
Object�Oriented Reengineering of COBOL Applications

A� Fantechi and P� Nesi
Department of Systems and Informatics

Faculty of Engineering� University of Florence
Via S� Marta �� I ����� Florence� Italy

fantechi	dsi�ing�uni
�it� nesi	ing
��ing�uni
�it

August ��� ����

Abstract

The object�oriented paradigm is presently considered as the approach which best guarantees invest�

ments for renewal� It allows to produce software with a high degree of reusability and maintainability�

thus satisfying to a certain extent also quality characteristics� In this perspective� several methods for

reengineering old applications according to the object�oriented paradigm were de�ned and proposed�

Anyhow� the simple adoption of an object�oriented language� or the encapsulation of the old application

within an object�oriented interface� does lead to earn the high software quality achievable with a complete

object�oriented design trajectory� Rather� a process of object�oriented reanalysis of the application is

needed� In this paper� a method and tool �C�O
�� COBOL to Object�Oriented� for analysing COBOL

applications in order to extract an object�oriented analysis is presented� The tool identi�es classes and

their relationships by means of a process of understanding and re�ning in which COBOL data structures

are analysed� converted in classes� aggregated� and simpli�ed semi�automatically� The analysis process

also helps in detecting data structures which can cause failures passing to the next millennium� and in

this respect solutions are suggested�

� Introduction

According to the trend of the information technology� software languages are evolving towards new paradigms�

As a consequence� applications written in the past need to be maintained aligned with the state of the art�

This process is often highly expensive since the language evolution proceeds in high steps � e�g�� from pro�

cedural to object�oriented� from textual to visual� from operational to descriptive� etc�� approaches ���� The

literature about software renewal is quite extensive � e�g�� �	�� �
�� ���� ���� �
�� A solution for minimising the

costs of renewal was proposed by the so�called legacy�techniques� These suggest to reuse old applications by

encapsulating them with suitable interfaces� Unfortunately� these techniques are not suitable when the sys�

tem software must be maintained and updated by modifying the internal behaviour during its maintenance�

This is what usually happens in the information systems which are used in banks� public administrations�

and other large organisations� Most of these applications have been traditionally written in COBOL and

now there is a strong interest in porting them on new languages and platforms and updating them to the

current quality standards� This is a huge task �more than ��� billions lines of COBOL code are currently

running all over the world� which deserves to be tackled with advanced reengineering methodologies and

tools�

�



Presently� the most important requirements for the renovation of COBOL applications are �i� the up�

dating of the user interface towards a windowing system� �ii� the addition of new functionalities� and �iii�

the migration from a classical client�server architecture to a fully distributed architecture based on the new

intranet features� For satisfying the �rst feature at low cost� the market o�ers several screen generators

under MS�Windows for COBOL� For the second feature� a deep knowledge of the system is needed� This

has to be regarded as a full maintenance process of the old code� The third feature is hard to be satis�

�ed without reengineering the whole application �
�� This is due to the fact that COBOL applications are

typically based on transactions performed on a centralised database� For these reasons� a strong process of

reengineering is frequently mandatory and cannot be solved by a mere translation of COBOL programs into

a newer language� The object�oriented paradigm �OOP� allows software to be produced with high degrees

of reusability and maintainability� thus satisfying to a certain extent also quality characteristics ���� ���� ����

����� ����� ��	�� Hence� the OOP is presently considered as the one which best guarantees the investment for

renewal ����� Presently� the most promising and used object�oriented languages are C��� Java and recently

also Object COBOL ��
��

The above mentioned bene�ts of the OOP are not obviously automatically guaranteed by the simple

adoption of an object�oriented programming language� though this is a common opinion� The compilation

in C�� of an application written in C does not transform it in an object�oriented application �the same

statement holds for COBOL and Object COBOL� Pascal and Object Oriented Pascal� etc���

In the literature� several methods for reengineering procedural applications according to the OOP were

de�ned and proposed � e�g�� ����� ����� ���� �
�� In order to pass from a procedural version of a pro�

gram�application to an object�oriented version� a process of reanalysis is mandatory� The focus must

pass from data transformations �i�e�� procedures� to data structure� categories and entities �i�e�� classes and

objects�� This process leads to the identi�cation of the classes which model the application domain and

their organisation ���� ��
�� If the problem domain analysis is not performed� the reengineering leads to

produce a large number of classes� without aggregating them and� thus� without exploiting the capability

of the OOP� The advantage of performing an object�oriented analysis of the system is particularly evident

in the case of motivation �iii� above� that is the migration of centralised database COBOL applications to

fully distributed architectures�

A large e�ort has been accomplished for de�ning algorithms to migrate� transform� reengineering proce�

dural programs into object�oriented ones � e�g�� ����� ����� On the other hand� the reengineering of COBOL

applications towards object�oriented is a harder problem� with respect to the reengineering of high�level

procedural languages such as C� FORTRAN� Pascal� since the semantic gap between COBOL and object�

oriented languages is much more relevant� In the literature� some tools and algorithms for converting

COBOL applications into object�oriented ones have been presented � e�g�� REDO ����� REDOC ����� �
��

MOORE �	��� CORECT �http���www�acm�co�uk��

In this paper� a method�tool �C�O
�� COBOL to Object�Oriented� for analysing COBOL applications

�collections of programs written in COBOL for covering a whole applicative domain� in order to extract

its object�oriented analysis is presented� This tool identi�es classes and their relationships by means of a

process of understanding and re�ning in which COBOL data structures are analysed� aggregated� and semi�

automatically simpli�ed� The result is a complete object�oriented analysis of the application domain� The

analysis is smart enough to associate structurally similar data having di�erent names as usually happens in

COBOL programs� The resulting analysis is largely independent of the �nal object�oriented language which

