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Abstract

The External Specification is currently approached by specification languages for describing and an-
alyzing system requirements. The External Specification can be defined during the early stages of the
system development and can be very useful for: checking the class/system/subsystem requirements; check-
ing the system composition; evaluating costs of reuse; defining validated reference requirements, histories,
and traces for the final validation. This paper presents a collection of criteria in order to formally verify
the External Specification of reactive systems/subsystems. The verification criteria are grounded on the
TROL specification model for real-time systems. In TROL, the External Specification is expressed in
terms of ports and clauses with temporal constraints. The goal of the verification criteria presented is to
check the completeness and consistency of the External Specification with special attention to temporal
constraints. These criteria can be applied to other real-time specification models and have been enforced
in the TOOMS tool. A practical example illustrates the verification process that embodies these criteria.
Index term: Verification, Requirements Engineering, External Specification, Real-time Systems, Object-

oriented.

1 Introduction

Techniques for specifying reactive as well as real-time systems are presently the focus of interest of many

researchers [1]. Due to the power required for industrial machines, the application area of reactive systems
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becomes larger every day. In such systems, relevant failures are caused by violations of conditions specified
by means of the so-called temporal constraints (i.e., deadline, timeouts, etc.). It has often been demonstrated
that, even for large applications, the adoption of formal methods since the early phases of the development
life-cycle reduces the failure probability of the final product — e.g., [2], [3], [4], [5], [6], [1]. Moreover, formal
models are effective if they are supported by verification and validation techniques to ensure the correctness
of the system specification.

For these reasons, several languages and tools for modeling the system under specification have been
proposed starting from its requirements — early examples are [7], [8]. More recently, the Object-Oriented
Paradigm (OOP) has also impacted on several formal specification languages, in that these have been
extended in order to support system structuring (i.e., composition/decomposition) and reuse — e.g., [1], [9].
The adoption of OOP also provides an improved means with which to identify the External Interface of
each system component. The specification of the External Interface is usually given in terms of the External
Specification which consists of a set of statements describing the high-level behavior of the component under
specification and the structure of its interface.

The formalisms describing the External Specification of reactive systems can be classified in 1/O-based
or method-based (i.e., service based) models. In 1/O-based models, an object/component is seen as a block
which communicates through a number of I/O ports (via message passing) with the surrounding environment
(i.e., other objects) (e.g., OSDL, ObjectChart, TOOMS). In method-based models, objects are still seen as
blocks and their communications with other objects take place via procedure calls (e.g., Z++, Object-Z,
VDM++) [1]. A more general model describes 1/O ports or methods as class (entity, component) services.

The External Specification is typically given by means of predicates or traces, and can be considered
as an abstract description of system (components, class) specifying its behavior in the most important
operating conditions. In fact, this typical behavior of the system is frequently described on the basis of
its status condition; in many cases, it is assumed that the status is externally visible using certain type
of monitoring panel. For example, the External Specification is given by using: History and invariants in
Z++ [10], History Invariantsin Object-Z (linear time predicates) [11], Aua-reasoning partin VDM++ [12],
clauses in TOOMS/TROL [13], predicates in TRIO+ [14], Message Sequence Charts describing scenarios
(i.e., possible traces) in OSDL [9], ObjectCharts [15], ROOMCharts [16], etc. Other event-based languages
(e.g., [17]) and assertion-based languages (e.g., [18], [19]) could also be adapted by collecting rules according

to the External and the Internal point of view of the specification. Some of the above methods include



special constructs for specifying temporal constraints, whereas others include temporal logics (e.g., MTL
[20], TILCO [21], [22], TLA [23], [24], RTTL [25], [26], LEPAForM [27], TRIO [14], and for a survey [28]).

On the basis of the External Specification the phases of verification and validation can be performed
from the early stages of the specification. A specification model based on a formalization of the External
Specification and endowed with mechanisms for its verification and validation can be very useful for: (i)
checking the class/system/subsystem requirements, (ii) checking the system composition, (iii) evaluating
costs of reuse, (iv) defining validated reference requirements, histories, and traces for the final validation,
and (v) early detection of inconsistencies.

