostMachine. It is possible to
choose between these values: Enabled indicates a working monitor and Disabled indicates a
no working monitor.

Figure 28 – Single field on which insert URI of a SharedStorage

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 43 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

For entities that can be added as MonitorInfo and LocalNetwork it is possible to see the description in
the previous paragraphs about entities associated to HostMachine: more precisely the paragraphs
“8.2.1.1 Monitor Info” and “8.2.1.2 Local Network”.

7.2.2.1 Shared Storage
As already seen in “8.2.1.4 Shared Storage” it is possible to associate to each HostMachine a
SharedStorage, inserting in the creation form of a HostMachine group the URI of a SharedStorage.

In ExternalStorage form it is possible to create the entity SharedStorage because this last must
necessary be part of an ExternalStorage. The form for the creation of this entity is in Figure 30.

Figure 29 – Creation forms of ExternalStorage, Firewall, and Router
groups

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 44 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

As it is possible to see the data inserted are the same of an entity LocalStorage, with the addition of
the URI necessary to associated it to a HostMachine.

The data that must be inserted are:

• urn:cloudIcaro:SharedStorageVolume: URI of the SharedStorage that it can be associated to
a HostMachine. Each ExternalStorage will be associated to a single entity generated by this
form.

• name: name of the SharedStorage

 identifier: identifier of the SharedStorage

 diskSize: size in GB of the disk contained by SharedStorage

7.2.3 Create XML
If all information, requested by the yellow alert present in Figure 22, are inserted: the button
CreateXML is active (Figure 31), the alert disappears and it is possible to perform the creation of the
XML file that represents the DataCenter relative to entered information.

Once the button CreateXML is pressed, if there is no problem (see following paragraph), the system
is redirect to web page in Figure 32.

Figure 30 – Creation form of a SharedStorage entity

Figure 31 – Active CreateXML button

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 45 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

In this web page is visible a text area that contains the generated XML file: this text is not modifiable,
but it is selectable to be copied in any other application as a text editor.

Clicking on the button “Download XML” the XML file is automatically sent to the browser, that the
user are using to access the web application and it is possible to open it directly or download it on
the own computer. The downloaded file is a simple text file with .xml extension and it has a filename:

datacenterYYYY-MM-DDTHH_MM_SS

showing what is the entity contained in the XML (in this case a DataCenter) and the timestamp of
when the file is sent to the browser.

Clicking on the button “SendToKB” the form in Figure 33 is opened. In this form it is possible to insert
the IP address and the port at which is possible to find the API REST exposed from the KB to perform
the insertion of a dataCenter.

Figure 32 – Page of creation of XML file relative to a dataCenter entity

Figure 33 – Form for the sending of a new dataCenter to KB

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 46 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

If the sending (to KB of the DataCenter XML file) succeeds, the panel in Figure 34 is shown.

If the sending to KB of the DataCenter XML file fails for any reason the panel in is shown.

The Back link redirect to creation web page of a DataCenter where are shown the data previously
inserted that can be modified. Once those changes are made a new XML file is generated and the
web page in Figure 32 is newly reloaded.

The “Create a BusinessConfiguration” link serves to create an entity BusinessConfiguration on the
DataCenter that has just generate. To know how to create a BusinessConfiguration with the web
application it is possible to see the chapter 8.3.

7.2.3.1 Exception in XML file generation
How it is written in the section “8.2.1.2 Local Network” the web application:

• Will check that no exist two LocalNetwork inserted with the same URI but with different
information

• Will check if the availability, of IP addresses of each LocalNetwork, is able to satisfy the
request of IP addresses base on the number of entity that must have a NetworkAdapter to
access a determined LocalNetwork.

As mentioned in the section “8.2.1.4 Shared Storage” the application:

Figure 34 – Message of successful sending to KB of a new DataCenter

Figure 35 – Message of unsuccessful sending to KB of a new DataCenter

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 47 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

• Check if a SharedStorage URI, inserted in the creation form of a HostMachine group, matches

to a SharedStorage effectively created.

If the previous checks performed by the application fail, so error messages are generated to inform
the user that inserted data are wrong. These messages are generated in a new page from which is
possible to return to that where it is possible to insert data, so that it is feasible to change the data
and avoiding generation of new exceptions.

If the inserted LocalNetwork has not enough IP addresses for all the entities that are associated to
the network, then the exception in Figure 36 is generated.