	



can be chosen to code �or to code again� the application�

This paper is structured as follows� Section 	 describes the overall transformation process from COBOL

programs to object�oriented ones� Section 
 details the abstraction algorithm used for the analysis of the

application� Section � shows how the analysis process supported by the C�O
� tools also helps in detecting

data structures which can cause problems passing to the next millennium� and in this respect solutions

are suggested� Section � describes the prototype C�O
� tool that implements the abstraction algorithm� A

discussion on related works is included in the concluding Section 
�

� From COBOL to Object�Oriented

A COBOL application usually consists in a collection of modules placed in distinct �les sharing several data

structures and obviously the application domain� The typical COBOL application is organised around a

kernel made up by one or more menu modules and by a collection of independent modules which perform the

logically separated operations� The organisation of modules inside a COBOL application generally re�ects

the functional decomposition process usually adopted in COBOL to carry out the system design� In COBOL

these is a neat separation between modules� since each module can be seen as a self�standing one with its

own well�de�ned functionality� di�erent from all the others� This division can simplify the transformation

work since the scope of the code is limited�

COBOL programs can be classi�ed in three fundamental types� SUBprograms� BATCH programs and

ONLINE programs� BATCH and ONLINE modules are typically indicated as main programs� For each

type of module it is necessary to adopt di�erent conversion strategies which will be clearly speci�ed in the

following�

SUBprograms are modules called to perform functions which are too complex or heavy to be included in

the main program� or which are used to implement generally used functions or utilities required by several

other programs� Roughly� the goal of SUBprograms is to modify the value of some parameters according

to some others� or to access archives� print reports� and presentations� SUBprograms can be regarded as

procedures or methods according to the OOP� for transforming data�objects� for printing data�objects� for

loading�saving data�objects� etc�

BATCH programs have as their goal the access to �les and�or databases to produce reports and synthetic

presentations of the databases� The �les� databases� reports and views are the objects of program action�

though di�erently from the case of reports or views which structure its control �ow� in the case of operations

on �les or databases� the control �ow of the program is established by the operation itself �cancellation�

insertion or modi�cation of data�� These functionalities can be regarded as special methods of the main

classes of the databases or of the classes which are closer to the database� Typically� batch transactions are

performed on categories of objects� Thus� the identi�cation of classes can be pro�tably performed on these

modules�

ONLINE programs process on line transactions� They are built around the transaction they are pro�

cessing� The structure of such transactions is re�ected by the forms of the interface prepared to call the

transaction� An ONLINE transaction can access many �les or databases from a single form� Therefore�

there is a one�to�many relationship between the source and the targets of the action� each of which can be

seen as an object�

A COBOL program is always structured in four parts �divisions��






� IDENTIFICATION DIVISION� reporting the title and author of the program and other information

needed to identify the module�

� ENVIRONMENT DIVISION� reporting the con�guration sections of the host system� and the de�ni�

tion sections for the �le or I�O device control�

� DATADIVISION� reporting the physical organisation of data on both I�O devices and central memory�

It presents a WORKING�STORAGE section and a LINKAGE section�

� PROCEDURE DIVISION� reporting the sequence of operations to be performed on the de�ned data�

such as the reading�writing access operations on external devices� numerical computation� controls

and alternatives�

A central role in the transformation from COBOL applications into an object�oriented design is per�

formed by the analysis of DATA DIVISION� which actually contains all the information needed to create a

representation of the data structures of the application domain under examination � i�e�� the de�nitions of

data structures in general� structure of �les and records in particular�

��� The Transformation Process

The preliminary step of the transformation process is the classi�cation of modules as BATCH� SUB or

ONLINE� The transformation of a COBOL SUBprogram is a speci�c case of the transformation of a main

program� since it requires to recognise its speci�c functionality in the context of the modules which activate

it� For these reasons� we start with the discussion of the transformation for main program modules� that

is BATCH and ONLINE in this order� Typically� the BATCH modules of an application contain the great

part of the data structures� In other modules� these are rede�ned with minor changes for speci�c purposes�

As depicted in Fig��� the transformation process for a COBOL application is iterative and can be

performed in several phases� In each phase� the Section is reported in which it is discussed� The phases are�

�� Identi�cation of COBOL data structures � The �rst step of the transformation of a COBOL

application �constituted by ONLINE� BATCH and SUB modules� is the analysis of the code in order

to identify all labels and strings which specify data and data structures� This requires the analysis of

all COBOL data structures of the application domain� The names of structures and variables �labels�

are collected in a local database with their relationships and formats� Please note that� in COBOL�

equivalent formats �as to memory allocation space and variable types � e�g�� numeric� alphanumeric�

can be de�ned in several syntactically di�erent ways� This increases the complexity of the mechanisms

for collecting and identifying types�

	� Elimination of redundant de�nitions of formats �uni�cation of formats� � In the second

step� a set of criteria is applied in order to identify and eliminate redundant �i�e�� duplicated� formats�

This is initially performed by identifying the essential formats used in the whole application� then

by applying a set of criteria for identifying equivalences among instance variables with compatible

formats �uni�cation of formats�� The identi�cation of a minimal number of data types is mandatory

for reducing the complexity of the system and producing a real analysis of the system itself� This phase

generates the collection of the essential formats used in the whole application �a list of equivalencies

is maintained��

�



Figure �� The process for reengineering COBOL applications towards object�oriented�

�




� Identi�cation of COBOL data structures as early classes � The third step presents the identi�

�cation of classes on the basis of the data structures and variables� According to the previous phase�

variables are classi�ed on the basis of their type �internal structure in terms of other variables or

by using formats� and� then� classes are assigned to them� Please note that in COBOL applications

many data structures and variables are usually repeated in the modules � e�g�� adding a pre�x or a

post�x� the names of these variables must be considered as synonyms� In this phase� on the basis of an

incrementable table of synonyms� several synonyms of instance variables are eliminated �maintaining

also in this case a list of equivalencies� �uni�cation of labels�� The table of synonyms can be de�ned by

the user or is automatically produced by activating a set of criteria� The process of elimination of syn�

onyms is called �label uni�cation� and leads to reduce the number of simple classes �objects� modelling

the atomic data types� Once the minimal data structures are identi�ed� they can be considered as the

elementary categories of the application domain� thus early prototypes of classes� If the reduction of

formats is not satisfactory� the process can restart from the second phase� by adding�changing criteria

for improving the processes of uni�cation�

�� Identi�cation of early class relationships � In the forth step� structured variables are de�ned

as composite classes and� thus� according to the OOP the analysis process continues by establishing