Please note that the two terms verification and validation do not always have the same meaning [6], [29].
For instance, in [6] the most frequently used definitions for verification have been reported, while the term
validation is used to mean “final verification”. For verification we intend the phase in which the completeness
and consistency of the specification are checked. A specification is complete to the extent that its parts
are present and fully developed [29]. A specification is consistent to the extent that its provisions do not
conflict with each other or with the general objectives [29]. The verification of correctness and completeness
is typically performed statically by controlling the syntax and semantics of the model without executing
the specification. For walidation we intend the phase in which more general properties (that the system
under specification must provide according to requirements) are demonstrated to be already enforced in
the specification. The system validation consists in controlling the conditions of liveness (i.e., absence of
deadlock), safety, and the meeting of timing constraints (e.g., deadline, timeout, etc.), etc., in the presence
of critical conditions. It is usually performed statically in descriptive approaches (i.e., by proving properties)
and dynamically in operational approaches (i.e., by simulation). Some of these aspects can also be detected
in the phase of verification if a suitable formal model is used.

In mainly operational models and tools, the verification phase is frequently reduced to the syntax checking
without controlling the completeness and the consistency of the behavioral parts of the specification. System
behavior is frequently controlled only during the validation phase in which model-checking, and /or property
proof techniques are adopted. During model-checking only a part of system behavior is validated against
specific traces which have been provided by the user or, in some cases, automatically generated from the
early phases of system specification. A different approach consists in the adoption of a theorem prover in
order to prove properties against the specification (in this case the specification model must be supported

by a specific theory). A middle approach may consist in the adoption of a symbolic model-checking which



allows for validation of a larger part of system behavior with an effort comparable to that of performing
model-checking. The above mechanisms must be obviously be supported by the semantics of the specification
model adopted — e.g., first order logic, higher order logic, CSP, CCS, Petri Net, State Machines, set theory,
etc.

Most of the previously mentioned techniques adopt the External Specification as a model for validating
the specification by means of model-checking or by using other techniques. In those cases, it is assumed
that the External Specification is correct and consistent, yet this is obviously a genarally false statement.
For this reason, a mechanism for verifying completeness and consistency of the External Specification is
needed. If the External Specification is complete and consistent the validity of its adoption for the general
system validation has a greater significance. This is also true for the External Specification of each system
component and subcomponent, thus, it is also useful for system composition/decomposition.

Obviously, the definition of verification and validation must be adapted when used to define criteria
for verifying External Specifications. The verification mechanism must also guarantee that the histories
constituting the External Specification are consistent and that the External Specification itself is complete.
On the other hand, the External Specification is a non-exhaustive description of the component even if it is
complete, but this can be very useful to better define the boundaries of the internal, detailed specification [30].
Please note that the use of verified and validated External Specifications is the first step towards building
the Internal Specification. The External Specification and the Internal Specification must be consistent,
coherent, etc. Therefore, the External Specification and its verification and validation techniques can be
profitably integrated with techniques for system composition/decomposition — e.g., [31], [32], [33], as well as
with object-oriented models and reuse-based techniques such as in our TOOMS/TROL approach [34], [13],
[5].

In this paper, the authors present the criteria for the verification of the External Specification of TROL
components. TROL (Tempo Reale Object-oriented Language) is an object-oriented language for the speci-
fication of real-time systems [13], [34], [35]. It adopts a dual model presenting both descriptive and opera-
tional aspects providing support for describing the system behavior, its functionality and structural aspects.
TROL is supported by the CASE tool TOOMS which consists of a set of visual editors, a report generator, a
database for collecting and recovering specifications for reuse, a compiler, an analyzer to perform the verifi-
cation of completeness and consistency, a validator, and a simulator (that can simulate the system behavior

by using both clauses and state machines) [34], [36], [5]. At each specification level, TOOMS can help the



user to verify consistency, thus allowing the incremental specification and the execution of partially specified
systems (i.e., prototyping) [34], [5]. The verification criteria have been set up to (i) detect inconsistency and
incompleteness in the External Specification, (ii) create the bases for composition/decomposition process of
development, (iii) formalize the external behavior of the component/system for its further adoption in order
to validate the Internal Specification and/or implementation.

Each TROL entity presents an External Specification based on clauses and temporal constraints. The
External Specification can be regarded as a description in terms of traces or first order predicates (such as
in Object-Z or in OSDL), since clauses may be subsequently activated to form traces or histories. For these
reasons, the criteria reported in this paper can be profitably used even on other specification models.