If a user wants that two HostMachine groups are in the same LocalNetwork, he must insert in each
group the same LocalNetwork and the same data. If during this insertion the two LocalNetwork have
the same URI they will be considered the same network from the application and IP addresses and
subNetMask should be the same to not generate the exception in Figure 37.

Figure 36 – Exception generated if a localNetwork does not have enough IP addresses

Figure 37 – Exception generated if two localNetwork with same URI and different information are inserted

Figure 38 – Exception generated if a SharedStorage associated to a HostMachine it is not created
in one ExternalStorage

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 48 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

As the previous, the last exception that can be generated checks that data inserted in two different
form matches between them. At each HostMachine group is possible to associate an entity
SharedStorage, but this last must be defined in an ExternalStorage. If a SharedStorage associated to a
HostMachine group does not coincide with a SharedStorage created in an ExternalStorage the
exception in Figure 38 is generated.

7.3 Create a BusinessConfiguration
As mentioned in section “8.2.3 Create XML” it is possible to create a BusinessConfiguration directly
from the visualization web page of a new DataCenter just created. In this case the web page redirects
the user directly to the form where is possible to create a BusinessConfiguration.

Instead, clicking on the button “Create a BusinessConfiguration”, at the top in the navigation bar on
homepage (Figure 21), the web application redirects the user to an “intermediate” page where is
possible to choose a DataCenter, contained in the KB, in which to perform an insertion of a new
BusinessConfiguration.

7.3.1 Choose DataCenter
In this page it is feasible to insert the IP Address and the port (Figure 39) at which it is possible to find
a working KB.

If the inserted data are correct a list of DataCenters present on KB is shown as in Figure 40.

Figure 40 – List of DataCenter contained in the KB achievable at 192.168.0.106:8080

If this KB is not that desired it is possible to change the inserted data clicking on the button Change.

Figure 39 – Insertion of the IP Address and the port of a working KB

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 49 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

If the user wants to know HostMachine, VirtualMachine and IcaroService in one of the DataCenter in
the list, he must press the button Load, once selected the desired DataCenter.

Once that the entities of a DataCenter are shown, the user can decide to create a
BusinessConfiguration on the selected DataCenter: he can perform this operation clicking the button
Next to access the form of insertion of a new BusinessConfiguration.

N.B.: When the user clicks on the button “Next” it is considered as current dataCenter on which to
insert the new BusinessConfiguration the last that was retrieved through the button “Load”. To
select a DataCenter from the list without clicking the button “Load”, it does not retrieve the
DataCenter and it is considered as current DataCenter the last DataCenter for which the button
“Load” is pressed. For this reason when the list of dataCenter appears, the button “Next” is not
visible until a dataCenter is loaded from KB.

7.3.2 Create Virtual Machine
Once a DataCenter is chosen and retrieved from the KB, it is possible to create the new
BusinessConfiguration. To do this, uppermost the VirtualMachines, at which the services should be
installed, must be.

Figure 41 – Creation form of a VirtualMachine group

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 50 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

The VirtualMachines can be inserted through the form in Figure 41, which has many fields equal to
those present in the creation from of a HostMachine group, but there are some different. The
information contained in the fields are described here:

• externalIPAddress: IP Address that is shown by VirtualMachine towards the outside of the
local network and which can be used to access it

• monitoringIPAddress: IP Address belonging to VirtualMachine on which monitoring is
performed

• prefixName: prefix name of all VirtualMachine that will be created by this form. At the
prefix, as do for the URI, will be added a final number indicating the VirtualMachine in the
group.

• prefixIdentifier: prefix identifier of all VirtualMachine that will be created by this form. At
the prefix, as do for the URI, will be added a final number indicating the VirtualMachine in
the group.

• domain: domain within which are situated the VirtualMachines. At the moment when this
document is written the KB accepts as value for domain DC01 (Figure 41)

• username: the username to access at the VirtualMachine. It will be inserted identical for all
the VirtualMachine in the group.

• password: the password to access at the VirtualMachine. It will be inserted identical for all
the VirtualMachine in the group.

• # Virtual: number of VirtualMachine that will be created with all features inserted in the
other fields.