relationships of aggregation� association and specialisation �i�e�� is�part�of� referred�by�� In this step�

the variables de�ned by using the COBOL keyword REDEFINES lead to specialised classes� This is

very useful for the further association of code to classes�

�� Elimination of redundant classes �uni�cation of classes� � The �fth step is devoted to the

elimination of redundant classes� This is performed by identifying among the obtained classes those

which have the same data structure in terms of instance variables �equivalent attributes�� In this case�

the classes are uni�ed and the synonyms maintained�


� Generalisation of classes � In the sixth step� generalised classes are identi�ed� This is performed

by identifying among the obtained classes those which can play the role of subclasses of a unique

superclass� These are identi�ed by verifying the presence of an intersection among the data structures

of the candidate subclasses� Thus� also in this case� relationships of specialization are de�ned� The

result of this step is the object�oriented reanalysis of the application domain� The output of this phase

can be unsatisfactory due to a higher number of classes and�or a poor class organisation� thus� a

further iteration could be needed by restarting from the second step� An additional iteration can also

be required if new criteria for simplifying formats and classes are de�ned on the basis of the experience

acquired by observing the program transformation while performing the previous steps�

�� Analysis of data and controls for code slicing and allocating slices as method body � The

seventh phase consists in analysing the code in order to identify the accesses to data �e�g�� MOVE�

SELECT� UPDATE� INSERT� DELETE� READ and WRITE operations�� With this operation� it is

possible to evaluate the relationships between classes and the code of modules� To this end� the data

bases of equivalencies are used and the number of accesses are counted to identify the most probable

class for each given slice of code� Each code slice is the candidate body for a method of a class among

those which are in the module� Their arrangements in the class hierarchy depends on the position






which has been assigned to the attributes �variables� that slices adopt� Equivalent pieces of code are

identi�ed and� thus� methods for superclasses are created avoiding code duplication�

�� Analysis of slices for de�ning parameters and local variables � The eighth step is devoted to

identifying parameters and local variables of methods �the above mentioned slices of code�� In fact�

once a slice is reallocated as a method� a part of references to variables contained in the slice is resolved

by updating the old names with the new class attribute names �according to the above generated list

of synonyms�� References to other variables which are out of the class scope must be regarded as local

variables or method parameters� The former are those which are only locally de�ned and are not used

in other modules� while the latter are the remaining ones�

�� Establishing calls among methods of classes � Step nine consists in establishing the method

calls among methods of di�erent classes in order to close the transformation process by eliminating

all pending unresolved references� In this phase� some non�optimal solutions may be detected� for

example due to the presence of non�simpli�ed classes or class hierarchy� duplicated code� etc� For

these reasons� the process can be reiterated by starting from the second step�

In order to identify the best criteria to be applied some early analysis can be performed on a restricted

number of modules� Then� in order to identify the most relevant classes� to start from the BATCH modules

is suggested� Once the main classes with their relationships are found� the other modules can be added�

In the next Section� the �rst six phases are described� since they are crucial for the object�oriented

analysis of the application� The last three phases can be in practice performed when classes and their

relationships are identi�ed�

� Analysis of the Application Domain

As described in the previous� section the analysis of the data structures is central in the identi�cation of the

object�oriented analysis of the application domain� As discussed in Section 
� it is also the point in which

most of the methods presented in the literature and of the commercial tools for reengineering of COBOL

application are less e�ective�

��� COBOL Data Structures

The identi�cation of redundant data structures in COBOL applications is not at all an easy task� actually�

COBOL is extremely clear in the de�nition of the procedural part� but it is quite obscure in the parts

regarding data de�nition and con�guration� since sometimes it allows several interpretations and some

others equivalent structures can be de�ned in several di�erent ways� The motivation for a non�immediate

identi�cation of redundancies is due to di�erent causes brie�y schematised in the following�

� Since a COBOL programmer is free to de�ne at his�her will the data structure in the archives� it is not

rare that di�erent programmers� in di�erent modules of the same application� give di�erent �maybe

similar� but not equal� names to the same data and data structures� This is an example� taken from

a real application�

�



�� W�DATE

�� DD PIC 		

�� MM PIC 		

�� YY PIC 		

��

�� W�DT

�� YEAR PIC 		

�� MONTH PIC 		

�� DAY PIC 		

��

�� W�D

�� D PIC 		

�� M PIC 		

�� Y PIC 		

��

� Since the visibility of identi�ers is global� even for a single programmer there is the need to give

di�erent names to the same structure of a FILE� if it occurs two times in the de�nition of data in a

module� Again� an example taken from the same application�

�� FINV

�
 FINV�DATE

�� FINV�DATE�YY

�� FINV�DATE�MM

�� FINV�DATE�DD

�����

�� FBID

�
 FBID�DATE

�� FBID�DATE�YY

�� FBID�DATE�MM

�� FBID�DATE�DD

�����

� In the de�nition of the elementary data� the speci�cation of the same format of the PICTURE clause

in di�erent ways is possible� this is often used to design logically di�erent data� with the same physical

memory occupation�

�� W�YEAR PIC 		

��

�



�� W�YEAR PIC 	�



��

�� W�YEAR PIC 	���



��

� Having a complete control on the physical representation of data in memory� it is also possible that

logically similar data structures are de�ned as elementary in a module and as compound in others�

An example can be given by the representation of the date� for which no international standard is

given� but rather a plethora of national or even regional uses of representing a date are applied� this

can bring �even in the same program� to di�erent structures used for representing a date� according

to the local use of the date itself�

�� W�DATE

�� W�YY PIC 		

�� W�MM PIC 		

�� W�DD PIC 		

����

�� W�DATE�N PIC 	��


����

��� Reduction of the Simple Types

In the �rst phase� the names of variables and data structures are identi�ed� In the second and third phases�

a set of criteria for detecting and automatically solving the above mentioned problems is applied� Thus� it is

possible to unify the di�erent names which are used for simple data and data structures in di�erent COBOL

modules� This process is performed by establishing a list of synonyms for both formats and labels �names

of variables and structures�� This mechanism strongly reduces the main causes of redundancy� and thus

the number of classes� An example regarding the �rst reason for redundancy� namely the use of di�erent

names by di�erent programmers� is the equivalence� YEAR � YY � Y� The static dictionary can answer to the

problems of global synonyms� Local synonym problems are more common� due to a widely used convention

to make identi�ers more meaningful�

It is possible to specify other criteria for �nding synonyms� for example� �i� discard numeric su�xes� like

in� YEAR����� �ii� Hungarian notation� EV�IN�DT�YEAR �Event�Initial�Date�Year�� The simultaneous use

of these �lters slows down the conversion� and usually does not provide better results� Actually� it is likely

that a COBOL application uses a single convention for the identi�ers� A quick inspection of the source code

is enough to recognise the used convention and to select the most useful �lter accordingly� Please note that

most of COBOL applications have been maintained by di�erent people in di�erent times and situations�

hence �nding uniformity in the code is not justi�ed� It is also be possible to attempt a further re�nement

of the equivalence criteria� in order to enlarge the automatic recognition cases�

�



The evolution and improvement of the equivalence criteria are strongly needed when a large application

is analysed since di�erent styles and techniques are usually existing in the modules of the application�

��� From COBOL Data Structures to Classes

The early identi�cation of classes and their relationships is performed by using of the following subphases�

� identi�cation of composite classes� relationships of is�part�of and is�referred�by�

� identi�cation of specialisation for REDEFINES �is�a��

The identi�cation is performed through the analysis of the de�nition of the elementary data at the �eld

level �see the PICTURE construct� which� in particular� speci�es the visualisation and conversion formats�

This parameterises classes� and is used to calculate the memory occupation of numeric or alphanumeric data

and to de�ne the default values� For example� the following clauses specify elementary data�

�� fiscal�code PICTURE AAABAAAB		A		BA			X

�� YEAR PIC 		

�� INCOME PICTURE S	��
P

�� CARTOON PICTURE A��
BA��
 VALUE �GOOFY�

The �rst de�nition establishes that the fiscal�code �i�e�� social security number� �eld is allocated in

�
 memory locations of one byte each and is formatted as the example� GMM MNL ��R�� A��	W �a typical

Italian �scal code��

The identi�cation of the compound classes is performed through the analysis of the layout of the DATA

DIVISION� WORKING�STORAGE SECTION and LINKAGE SECTION structures of the main program�

The simpler procedure for the conversion of compound data is the transformation of each record in a class

and of each �eld in an instance variable �class member�� whose class is speci�ed by the corresponding

elementary class if the �eld is elementary� or by another class� if the record contains a further record in its

turn�

The identi�cation of the classes is performed through an iterative strategy based on Automatic Abstrac�

tion Algorithm for recognising the abstractions and simplifying the redundancies� The application of the

algorithm provides the automatic recognition of the structures which form the program� by means of the

production of tables and diagrams which allow the user to recognise key aspects of the design or possible

areas of re�nement of the analysis process� It is then possible to use this information to enrich the basic

knowledge on the application and to reapply� iteratively� the analysis algorithm� All the information re�

lated to names of variables are collected in a knowledge base� In the following� it is shown� by means of a

particularly simple example� how the Automatic Abstraction Algorithm works on its tables and diagrams�

The �rst operation performed is the substitution of the synonyms for the base names� In the following�

a typical example of COBOL data structure de�nition is reported�

Module ONE

�� PATIENT

�� NAME PICTURE X���


��



�� BIRTH

�� DD PIC 		

�� MM PIC 		

�� YY PIC 		

�� BIRTH�N REDEFINES BIRTH PIC 	��


���

���

Module TWO

�� CLIENT

�
 ID PICTURE XXB			

�
 LAST�ORDER

�� YEAR PICTURE 		

�� MONTH PICTURE 		

�� DAY PICTURE 		

�
 NAME PIC X���


���

���

In the example� it is possible to note how labels YY� MM� and DD in Module ONE are equivalent to YEAR�

MONTH and DAY in Module TWO� This consideration can be performed simply by observing the code� and

so it can be introduced in the knowledge base about the application before the analysis �as we suppose in

this case�� Alternatively� it can be recorded in the knowledge base when the abstraction process has already

produced the �rst diagrams and results� As will be shown in the following� once two names are recognised

to be synonyms� the synonym disappears since it is completely equivalent to the �rst name�

The next operation is the building of tables containing important information recovered during the

analysis of the application� in particular� the following tables are built�

� Table of system Modules �TM��

� Table of Types �TT�� table of formats�

� Table of the Instance Variables �TVI�� table of elementary classes� see Fig�	�

� Table of the Classes �TC��

Each module��le of the COBOL application under analysis is stored in TM� in our case TM has the

following content�

Table of system Modules� TM

Module ID name path
� ONE �WORK�CO
OC�SBN�

	 TWO �WORK�CO
OC�SBN�

�� ���� ���

��



format

CString
format

CNumber

format

CType

tXX

XX

tX(6)

X(6)

t99

99

t9(2)

9(2)

t9(002)

9(002)

Figure 	� Relationships among fundamental classes and those which are speci�cally de�ned for the applica�

tion� dashed lines represent in this case the process of class instantiation with parameters� continuous lines

are is�a relationships�

�	



The only data types which can be directly de�ned in COBOL are those reported in the following table�

Each type is listed with an example of its use and the class that has been de�ned as fundamental for any

object�oriented application�

Type example Library Classes
Numeric S			V			 CNumber��S			V			��

Alpha AABBAAA CString��AABBAAA��

Alphanum A��
		A			X CString��A��
		A			X��

CNumber�format� and CString�format� are subclasses of CType�format� class� all these classes are pro�

vided in a library� These have been parameterised on their format� as shown in Fig�	� In practice�

each elementary class de�ned in the process can be considered as a specialisation of parameterised class