The paper is organized as follows. In Section 2, the TROL model is briefly reported in mathematical
notation. In Section 3, a selection of criteria to verify completeness and consistency of External Specifi-
cations is formally presented with some small examples. The criteria proposed are illustrated in Section 4
through an example based on the specification of a cellular phone. Finally, conclusions are drawn in Section

5.

2 Overview of TROL Formal Model

In TROL, the system under specification is hierarchically decomposed into objects and sub-objects. In
this paper, only the problems related to the verification of their External Specifications are addressed.
The following mathematical model is used as a basic notation to formalize the criteria for the verification of
External Specifications. The criteria reported in this paper have been selected from those which are currently
enforced in the TOOMS CASE tool [5], [13]. These do not claim to represent an exhaustive collection of
criteria for the detection of all problems that can be present in the External Specifications. We started to
work on the criteria after the analysis of the problems encountered during the final validation of specification.
We noticed that most of them could be avoided by using consistent and complete specifications. On these
bases, criteria for early detection of problems of concistency and completeness were defined. Please note that
these problems can arise for entire systems but also for the validation of each component, sub-component.
The criteria have been elaborated upon by following the concepts of completeness and consistency with the
aim of solving the problems detected during the application of non fully verified external specifications of
several approaches — [1].

In TROL, the descriptive aspects of the language are used to help developers generate complete and



congruent specifications, verifying all system aspects by means of clauses and reasoning on timing constraints.
The descriptive aspects are mainly contained in the External Specification.

A TROL specification, ©, consists of a set of objects, 2, where each object is instantiated from its class
according to the object-oriented paradigm [13]. A TROL object w is a pair, w = (N,,b) where N, is the

object name and b is the class from which object w is instantiated. A class b is a 3-tuple:
b:= (N, ES,IS),
where:

e N, is the class name — i.e., class identifier;
e IS is the External Specification of the class;

e /5 is the Internal Specification of the class.

2.1 Formalizing the External Specification

The External Specification is defined as:

ES :=(,0,V),
where:
o [ :={iy,l2,...,1,} is a set of provided services (i.e., input ports). A provided service can be normal
or buffered;
e O :={01,02,...,0,,}is aset of required services (i.e., output ports). A required service can be normal

or available;

o U= {1y, ¢g,.. .,anw} is a set of clauses. These are used for specifying the behavior of the class in

terms of input/output relationships.
A provided service — i.e., an input port ¢ € I — is modeled as a 5-tuple:
1= <Ni7D7M7 RTn7RM>7

where:



N; is the input name;

D :=real | integer | signal | enum | bool | typede f | multitype ... is the input type. typedef are used
to define records, multitype to define variables/connections which can store/pass data belonging to
different types, enum are enumerated collections, signal are token-messages containing no data (very

useful for synchronization);

e M :=normal | buffered is the port modality;

R,, € R is the minimum distance between two consecutive inputs, in time units;

Ry € 'R is the maximum distance between two consecutive inputs, in time units.

Therefore, R,, and Rps are time bounds on the occurrence of input messages. Communications among
objects are supported through message passing; messages are considered as tokens irrespective of their
content — i.e., whether they contain data and/or commands (i.e., controls) [13]. The basic communication
model is synchronous on 1-way unidirectional channels with a blocking sender and a blocking receiver, as
in the model proposed by Shaw in [37]. Different communication mechanisms among ports are possible
depending on their combination. These can be defined as normal (i.e., synchronous), buffered and available
(i.e., shared variable) [13]. Only inputs can be buffered, while only outputs can be available. Normal ports
correspond to the default case, thus producing a CSP-like communication model. A required service (an
output port) o € O, is structurally modeled as the input port schema with the following differences: R,,
and Rps are time bounds on the production of output messages, and o.M = normal | available.
Dependencies among services/ports are defined by means of clauses with temporal constraints [13]. A

TROL clause, 1, is constrained to be formally structured as:
(FCANOC) — CC — — [T, Tul;

It specifies the production of an output due to the arrival of input messages, in particular: if the Action
Condition (AC' = FC' AOC) (Firing Condition and Object Condition) is true at time ¢, then the Consequent
Condition C'C' will be true in an instant of the time interval [(t 4+ T},,), (t + Tar)]. T, € R and Ty € R are
the minimum and maximum bounds on reaction time associated with the clause, respectively. The clause
notation adopts an implicit model of time; time is considered linear and continuous.