• CPU: number of CPUs in each VirtualMachine
• CPUReservation: minimum speed (in MHz) reserved for each CPU that is inserted in the

previous field
• CPULimit: maximum speed (in MHz) reserved for each CPU that is inserted in the previous

field. This limit can be set according of how much CPU is used by all VirtualMachine present
in a HostMachine

• memorySize: indicates the maximum theoretical memory, physically present in the
HostMachine, that can be used from every VirtualMachine on the group

• memoryReservation: indicates the minimum memory, physically present in the
HostMachine, reserved for every VirtualMachine on the group. This memory is always
available for each VirtualMachine and it does not depend on the other VirtualMachine that
runs on the same HostMachine

• memoryLimit: indicates the maximum practical memory, physically present in the
HostMachine, that can be used effectively by the VirtualMachine. This value depends on how
much memory is used from the other VirtualMachine that runs on the same HostMachine.

• operatingSystem: number of CPUs in each VirtualMachine
• monitorState: it shows if the monitor is on or off on each VirtualMachine. It is possible to

choose between these values: Enabled indicates a working monitor and Disabled indicates a
no working monitor.

• arePartOf: indicates where the VirtualMachine group is sited, that is this field indicates the
URI of HostMachine where the VirtualMachine group runs.

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 51 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

• isStoredOn: indicates where the VirtualMachine group is stored in the HostMachine selected

in the previous field. It is possible to choose either a LocalStorage or a VirtualStorage
associated to previous selected HostMachine

As for the HostMachine, also in this case is not necessary to insert the URI of every VirtualMachine of
the group. Being a multiple entry, the URI is generated automatically and it is based on: the name of
DataCenter and the HostMachine where the VirtualMachine is sited, the number of VirtualMachine
contained by the group. For example, if a VirtualMachine group is generated with the information
contained in the form of Figure 41, the URI that will be generated:

 urn:cloudicaro:VirtualMachine:Test-OneHost_HM01_VM01

 urn:cloudicaro: VirtualMachine:Test-OneHost_HM01_VM02

 .

 .

 urn:cloudicaro: VirtualMachine:Test-OneHost_HM01_VM05

As for the other entities also for the VirtualMachine is possible to associate sub entities as:
MonitorInfo, LocalNetwork e VirtualStorage (Figure 42).

To see how to add those entities and for details about information to be included, it is possible to
consult the sections “8.2.1.1 Monitor Info”, “8.2.1.2 Local Network” e “8.2.1.3 Local Storage”, as the
form and the information to be included not vary with respect to the entities that it is possible to add
on a HostMachine. The only change is that the URI of a virtualStorage is generated automatically
compared to URI of a LocalStorage generated manually:

urn:cloudicaro:VirtualStorage:Test-OneHost_HM01_VM02_VS0

As the creation form of a DataCenter also this form show a yellow alert which informs the user about
what entities must be included to enable the Next button. This button allows you to go to the next
page to create the new BusinessConfiguration.

The Clear button allows resetting the page erasing all information inserted and all form added to
principal form.

The Back link allows redirecting to web page of choice of a DataCenter, in the case that user should
change the chosen DataCenter with another contained in the KB or should change the KB previously
chosen.

Figure 42 – Entities that it is possible to add on a virtualMachine

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 52 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

Chose the DataCenter on which create the new BusinessConfiguration and created VirtualMachine
on which insert IcaroService, it is explained how to create a BusinessConfiguration through the form
that it is possible see in Figure 43.

Through the form of Figure 43 it is possible to insert information about a BusinessConfiguration

• urn:cloudIcaro:BusinessConfiguration: the KB is realized through an ontology and in this
kind of database each entity is unequivocally identified by URI. With regard to
BusinessConfiguration the URI prefix is always the same, but the final part is variable and it
can be chosen by the user, inserting it in this field.

• hasName: name of BusinessConfiguration

• hasIdentifier: identifier of BusinessConfiguration

• hasContractId: represents the id of associated contract to BusinessConfiguration. This id is
useful to know the user that signed the BusinessConfiguraion

As it is possible to see in Figure 32 this information is not sufficient for creation of a
BusinessConfiguration: the yellow alert indicates the other entities that must be inserted necessarily
to create the BusinessConfiguration XML file that is being created.

Clicking on button Add is possible to add further entities, optional or mandatory to file creation
(Figure 42), to BusinessConfiguration.

The button Clear, which is positioned at the top on the navigation bar in Figure 23, allows resetting
all filled forms: once pressed will not be possible to recover the data inserted.

The button Back, which is positioned at the top right on the navigation bar in Figure 23, allows
returning to web page in which it is possible to change information about VirtualMachines.

Figure 43 – Principal creation page of a Business Configuration

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 53 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

From this point is shown how is possible to add entities to BusinessConfiguration, starting from
IcaroApplication entity that it is mandatory to the creation of XML file.