CType�format� provided with the tool �see for example classes tXX� tX��
� etc�� of Fig�	�� This mechanism

is implemented in the tool by instantiating an object of classes CNumber or CString according to their nature

and the above table�

Each new format generates an entry in the Table of Types� TT� where A means alphanumeric and N

numeric� in the last column the dimension in bytes is reported�

Table of Types� TT

Format ID format Type Dimension
� X���
 A ��
	 		 N 	

 	��
 N 

� XXB			 A �
��� ��� ��� ���

Each elementary �eld label of COBOL data structures generates an entry in table� TVI� Homonymous

labels generate di�erent entries� see for example for NAME�

Table of the Instance Variables� TVI

TVI ID LABEL Class ID Format ID
� NAME � �
	 DAY 	 	

 MONTH 	 	
� YEAR 	 	
� BIRTH�N 
 


 ID 
 �
� YEAR � 	
� MONTH � 	
� DAY � 	
�� NAME 
 �
��� ��� �� ��

The last column� Format ID� records the references to the formats as indexes into TT� In this table� we

can also note that labels YY� MM and DD have disappeared� begin replaced by their synonyms� as we have seen

before� Column Class ID reports the references to the compound classes considered in the analysis of the

de�nitions of records in the DATA DIVISION and� thus� in TC itself� according to an is�part�of relationship�

�




BIRTH-N: t9(6)

BIRTH-N

CLIENT

ID tXXB999
NOME: tX(40)

DD: t99
MM: t99
YY: t99

BIRTH

PATIENT

NOME: tX(40)

YEAR: t99
MONTH: t99
DAY t99

LAST-ORDER

Figure 
� Relationships among classes� is�a as continuous lines� is�part�of as dashed lines� is�referred�by as

dotted lines�

Each record of the COBOL data structures generates an entry in the following table� TC� The relation�

ships automatically obtained after the �rst phase are reported in Fig�
� The following TC table reports

classes and their relationships according to the OOP ���� ��
�� Each entry of columns is�a� is�part�of and

is�referred�by reports the Class ID representing class relationships� In e�ect� each entry is a list of Class IDs

which in this case contains only an element� In the example reported� only single relationships have been

found� In TC the �nal dimensions in bytes of class instances are also reported�

Table of the Classes� TC

Class ID class name Module ID is�part�of is�a is�referred�by dim� cost
� PATIENT f�g � � � �
 �

	 BIRTH f�g f�g � � 
 


 CLIENT f	g � � � �� ��
� LAST�ORDER f	g f
g � � 
 

� BIRTH�N f�g � f	g f�g 
 �
�� �� � � � � � �

Table TC also reports a column showing an index of the cost of coding according to a simpli�ed version

of metrics adopted in ��	�� ���� ����� This measure is obtained by evaluating the dimensions of locally de�ned

class attributes� and it is useful for having an approximate measure of the e�ort needed for implementing�

maintaining� reusing classes on the basis of the selected class hierarchy� and thus also for reengineering the

code� In this case� the value of total cost is equal to ���� Please note that cost is equal to the dimensions

��



where no is�a relationship is de�ned� This value will be reduced by a suitable organisation of classes as

demonstrated in the following�

In the example� the presence of COBOL clause REDEFINES in the de�nition of an elementary type means

that the same memory area� allocated to a previously de�ned data structure� is also used by a new data

structure� The new data structure could have a di�erent meaning� but shares the same memory area� In the

example BIRTH�N uses the same area as of BIRTH� This mechanism is frequently used by programmers for

specifying that a variable employed like another variable with a mutual exclusive behaviour �e�g�� in certain

cases the social security number is used in the place of the number of driving licence�� This relationship

can be regarded as a specialisation�generalisation with attribute rede�nition since the instances of the

subclass can be substantially used as those of its superclass� but may have a di�erent meaning or behaviour

�methods� �e�g�� checking of consistency of the code�� For this reason� BIRTH class is considered the superclass

of BIRTH�N� Moreover� since PATIENT class presents in its COBOL de�nition two di�erent variables referring

the same data area� a relationship of is�referred�by is established with class BIRTH�N� This means that in

this speci�c case each instance of class PATIENT holds an instance of class BIRTH and a pointer to the same

instance produced by class BIRTH�N� thus reproducing the early conditions�

��� Consolidation of Class Relationships

The consolidation phase of class hierarchy is performed by executing the following operations�

� simpli�cation of the collection of elementary classes and instance variables�

� simpli�cation of the collection of compound classes�

� identi�cation of specialisation relationships among classes�

� identi�cation of generalised classes�

This analysis consists in eliminating redundant instance variables in table TVI and unused classes in

table TC� This process is drawn on the basis of the relationships among data structures reported in the

other tables� As a �rst result� redundant instance variables in TVI are removed and the other tables will be

updated accordingly� thus� TVI becomes�

Table of the Instance Variables� TVI

TVI ID LABEL Class ID Format ID
� NAME f�g �
	 DAY f	g 	

 MONTH f	g 	
� YEAR f	g 	
� BIRTH�N f�g 


 ID f
g �
�� �� �� ��

Please note that this table already reports the �nal values in the Class ID column� and the is�part�of

relationships between elementary classes and the other classes� In this phase� each entry of column Class ID

of table TVI is in practice a list of Class IDs�

��



When classes with identical layout are detected� it is possible to eliminate directly the redundant classes�

with the care of maintaining for the remaining class its synonyms� These are collected in the knowledge

base of the eliminated classes� In this case the analysis can proceed automatically� On the other hand� this

can lead to wrong assumptions� since structurally equal classes� which could be considered of the same type�

can have very di�erent behaviours� In these cases� the analysis of the functional aspects should help to take

the �nal decision�

In our example� by forcing the equivalence of the identi�ers BIRTH and LAST�ORDER� it is possible to

consider those classes as uni�able� since they have the same dimension and equal instance variables� The

redundant class is deleted from table TC�

When classes are equal �up to a certain point� it is possible to create a class hierarchy �is�a relationships�

which aggregates in the superclass the common part and in the subclasses the variations and enrichments�

In the example both PATIENT and CLIENT classes share the de�nition of variable NAME as their part and�

after the previous step� also that of BIRTH�LAST�ORDER class� Please note that class BIRTH�LAST�ORDER is

used by modules � and 	� Therefore� it is possible to create a class �e�g�� Super�PATIENT�CLIENT� to which

the common parts are assigned and this will be considered as a superclass of the two previous classes� Class

Super�PATIENT�CLIENT presents a reference to both modules in which their direct subclasses are present�

This makes faster the phases in which the slices of code are assigned to classes� For the example� table TC

has been updated as follows�

Table of the Classes� TC

Class ID Class Name Module ID is�part�of is�a is�referred�by dim� cost
� PATIENT f�g � f�g � �
 �
	 BIRTH�LAST�ORDER f�� 	g f�g � � 
 


 CLIENT f	g � f�g � �� �
� BIRTH�N f�g � f	g f�g 
 �
� Super�PATIENT�CLIENT f�� 	g � � � �
 �

�� �� � � � � �� ��

In table TC� the �nal dimensions in bytes of class instances are reported� These values are substantially dif�

ferent from the theoretical dimensions of the classes which� by means of the is�a relationship� can be even de�

�ned without adding instance variables �such as BIRTH�N with respect to its superclass BIRTH�LAST�ORDER��

In fact� with this new class hierarchy a strong reduction of cost has been obtained� thus producing a to�

tal cost equal to ��� Please note that this is less than half the value obtained at the beginning when no

simpli�cation on classes was performed�

This process of class organisation is typically performed also on code of modules� In fact� a correct

identi�cation of the class hierarchy helps to identify the duplications of slices of code and� thus� it avoids

the generation of duplicated methods�

In Fig��� the result of the �nal analysis� for the example discussed� is reported in the form of a class tree�

� C�O
� and The Millennium Problem

The Millennium Problem �MP� is substantially a systematic implementation error due to the wrong ac�

quisition of requirements in the early phases of many applications� Too much as been written on this

�




Super-PATIENT-CLIENT

NOME: tX(40)

PATIENT

BIRTH-N

CLIENT

BIRTH/LAST-ORDER

ID tXXB999

YEAR: t99
MONTH: t99
DAY t99

BIRTH-N: t9(6)

Figure �� Final class relationships� is�a as continuous lines� is�part�of as dashed lines� is�referred�by as

dotted lines�

��



problem to discuss it in few lines� Several opinions and discussions can be read by visiting www site

http���www�year
����com��

From our point of view� the MP has to be considered as a relevant problem since there exists the e�ective

possibility that the behaviour of an application is dependent on the date and� thus� its behaviour around

the changing from ���� to 	��� may lead to disasters or to unrecoverable errors� This is partially due to

the frequent adoption of only two digits for storing dates� instead of � �e�g�� in COBOL applications�� In

other languages� the date is frequently stored with an integer� thus the MP seems to be missing� On the

other hand� the real problem is in the procedures that do not address the problem of changing from ����

to 	���� for example for estimating the age� the delay of payment� the days of currency� the association of

analyses in the hospital� etc� This can be really a problem in hospitals� in airports� and other organisations

whose ine�ciency could result even in injuries to people�

The MP could be considered less relevant for insurance companies� banks� service companies� etc� �Less

relevant� in terms of human victims� but surely strongly relevant for its economical impact� These facts are

leading most of the big companies to analyse their systems in order to identify and solve the MP in advance�

This can be a mere target since most of the applications are capable of completing their work only by using

other applications� These are in turn built by other companies� and so on� This means that the absolute

con�dence that the solutions adopted will make your system safe against the MP cannot be acquired� even

if several test cases are made� On the other hand� this is true for every kind of error�

The above position is obviously contrasted by several technicians who are waiting for the error to begin to

solve it� This can be true but disputable for small systems� For large systems� this cannot be accepted since

in many cases the adoption of a di�erent format for the date constrains to a reorganisation of databases�

the modi�cation of several hundreds of screens� print reports� and manuals� These operations cannot be

performed as a simple� ordinary problem of maintenance �	���

On the contrary� an object�oriented analysis of similar applications usually leads to model the date as

a unique class for the whole application domain� Therefore� a correct object�oriented reengineering of a

COBOL application must imply the reduction of similar classes to a single one� This process is particularly

exploited in our approach and tool�

This has been particularly evident in the �rst application of C�O
� which was the reanalysis of the

software for managing university libraries on a national basis� It is called SBN �Servizio Bibliotecario

Nazionale� National Library Service� and consists of 	��� modules for a total of more than ten megabytes

of COBOL code� with much as 
����
� lines of obscure and old�fashioned COBOL crafted by more than 
�

developers �about � Million of keywords and labels�� without a constant evolution plan over eight years of

use� with only 	���
 comments�

In SBN software� several thousands of instances of the MP have been found� in fact all the modules have

only two�digit�year in the date de�nitions� Other systematic errors can be found in the procedural code�

especially when the date is read from the system clock�

The process of COBOL code analysis has identi�ed a huge amount of data structures containing dates�

For example� in �
�
 main modules� the early version of TVI resulted in 

��� entries� and the table of

classes� TC� in ��
�� entries� with ��� di�erent formats� There were more than ���� instances of dates in

� di�erent formats�

The typical conceptual process which C�O
� follows for enlightening the problem � �rst the format and

then the label uni�cation � has allowed to classify � data structures as instances of a same class� DATE

��



t99

99

W-ANNO

W-AA

W-AA

W-AA1

AA-INI

AA-FIN

W-AA

FINV-AA

FBID-AA

T9(2)

9(2)

T9(002)

9(002)

Figure �� Early classes for formats and instance variables modeling years� with their relationships�

parameterised on the physical storage format� Please note the similar names of the variables� In Fig��� the

relationships among the early classes modelling the formats and those which model the variables representing

years into the SBN application are reported� According to steps 	 and 
� the uni�cation of formats and that

of labels reduce the collection of classes reported in Fig�� in a simple couple of classes as depicted in Fig�
�

In this case� it is really simple to understand that a reduction of classes means also a reduction of the

e�ort in making modi�cations for solving the MP�

By using C�O
� the passage from the early implementation to an object�oriented description of the

domain problem was performed by means of a reasoning�based iterative process�

� C�O
� � A Tool for Reengineering COBOL Applications

C�O
� �COBOL to Object�Oriented tool� is an instrument for analysing COBOL applications by means of

the OOP� The analysis performed by C�O
� tool is focussed on modelling the problem domain according to

the OOP�

C�O
� is based on a Lex�Yacc engine which is capable of processing all COBOL syntax and semantics �the

current prototype is able to recognise a particular version of COBOL close to the standard� but provisions

have been included to customise it to other versions�� This tool is supported by a set of prede�ned classes for

modelling the main entities which are typically present in COBOL applications� Fig�� shows the relationships

among class Database of the tool class library� class SBN obtained for collecting all database features collected

for the SBN application� and the main classes which model the record to be stored into the database� Class