FC' is a condition describing an event due to input ports, while OC' is a positive predicate consisting of

a set of conditions on the state of output ports having modality available (thus reporting the object status



in brief). Therefore, OC' may be considered as the precondition for F'C'. In the cases in which F'C' and OC
are both empty, the clause states that C'C' is always activated. C'C' is a predicate describing the message
on the output port. C'C is only specified as a conjunction of conditions (CC' = Ap) which ensures the
determinism on the object behavior, since the adoption of disjunctions of C'C's can lead to non-deterministic
specifications.

A clause 1 € U can be regarded as a set of Reduced-form Clauses on the basis of the following mapping

{99179927 .- '7997%;} = ¢(¢)7

where each reduced-form clause ¢; is derived from the structure of clause ¢ according to the following

constraint:

(0. FC=\/; FC) A (.0C =\/9;.0C) A ($.CC = \¢;.CC) N ($.Tn = 9. Tn) A (0T = ¢5.Tar). (1)

The FC' of a reduced-form clause depends only on a single input port. The specific port can be recovered
by using the polymorphic function port(), ipc = port(FC) where ipc € I, thus function port() : FC' —
mput. The OC and C'C' of a reduced-form clause can depend on one or more output ports. The set of these
output ports is obtained by using Opc = port(OC) or Occ = port(CC'), respectively, where Opc C O and
Occ C O, thus function port() : CC — {output} or port() : OC' — {output}.

In a reduced-form clause the AC and the OC can be only defined as the conjunction of simple conditions
on a port value, while the CC can be only a simple condition on one output port; thus the AC, OC and CC

can be represented as a set of simple conditions. For example, the following clause:

Y: A>BAB=3AC>1—-C=0

is represented as:

. F'C' = {A > 5}

$».0C ={B=3,C> 1}

. AC =y FCU$.OC ={A>5B=3,C> 1}
$.CC = {c =0}

TROL clauses may be direct (as described above) or reverse and they are modeled with a tuple:



1= (Ny, W, FC,0C,CC, Ty, Tar),

where Ny is the clause name, and W = direct | reverse. Please note that reverse clauses, ¥.W = reverse,

are structured as
(CCNOC) = FC — = [Ty, Tul;

This means that a reverse clause specifies the behavior of the external environment of the class. This is
performed by describing how the occurrence of an output message can lead to receiving an input message
on the object itself — i.e., how the external environment needs an output for producing an input on the
entity. Reverse clauses are typically included in the External Specification. They can be easily identified in

the specification since they are differently labeled.

2.2 Formalizing the Internal Specification

TROL classes are defined as comprised of a collection of communicating objects (which in turn belong
to their classes). Objects which cannot be further decomposed are defined as extended state machines
[13]. Please note that, in this paper, we address only the verification criteria related to the External
Specification; the mathematical notation supporting composition/decomposition mechanism in the Internal
Specification is reported since this is useful to better understand the criteria defined in the rest of this paper.
In fact, the External Specification is comprised of input and output ports, which in turn are involved in the
composition /decomposition mechanisms establishing communications.

The Internal Specification is defined as:

IS :

(A,0),
where:

o A:={w,wy,...,wy,}is aset of sub-objects. Each class is formally defined as a set of communicating

sub-objects A, which in turn are instances of other classes;

o C = {cy,c9,...,¢,.} is a set of connections. Internal class connections are established by means
of links or communication channels. Links are defined as simple connections between inputs and

outputs of the composite object with the corresponding inputs and outputs of its sub-objects — e.g.,



(i,k) is a link where i € w.I, k € wy./, and wy; € w.A. Communication channels are modeled as a
tuple (o, 1), which represents a connection from an output port o to a set of receiving input ports

I =iy, i9,...,1n,} (i.e., 1 : N communications).

3 Verification of External Specification

The verification process for the External Specification is comprised of two steps as summarized in Table 1.
The former step consists in the verification of completeness and consistency of clauses and input/output
ports. The latter step corresponds to the verification of the External Specification in modeling the component
behavior, and is performed by considering the sequences of clauses. These steps are typically followed
by a third step in which the validation of the External Specification is performed with respect to other
properties provided by the analyst to verify whether the specification includes those aspects [13]. This
phase is substantially different from the classical validation where the internal implementation is validated
against traces and histories, which in turn can be considered External Specifications.