7.3.3 IcaroApplication
The form, that allows adding an IcaroApplication entity to BusinessConfiguration, is visible in Figure
45.

The information that must be inserted is:

• name: name of IcaroApplication

• identifier: identifier of IcaroApplication

• capacity: generic capacity of each IcaroApplication

• typeOfApplication: it is possible to choose what kind of IcaroApplication must be inserted.
The applications, present on the list, are those that can be instanced in cloud Icaro platform.

As for the previous entities also in this case is not necessary to insert the URI of the IcaroApplication,
but this is not due to multiple entry. The URI of an IcaroApplication is created with information about
type of application, BusinessConfiguration within which the application is inserted and the number of
IcaroApplication contained in the BusinessConfiguration.

Figure 44 – Creation form of an IcaroApplication entity

Figure 45 – Entities that is possible to add on an Icaro Application

 iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 54 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

If an IcaroApplication is inserted with information in Figure 45 and in Figure 43, the URI will be
generated as:

urn:cloudicaro:Joomla:Test-007_0

As it is possible to see in Figure 45 a user can add further entities to an IcaroApplication.

7.3.3.1 Icaro Service
Every IcaroApplication needs some services to work and if these services are not inserted then alert
messages are generated by the system to inform the user of this problem (see 8.3.4.2).

In Figure 46 is shown the form to insert information about IcaroServices entity:

• monitorIPAddress: IP Address belonging to IcaroService on which monitoring is performed

• name: name of IcaroService

• identifier: identifier of IcaroService

• processName: the name of the process with which the IcaroService is executed in a
VirtualMachine.

• username: username to access IcaroService

• password: password to access Icaro Service

• typeOfService: in this field the choice is constrained to the types of services that allow the
execution of IcaroApplication in iCaro cloud platform. The user is responsible to choose those
services that allow execution of an IcaroApplication.

Figure 46 – Creation form of an IcaroService entity

 iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 55 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

• supportedLanguage: it is possible to choose which language is supported from the

IcaroServices. The choice is constrained to languages that will support the Icaro cloud
platform.

• monitorState: it shows if the monitor is on or off on each IcaroServices. It is possible to
choose between these values: Enabled indicates a working monitor and Disabled indicates a
no working monitor.

• runsOnVM: it indicates the VirtualMachine in which it is executed the IcaroService. The
choice is constrained to VirtualMachines inserted at the previous step.

It is possible to see in Figure 47 that a user can add further entities to an IcaroService entity.

In fact, it is feasible a MonitorInfo entity, a TCPPort entity and an UDPPort entity. To see information
about monitorInfo entity it is in “8.2.1.1 Monitor Info”.

The other two entities contain simply a numeric field where the user can insert the TCPPort number
and/or UDPPort number to which the IcaroService replies.

7.3.3.2 SLAgreement, SLObjective, SLAction e SLMetric
As planned in the KB at each IcaroApplication can be associated a SLAgreement and this entity can be
inserted through the form in Figure 48.

The information that can be inserted in a SLAgreement entity is:

• startTime: indicates when the SLAgremment begins to be valid

• endTime: indicates when the SLAgremment ends to be valid

The SLAgreement is unequivocal for each IcaroApplication and only one can be created, but it is
possible to add to such entity an undefined number of SLObjective, which are composed by
SLActions, that represent the actions undertake from the system when the clauses of SLAMetric are
not respected (Figure 48).

In Figure 48 it is possible to see that the SLObjective entity has not their fields, but it is a simple
container for entities SLAction and SLMetric.

The information that can be inserted in a SLAction entity is:

Figure 47 – Entities that is possible to add-on an Icaro Service

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 56 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

• name: name of the action that is executed if the SLMetric constraints are not respected
• callURI: if the action that must be executed, it can be called through an URI, in this field this

last must be inserted:

The information that can be inserted in a SLMetric entity is:

• name: the name of the metric that is stored in the KB and it is under control to respect this
SLAgreement

• unit: unit of measure that is associated to follow field named value

• value: the value that must be respected. This value is compared with the limit inserted in the
following field

Figure 48 – Creation form of SLAgreement relative entities

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 57 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

• limit: indicates the conditions that must be respected by memories in the KB respect to value

inserted in the previous field (“value”). The values that can be chosen are: Greater, Less o
Equal and they match with >, < e =.