Database provides all methods for accessing to database�

��



t99
99

ANNO

t99
99

W-ANNO

W-AA

W-AA1

AA-INI

AA-FIN

T9(2)
9(2)

T9(002)
9(002)

t99
99

68 W-
ANNO

308 W-AA

413 W-AA

417 W-AA1

499 AA-INI

499-AA-FIN

500 W-AA

524 FBID-
AA

LABEL UNIFICATION

FORMAT UNIFICATION

Figure 
� C�O
� process for enlightening Millennium Problems into the SBN�

	�



Database

...

get()
put()
find()
...

SBN

DOCUMENT ACQUISITIONMOUVEMENT
BIBLIO LDUE

INVENTAIRE
PRESTOUNSER

LUNO

Figure �� Relationships among class Database of the tool and the related application classes�

Fig�� depicts the relationships among class File of C�O
� class library and FINV and FBID classes �partially

reported in the early example�� and class DATE� Class File contains all methods and attributes to perform

a general access to �les�

Due to the high number of similar and identical data structures which are usually present in COBOL

applications� the process of data structure uni�cation needs to be practically supervised by the user� The

process of application domain analysis is performed by means of the de�nition of a knowledge base containing

synonyms or by direct assistance from the user� When similar data structures identi�ed by C�O
� are missing

in the knowledge base� the �nal decision about their uni�cation is left to the user� Thus� an iterative process

of continuous improvement is established in order to minimise the complexity of the reengineered application�

This process is also assisted by some simple metrics based on class size�

The objective of the software prototype we have developed was to show the practical feasibility of

the reengineering trajectory sketched in the previous sections� The prototype is capable of performing

the recognition� abstraction and transformation of concepts� supporting di�erent reengineering methods�

supporting multiple models� providing visual and textual multiple but consistent representations� and of

providing an explicit support to software evolution techniques�

The features described are made accessible to the user by means of two main activities of C�O
�� �i� the

automatic abstraction� using the algorithm shown in the previous section and �ii� the interactive modelling�

which allows the updating of the models of the source code under examination� following an evolutionary

strategy� according to the user�s needs� The models are collections of meaningful activities� obtained by

the analysis of the source code� Once it has been created� a model can be re�ned by the user by means of

commercially available speci�c evolutionary design tools�

	�



File

FINV

ID:tXX

NUM:t9(9)
STAT:tX
TIP:tXX

PRIX:t9(10)
CODCAR:tX

CODSCAR:tX
UNS:tX(9)
BID:tX(10)

FBID

BID:tX(10)

NAT:tX
COUNTRY:tXX

LANGUAG:tXXX
YEAR:tX(4)
STAT:tXX
NACQ:t99

NINV:t9(4)
NDOC:t99

NLEGB1:t99
NLEGB2:t99

DATE

YEAR:t99
DAY:t99

MONTH:t99

Figure �� Relationships among class File of the tool and the related application classes�

� Discussions and Conclusions

In this paper� a method�tool �C�O
�� COBOL to Object�Oriented� for analysing COBOL applications has

been presented� This tool is capable of identifying classes and their relationships by means of a process

of understanding and re�ning in which COBOL data structures are analysed� aggregated� and simpli�ed

semi�automatically� It can support di�erent reengineering methods� and has been used on a large application

such as the software for managing all libraries of the University of Florence �where many instances of the

millennium problem were found� with very interesting results� Work is in progress for implementing the

mechanism for the automatic association of procedural parts to classes�

Similar approaches and tools for migrating COBOL applications towards object�oriented models have

been proposed in the literature� One of the �rst methods o�ered for migrating COBOL applications towards

object�oriented ones has been REDO ����� This was mainly oriented to derive from a COBOL application its

speci�cation in Z�� �		�� REDO is capable of converting BATCH COBOL programs into an intermediate

language and from this to Z��� Keywords REDEFINES of COBOL are converted into invariant assertions�

while every COBOL record is converted into a class having as attributes its data components� Program

slices which use class attributes are assigned to classes as methods� In this approach� no elimination of

redundant de�nitions of formats as well as of duplicated classes and methods �e�g�� by de�ning generalised

classes� is performed�

The MOORE approach�tool was presented in �	�� for converting COBOL applications into Object

COBOL� It works only on pure COBOL�� programs and is capable of converting COBOL data struc�

tures in classes by means of a user�guided process in which the MOORE tool proposes solutions to be

selected by the user� In this process only little attention is given to a full analysis of the application and

		



to establishing optimal relationships among classes in order to minimise the e�ort of code reuse� In fact�

the typical COBOL duplication of code and data de�nitions is also produced into the new version of the

application�

The REDOC project ����� �
� is based on the assumption that classes can be directly derived from

modules de�ning SUBprograms� while ONLINE and BATCH modules contain references to several classes

and are far from being regarded as single classes� These assumptions could be true for some modules� but in

general the SUBprograms� as well as the methods in object�oriented applications� work on local attributes

and temporary instances of other classes� For this reason� the early basic assumption chosen can lead to a

less satisfactory identi�cation of classes and� thus� of the object�oriented analysis of the application domain�

CORECT �http���www�acm�co�uk� is a commercial tool for migrating COBOL applications towards

Java and other languages� Even with CORECT tool� the main problem we have experienced with the

version tested is the lack of mechanisms for automatically reducing equivalent formats �elementary types of

the applications�� This leads to an excessive number of classes� CORECT tool is also less satisfactory in

de�ning the relationships of specialisation� thus� the large duplication of data and code is also maintained in

the object�oriented version of the application� If the user pays attention to prepare the conversion eliminating

the duplications of formats� then a strong improvement of results is obtained�

As a conclusion� di�erently from the methods reviewed� the method proposed is� in our opinion� superior

in�

� making an object�oriented analysis of the problem domain of the COBOL application�

� reducing the structural complexity of the application by reducing the number of elementary types

�reduction of formats��

� increasing the reusability and the maintainability of system classes by organising classes according to

the OOP and identifying generalisations�

These problems were stressed in ���� and �	
� as the main drawbacks experienced in the migration

of COBOL applications towards object�oriented� With our approach for reducing multiple formats and

identifying the class hierarchy� we have partially solved these problems� The production of a worst object�

oriented analysis of the COBOL application can lead to high costs of reuse and maintenance� an object�

oriented system with a bad class organisation can be even worst than an old procedural application�

Acknowledgements

The authors would like to thank Dr� Ing� E� Somma for the early experiments of the project and tool

discussed�

References

��� G� Bucci� M� Campanai� and P� Nesi� �Tools for specifying real�time systems�� Journal of Real�Time

Systems� vol� �� pp� ������	� March �����

�	� T� J� Briggersta� and A� J� Perlis� Software Reusability� Volume I� Concepts and Models� New York�

Addison Wesley� ACM Press� �����

	




�
� J� Faget and J��M� Morel� �The REBOOT approach to the concept of a reusable component�� in Proc�

of �th Annual Workshop on Software Reuse� WISR	
�� �Palo Alto� CA� USA�� 	
�	� Sept� ���	�

��� O� Signore and M� Lo�redo� �Some issues of object�oriented re�engineering�� in Prof� of ERCIM Work�

shop on Methods and Tools for Software Reuse� �Heraklion� Crete� Greece�� ���	�

��� E� J� Chikofsky and J� H� C� II� �Reverse engineering and design recovery� A taxonomy�� IEEE Software�

vol� �� pp� �
���� Jan� �����

�
� H� M� Sneed and E� Nyary� �Extracting object�oriented speci�cation from procedurally oriented pro�

grams�� in Proc� of the �nd Working Conference on Reverse Engineering� �Toronto� Ontario� Canada��

pp� 	���		
� IEEE Press� July ����
 �����

��� G� Booch� Object�Oriented Design with Applications� California� USA� The Benjamin�Cummings Pub�

lishing Company� �����

��� P� Nesi� Objective Software Quality� Proc� of Objective Quality �

�� �nd Symposium on Software Qual�

ity Techniques and Acquisition Criteria� Berlin� Lecture Notes in Computer Science� N��	
� Springer

Verlag� �����

��� P� Nesi and M� Campanai� �Metric framework for object�oriented real�time systems speci�cation lan�

guages�� The Journal of Systems and Software� vol� 
�� pp� �
�
�� ���
�

���� P� Nesi and T� Querci� �E�ort estimation and prediction of object�oriented systems�� The Journal of

Systems and Software� vol� in press� �����

���� J� Daly� J� Miller� A� Brooks� M� Roper� and M� Wood� �Issues on the object�oriented paradigm� A

questionnaire�� tech� rep�� Dept� of Computer Science� Univ� of Strahclyde� UK� RR������
� June �����

��	� M� Lorenz and J� Kidd� Object�Oriented Software Metrics� A Practical Guide� New Jersey� PTR

Prentice Hall� �����

��
� E� C� Arranga and F� P� Coyle� Object�Oriented COBOL� SIGS BOOKS � MULTIMEDIA� ���
�

���� C� L� Ong and W� T� Tsai� �Class and object extraction from imperative code�� Journal of Object

Oriented Programming� JOOP� ���
�

���� I� Jacobson and F� Lindstr om� �Re�engineering of old systems to an object�oriented architecture�� in

Proc� of OOPSLA �

�� 
th Conference on Object�Oriented Programming Systems� Languages� and

Applications� ACM SIGPLAN NOTICES VOL� �
� N���� �Phoenix� USA�� October �����

��
� J� Rumbaugh� M� Blaha� W� Premerlani� F� Eddy� and W� Lorensen� Object�Oriented Modeling and

Design� New Jersey� Prentice Hall International� Englewood Cli�s� �����

���� S� Pidaparthi and G� Cysewski� �Case study in migration to object�oriented structure using design

transformation methods�� in Proc� of the �st Euromicro Conference on Software Maintenance and

Reengineering� �Berlin� Germany�� pp� �	���
�� IEEE Press� ����� March �����

	�



���� P� T� Breuer and K� Lano� �Creating speci�cations from code� Reverse�engineering techniques�� Soft�

ware Maintenance� Research and Practice� vol� 
� �����

���� H� M� Sneed� �Migration of procedurally oriented COBOL programs in an object�oriented architecture��

in Proc� of the IEEE Conference on Software Maintenance� �Orlando� Florida�� pp� ������
� IEEE

Press� Nov� ���	 ���	�

�	�� H� Fergen� P� Reichelt� and K� P� Schmidt� �Bringing objects into COBOL� MOORE � a tool for

migrating from COBOL�� to object�oriented COBOL�� in Proc� of the International Conference on

Technology of Object�Oriented languages and Systems� TOOLS USA 
�� pp� �
������ �����

�	�� B� Muller and R� Gimnich� �Planning year 	��� transformations using standards tools� An experience

report�� in Proc� of the �st Euromicro Conference on Software Maintenance and Reengineering� �Berlin�

Germany�� pp� ������� IEEE Press� ����� March �����

�		� K� Lano and H� Haughton� Object�Oriented Speci�cation Case Studies� New York� London� Prentice

Hall� �����

�	
� A� Fantechi� P� Nesi� and E� Somma� �Object�oriented analysis of COBOL�� in Proc� of the �st Euromi�

cro Conference on Software Maintenance and Reengineering� �Berlin� Germany�� pp� �����
�� IEEE

Press� ����� March �����

	�



Contents

� Introduction �

� From COBOL to Object�Oriented �

	�� The Transformation Process � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� Analysis of the Application Domain 	


�� COBOL Data Structures � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


�	 Reduction of the Simple Types � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


�
 From COBOL Data Structures to Classes � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��


�� Consolidation of Class Relationships � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��


 C�O
� and The Millennium Problem ��

� C�O
� 
 A Tool for Reengineering COBOL Applications ��

� Discussions and Conclusions ��

	