The following criteria are a selection of the general conditions that should be satisfied by External

Specifications. These may be ported from a TROL model to other models and languages.

External Specification Step

Verification of Completeness and Consistency | Completeness of External Specification Elements
Completeness among Class Clauses

Consistency of each External Specification Element
Consistency among Class Clauses

Completeness of Temporal Constraints of the Class

Consistency among Temporal Constraints of the Class

Verification of High Level Behavior Cyclic Sequences of Class Clauses

Consistency among Sequences of Clauses

Table 1. Steps of Verification of the External Specification.

3.1 Verification of Completeness and Consistency

This section describes how the analysis of the External Specification is performed in order to verify its

completeness and consistency, by also considering temporal constraints. As a first step, ports as well as

10



clauses have to pass the syntax verification (including type checking) according to the TROL model and
syntax [13]. After the syntax verification, class clauses are processed for deriving reduced-form clauses in

order to simplify the following steps of verification. For example, by considering clause:

nameclause: (((A>0AA<9)V(B=5)V(C=4)A(Z=33)) - (X=5AY=26);

the following reduced-form clauses have been obtained by considering the disjunctions in the F'C' and that
OC must be always verified according to the model defined in equation (1):

w1+ (A>0 A A9 A Z=33) — X=5;

g+ (A>0 A A<9 A Z=33) — Y=6;

3 : (B=B A Z=33) — X=5;

@4 : (B=B A Z=33) — Y=6;

s 1 (C=4 A Z=33) — X=5;

e : (C=4 A Z=33) — Y=6;
Please note that reduced-form clauses contain conditions which are only a conjunction (A p) according to

equation (1).

3.1.1 Verification of Completeness

The verification of completeness must be performed on (i) each class element and (ii) by considering class
elements on the whole (i.e., ports and clauses). To this end, the most important criteria determined have
been reported, which state the needs of completeness when the relationships among inputs and outputs

ports of a class/subsystem are defined.

Criterion 1 — Completeness of the Fxternal Specification elements — The Frternal Specification must be
complete in the sense that each input and output port and clause must be fully specified in its parts. In the

case of missing parts, it is necessary to assume default values in order to specify them.

This general criterion is translated into a set of more specific criteria. For example: (i) each input port
must at least be used in the F'C' of a class clause; (ii) each output port must at least be used in the CC of
a clause. Moreover, for ports typed as enumerate collections (i.e., enum), the External Specification should
provide a clause for each possible value of the enumeration. In this way, it is ensured that each message
which may arrive to an input port has a counterpart in the specification to describe the corresponding

effects. O

11



As previously stated, according to the TROL model, outputs with modality avazlable report the class
status (frequently defined as enumerated collections). In the External Specification the class behavior should
provide enough details to report the evolution of each possible status. In terms of TROL model, C'C' of
a class clause may specify when an object reaches an internal status (i.e., when C'C' is defined in terms of
an available output which presents the internal status or its subset). For this reason, in order to verify
the compatibility between C'C's and OC's (which represent the change of status and the precondition as a

function of class status, respectively) the following criterion must be satisfied.

Criterion 2 — Completeness among Class Clauses — For each class clause, @;, the Frternal Specification of
the class has to include at least another clause, ;, having its ¢;.C'C" compatible with ¢;.OC'". This can be

formalized by:

Vo, e U VP € ¢, 0C dp; € ¥ 3Q € ¢;.CC : compatible(P,Q);

where function “compatible()”, Bool x Bool — Bool, is defined as:

compatible(P,Q) : (port(P) =0)V (port(Q) = 0) V (port(P) = port(Q) A & € port(P).D : P(z) ANQ(2)).

where: P and () insist on the same port set; port(P).D is the Cartesian product of the domains of ports of
P (Q); & represents a tuple of values for ports in P (Q); and, P(Z) represents formula P with the specified
substitution of values for the ports.