• dependsOn: naturally the same metric can be measured on more resources contained in the
cloud platform and in this field must be inserted the resource of interest to respect
SLAgreement clause. At the moment it is possible to choose between Host and Virtual
Machine

7.3.3.3 Creator
An icaroApplication can be associated to its Creator. For this, the following information must be
inserted in the form of Figure 49:

• urn:cloudIcaro:User: URI of the Creator
• name: name of the Creator
• email: email of the Creator

This entity is similar to LocalNetwork entity seen in the previous sections: this last is inserted to
create automatically the NetworkAdapter entities and to associate them with the entities that are
connected at that network, furthermore the system checks if two LocalNetwork with the same URI
have also the same information.

In fact, when the data is inserted in this form a user entity is generated and this last will be
associated to other entity to realize the property hasCreator.

Furthermore, if the inserted user is a creator for two IcaroApplication then the system must control
that don’t exist two User with the same URI and different name and email.

In the previous section are described the information and the entities necessary to creation of an
entity IcaroApplication in a BusinessConfiguration. Beyond such entity it is possible to add in a
BusinessConfiguration the entities SLAgreement and Creator, whereas such entities have the same
form of entities that it is possible to add to an icaroApplication it is recommended to see the previous
sections to know how insert such information in the form.

Figure 49 – Creation form of a Creator entity

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 58 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

7.3.4 Create XML
Concerning the creation of the XML file of the BusinessConfiguration inserted and the page that is
accessed once created this file you can see "8.2.3 Create XML" on the creation of the XML file of a
DataCenter.

The only changes are that: in the navigation bar is not present the link to create a new
BusinessConfiguration and the REST API, which is called for the inclusion of the BusinessConfiguration
in the KB, is different.

7.3.4.1 Exception in XML file generation
In the previous section it was stated that the web application must check if two creators are inserted
to (e.g. one on the businessConfiguration and one on icaroApplication):

• Avoid that two user exist with same URI and different name and/or email

In the case that the check fails, i.e. two Users/Creators exist with the same URI and different name and/or
email. The message in Figure 50 is shown.

The user, read the message, can return to previous page to make necessary changes to avoiding that
error message is already shown.

7.3.4.2 Exception in XML file insertion to KB
As mentioned at the beginning of section “8.3.3.1 Icaro Service”, each IcaroApplication needs services to work
and if these services are not inserted, then the system will warn user through red alert message to this lack.

Such messages, unlike the exceptions that are generated by the system, are generated during the
insertion of the file within the KB, as they concern the rules included in the KB and not in the XSD-
SCHEMA for generating XML file.

Figure 50 – Exception generated if two creations with same URI and different
information are inserted

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 59 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

Figure 51 – KB message to notify the missing icaroService necessary to XLMS icaroApplication

For this reason the system show a message like the one in Figure 51 in response to the attempt to
send an XML file containing a BusinessConfiguration to the KB. In the file there is an icaroApplication
of type XLMS, without the needed services.

7.4 Create ServiceMetrics
This operation allows creating a predefined number of metrics that must be associated with a
determined entity (e.g. a HostMachine or a VirtualMachine), deciding the period in which they are to
be distributed. The values that should have during that period and the final value which must be
inserted in the last metric.

This operation can be useful if a user want to check correct detection of problems, for example,
related to an overrun of the limits imposed by the SLA, through the metrics included in KB.

Figure 52 – Creation form of a ServiceMetric entity

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 60 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

For the creation of the metrics, the form that must be filled is that of Figure 52, and the necessary
information is as follows:

• uriEntity: URI of the entity to which the metrics, automatically generated, are referred

• name: name of all metrics

• unit: unit of measure that must be associated to values inserted

• # serviceMetric: the number of metrics that must be generated

• minValue: the minimum value that the metric can assume

• maxValue: the maximum value that the metric can assume

• finalValue: the last value that the metric must assume. It can be a value outside of the
interval minValue – maxValue.

• from: start date of the metrics.

• to: end date of the metrics.

The period of generation of metrics is a dummy period and metrics will be generated all instantly to
be sent to the KB.

7.4.1 Create XML
Concerning the creation of the XML file of the ServiceMetrics inserted and the page that is accessed
once created this file you can see "8.2.3 Create XML" on the creation of the XML file of a datacenter.

The only changes are that: in the navigation bar is not present the link to create a new
BusinessConfiguration, since the system are creating service metrics, the REST API, that is called for
the inclusion of the ServiceMetrics in the KB, is different and the generated XML file contains all
ServiceMetrics instead of generating a single XML for each ServiceMetric

7.5 Simulate DataCenter
This operation allows to simulating the functioning of a cloud platform to:

• Automatically generate metrics (in a different way to the previous described)

• Study the behavior of the cloud platform during the insertion of new BusinessConfiguration,
in particular when are inserted new VirtualMachine and IcaroService

The simulation can be performed in two ways:

• Real-Time: the simulation time is the same as the user. Through this simulation it will be
studied the behavior of the cloud during the insertion of new BusinessConfiguration.

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 61 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

• Faster: in this case the simulation time is not the same as the user: the simulation time

depends on the computing power of the system. Start date and end date are selected and in
this period are automatically generated the metrics for all entities of the previous chosen
DataCenter.

The choice between the simulations can be done through the button visible in Figure 53. After
choosing one of the two types of simulation the user is redirected on the page of choice of the
DataCenter, where it is possible to choose which DataCenter simulate. To have information about
this page it possible to see the section “8.3.1 Choose DataCenter”.

7.5.1 Real Time Simulation
The page, that allows simulating a DataCenter, is visible in Figure 54.

In the page it is possible to see some “panel” that will be filled with graph once that the simulation
start. At each “panel” is associated a HostMachine and in the header is indicated how many
VirtualMachine are present in the HostMachine relative to that “panel”.

To start the simulation the user must clicking on the button “Start”. When the simulation is started,
in the page appear the graphs relative to simulation data and the button on the navigation bar are
modified as in Figure 55.

Figure 53 – Button to choose the simulation to perform

Figure 54 – Page of the real-time simulation

Figure 55 – DataCenter simulation with graphs of: CPU, Memory and Storage

 iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 62 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

In the three graphs it is possible to see the trend of the simulated data of CPU, Memory e Storage
related to a single HostMachine. Charts are updated every 5 seconds with “auto-refresh” of the page.

The button Stop allows stopping instantly the simulation.

The form that follows the Stop button allows choosing a KB (by inserting IP address and port of a
running KB) and the time by which the simulated data is sampled and sent to be included in the
choice KB. The timestamp that will be inserted in the metrics sent to KB is reported at the time that
these are sampled.

The button “Create a BusinessConfiguration”, if clicked, at the moment shows a form for the
insertion of VirtualMachine (Figure 56) and then a form for the insertion of BusinessConfiguration
(Figure 57): The control logic, that allows adding the entities dynamically to the simulator, must be
projected yet.

7.5.2 Fast Simulation
This type of simulation is useful when the user needs a tool to replicate past data of a real
DataCenter in a selected simulated DataCenter. This simulation runs in a different way respect to the
operation of “Create ServiceMetrics”:

Figure 56 – Simulation page with form to add VirtualMachines

Figure 57 – Simulation page with form to add BusinessConfiguration

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 63 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

• Generates the metrics for all entities belonging to the selected dataCenter rather than

generates them for a single entity

• Generates the metrics with a period of 5 minutes, instead to distribute them evenly in the
indicated period

• It is not provided limits to values that can be assumed form the metric and it is not present a
final value.

• The metrics are taken from real data previously collected

If any real data is collected, IcaroCloudSimulator shows the alert message, which is possible to see in
Figure 58, and the green button “Collect Data” that, if clicked by the user, redirect him to the page
where it is possible to start the collection of real data.

Figure 58 – Alert message shows when there are not real data collected for fast simulation

Once the user presses the button “StartCollect” the system starts to retrieve the real data from the
Nagios server through the RestAPI offers by the “Supervisor & Monitor” tool. The real data are
collected with periods of one day, seven days and 30 days until the user clicks the button
“StopCollect“: these operations continues to work, also when the browser is closed.

Figure 59 – Web page where it is possible to see the real data collected and manage the collection operations

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 64 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

In the Figure 59, it is possible to see how the collected real data are shown: they are divided in tabs
based on the day in which they are collected, in each tab there is one panel for each checked
machine and in this last panel there is a variable number of panel. In fact, in the first tab there are
four sub-panel: one for the data with period one day, one for the data with period seven days, one
for the data with period 30 days and one for the meta-data. In the second tab there is only one sub-
panel: that for the data with period one day due to the fact that the collection is performed each day
at the same time and the data with period seven days are collected each seven days, i.e. each seven
tabs.

Figure 60 – Example of a chart relative to real data collected

The user can click on the View buttons to view the charts associated to the real data collected, see
Figure 60. If the real data are present in the file system the fast simulation can be performed and it is
possible to associate one pattern to each VirtualMachine that must be simulated, see Figure 61.

If the user does not associate any pattern to some VirtualMachine, the patterns are associated
randomly to the VirtualMachine without a pattern.

Figure 61 – In this page it is possible to associate one pattern to each VirtualMachine to simulate

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 65 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

When the user clicks on the “Choose Pattern” button, a modal dialog is shown to the user, where he
can choose the pattern viewing the chart related to the pattern that he is choosing: are shown the
charts related to the patterns of all resources collected from one machine at the same time, see
Figure 62.

Figure 62 – Charts of the real data collected at the same time from all resources of a one machine

Then the user must insert the start data of the simulation, the number of days that must be
simulated and it must click the button Simulate. The metrics will be created instantly and then they
are sent to Nagios server: the web page shows to the user two panel with respectively the progress
and the log of simulation (Figure 63).

Figure 63 – Page of fast simulation where it is possible to see the log of simulated entity

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 66 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

7.6 Analyze Metrics
Through this operation it is possible to analyze the metrics that are present in the KB. As mentioned
in section “8.3.1 Choose DataCenter”, to use this operation it is necessary to choose and to load form
the KB the DataCenter that the user want analyze. Once the DataCenter is loaded the user is
redirected on the web page in Figure 64.

It is possible to note in the figure on the left the list of HostMachines and VirtualMachines contained
in the DataCenter selected in the previous page.

On the list it is possible to select the VirtualMachines and the HostMachines for analyzing the
metrics. Once the entity are selected the user must insert start date and end date of the period that
he want analyze.

Clicking the button Metrics the charts of Figure 64 are created. If two selected entities are the same
metric then the data will be grouped in a single chart and a curve will be shown for each entity: in
Figure 64 there are 3 curves because 3 selected entities are the same metric “KBSIM CPU AVG 5min”.

The button “Reset Zoom” take back the chart to its original resolution.

The Filled checkBox fills the underlying area of each curve that in Figure 64 is transparent.

The Stacked checkBox sums the contributions of each curve realizing a graph with accumulated data.

The last three buttons Hourly, Daily e Monthly are used to scale the graph resolution to have a better
view on the trend data.

Figure 64 – Web page that allow to analyze the metrics in the SM

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 67 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

8. References
1. Cloud computing: state-of-the-art and research challenges. Q. Zhang, L. Cheng, R. Boutaba. s.l. :
Journal of Internet Services and Applications, Vol. 1, pp. 7-18.

2. Cloud computing: Issues and challenges. T. Dillon, C. Wu and E. Chang. Perth : IEEE, 2010.
Advanced Information Networking and Applications (AINA), 2010 24th IEEE International Conference
on. pp. 27-33.

3. Challenges towards Elastic Power Management in Internet Data Centers. J. Liu, F. Zhao, X. Liu, and
W. He. Montreal, Quebec, Canada : s.n., 2009. Workshop on Cyber-Physical Systems (WCPS),.

4. GreenCloud: A Packetlevel Simulator of Energy-aware Cloud Computing Data Centers. D.
Kliazovich, P. Bouvry, S. U. Khan. 3, s.l. : Journal of Supercomputing, 2012, Vol. 62, p. 1263-1283.

5. Cloud computing simulators: A detailed survey and future direction. A. Ahmed and A. S.
Sabyasachi. Guargon : IEEE, 2014. Advance Computing Conference (IACC), 2014 IEEE International.
pp. 866 - 872.

6. The Glasgow Raspberry Pi Cloud: A Scale Model for Cloud Computing Infrastructures. F. P. Tso, D.
R. White, S. Jouet, J. Singer and D. P. Pezaros. 2013. Distributed Computing Systems Workshops
(ICDCSW), 2013 IEEE 33rd International Conference on. p. 108-112.

7. CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation
of resource provisioning algorithms. R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose and
Rajkumar Buyya. 1, New York : Wiley Press, 2011, Software: Practice and Experience (SPE), Vol. 41,
pp. 23-50. ISSN: 0038-0644.

8. Study and Comparison of CloudSim Simulators in the Cloud Computing. R. Malhotra and P. Jain. 4,
2013, SIJ Transactions on Computer Science Engineering and its Applications (CSEA), Vol. 1, pp. 111-
115.

9. iCanCloud: A Flexible and Scalable Cloud Infrastructure Simulator. A. Núñez, J. L. Vázquez-Poletti,
A. C. Caminero, G. G. Castañé, J. Carretero and I. M. Llorente. 1, s.l. : Springer, 2012, Journal of Grid
Computing, Vol. 10, p. 185-209.

10. DCSim: A data centre simulation tool for evaluating dynamic virtualized resource management.
M. Tighe, G. Keller, M. Bauer, and H. Lutfiyya,. 2012. The 6th International DMTF Academic Alliance
Workshop on Systems and Virtualization Management: Standard and the Cloud.

11. CloudAnalyst: A CloudSim-based Visual Modeller for Analysing Cloud Computing Environments
and Applications. B. Wickremasinghe, R. N. Calheiros and R. Buyya. s.l. : IEEE Computer Society,
2010. 24th International Conference on Advanced Information Networking and Applications (AINA).
p. 446-452.

12. The Network Simulator Ns2. [Online] 2010.
http://nsnam.isi.edu/nsnam/index.php/Main_Page.

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 68 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

D3.27.3 - Cloud Simulator, design, user manual and test

13. Introduction of Cloud Computing and Survey of Simulation Software for Cloud. M. Aggarwal. 13,
2013, TIJ's Research Journal of Science & IT Management, Vol. 2. 2251-1563.

14. CloudNetSim - Simulation of Real-Time Cloud Computing Applications. T. Cucinotta and
Santogidis A. Paris : s.n., 2013. 4th International Workshop on Analysis Tools and Methodologies
for Embedded and Real-time Systems (WATERS).

15. NetworkCloudSim: Modelling Parallel Applications in Cloud Simulations. S. Kumar Garg and R.
Buyya. Melbourne : IEEE CS Press, 2011. Proceedings of the 4th IEEE/ACM International Conference
on Utility and Cloud Computing.

16. EMUSIM: an integrated emulation and simulation environment for modeling, evaluation, and
validation of performance of Cloud computing applications. R. N. Calheiros, M. A.S. Netto, César
A.F. De Rose and R. Buyya,. 5, Software: Practice and Experience, Vol. 43, p. 595–612.

17. MDCSim: A multi-tier data center simulation, platform. Seung-Hwan Lim, Bikash Sharma,
Gunwoo Nam, Eun Kyoung Kim and Chita R. Das,. New Orleans : IEEE, 2009. Cluster Computing and
Workshops, IEEE International Conference on.

18. CSIM Development Toolkit for Simulation and Modeling. [Online] http://www.mesquite.com/..

19. Modeling and Simulation Frameworks for Cloud Computing Environment: A Critical Evaluation.
A. Bashar.

iCaro - La piattaforma cloud per l’accelerazione del business delle PMI toscane Pagina 69 di 69
[CUP 6408.30122011.026000074]
ICARO_Template_Deliverable V1-0

	1. Cloud Simulator Requirements
	2. Cloud Simulator Domain Model
	3. Architecture
	3.1 Viewer
	3.2 Controller
	3.3 DAO
	3.4 Simulator

	4. Sequence Diagram
	4.1 Composite Component in Icaro Cloud Simulator
	4.2 Add a new panel to “Create a DataCenter” web page
	4.3 Create a New DataCenter XML File
	4.4 Send the DataCenter XML File to KB
	4.5 Fetch information of a DataCenter

	5. Simulation
	5.1 Real-time simulation
	5.2 Fast simulation

	6. JSF Framework
	6.1 Facelets

	7. User guide
	7.1 Home
	7.2 Create a DataCenter
	7.2.1 Host Machine
	7.2.1.1 Monitor Info
	7.2.1.2 Local Network
	7.2.1.3 Local Storage
	7.2.1.4 Shared Storage

	7.2.2 External Storage, Firewall, Router
	7.2.2.1 Shared Storage

	7.2.3 Create XML
	7.2.3.1 Exception in XML file generation

	7.3 Create a BusinessConfiguration
	7.3.1 Choose DataCenter
	7.3.2 Create Virtual Machine
	7.3.3 IcaroApplication
	7.3.3.1 Icaro Service
	7.3.3.2 SLAgreement, SLObjective, SLAction e SLMetric
	7.3.3.3 Creator

	7.3.4 Create XML
	7.3.4.1 Exception in XML file generation
	7.3.4.2 Exception in XML file insertion to KB

	7.4 Create ServiceMetrics
	7.4.1 Create XML

	7.5 Simulate DataCenter
	7.5.1 Real Time Simulation
	7.5.2 Fast Simulation

	7.6 Analyze Metrics

	8. References