Please note that compatible(P,Q) is true if the two formulae using the same ports can be satisfied
with the same values for the ports, but is also true if one of two formulae is empty (not referring to
any port). For example, compatible(A > 3, X = 3) is false since the two formulae use different ports, while
compatible(A > 3, A > 5AA < 9) is true because: there exists a value for port A that satisfies both formulae
(for example A equal to 6). When a port is typed as real or integer, in the worst case one or more boolean
terms can be present in P and () for the same port. The number of these terms for each port is supposed
to be limited to H, thus, the number of domain segments is limited to 2H + 1. The predicate compatibility
is verified for each possible segment. For example if A is a port with real values, Pis (A > 3AA< 7) and @
is (A > 5A A < 9) then the domain of A is subdivided in five regions: (—o0,3], (3,5], (5,7),[7,9), [9, +00).
In each region the conditions PP and ) can be evaluated to find if there exists a region where are both true.

The verification of criterion 2 ensures that the evolution of the state has been specified, at least for what

concerns the class status. This is visible by means of the available outputs which are used in the OC's. This

12



criterion may detect the presence (i) of unreachable states, and (ii) of states from which the system cannot

evolve further. O

3.1.2 Verification of Consistency

The verification of consistency must be performed (i) on single elements and (ii) considering the relationships
among all class elements (i.e., ports and clauses). In general, input and output ports do not present any
issue to be verified, while each clause must be internally consistent and with respect to all the other class

clauses. These concepts are formalized with the next criteria.

Criterion 3 — Clause Internal Consistency — Fach class clause must be activated in at least one case by

considering the domain of clause variables. This can be checked by verifying the following condition:

Vo € U 3z € port(FC).D 3y € port(OC).D: FC(z) ANOC(y).

Criterion 3 verifies if there exists at least a set of values for inputs and outputs for which clause ¢ is activated
by considering the activation of both FC and OC. This criterion must be verified by each clause of the

class, otherwise that clause is meaningless in the class context. O

At class level, each clause must be proved to be decoupled with the other clauses of the class (all in
the reduced-form), for guaranteeing the absence of multiple activations (i.e., to avoid that the same input
produces different values on the same output port according to different clauses). To this end, in the
literature, a set of criteria has been defined for identifying conflicts between clauses of activation and/or on
message production. For example by transforming the specification in a Tableau and from this to identify

nodes which are in conflict [38], [39].

Criterion 4 — Class Clause Consistency — Fach couple of class reduced-form clauses, ¢; and ¢;, must be

decoupled (not in conflict) with each other:

Vi, o € U ¢ # @5 A clauses_decoupled(p;, ¢;),

where:

clauses_decoupled(p;, ¢;) :

13



= compatible AC (i, ;) V compatible(p;.C'C, p;.CC)V ((port(y;.CC) N port(¢;.CC)) = 0);

and:

compatible AC (¢;, ;) : compatible(; FC, ;. FC) N compatible(p;.OC, ¢;.0C).

This means that, in order to avoid conflicts for a simultaneous firing of different clauses producing different
values on the same output port one of the following three cases must be satisfied: (i) AC's of different clauses
are incompatible, or (ii) compatible AC's of different clauses must have compatible CCs (i.e., redundant

clauses), or (iii) compatible AC's of different clauses have C'C's operating on different output ports:

—compatible AC (¢;, ;) V
(compatible AC (@5, ¢;) N compatible(p;. C'C, ;.CC)) V
(compatible AC (@i, ;) A ((port(;.CC) N port(¢;.CC)) =0)).

This was transformed in the above definition of clauses_decoupled() by using the theorem of absorption.
The function compatible AC' is used to check if the ACs are compatible, have to be noted that if the FC or
the OC is missing for a certain clause, the AC can be compatible, in this way this criterion also considers
the conflicts that may happen if clauses are always activated (e.g., —» C'C). O

For example, clauses_decoupled(A >3 ANB=3 —C=5A>5AB=5— C=3) is true because the ACs
of the clauses are incompatible while clauses_decoupled(A >3 — C=5,A > 5 — C = 3) is false, because the
two ACs are compatible while the CCs are incompatible (e.g., if A=7 then C can be 3 or 5). Another case
can be explained with clauses_decoupled(A > 3 — C=5,A > 5 — D = 3) which is true because the ACs are
compatible but the CCs operate on different ports. Finally consider the case in which A is an input and B is
an available output port (is a state variable) then clauses_decoupled(A >3 — C=5,B=5 — C = 3) is false
since the the two clauses have compatible ACs and incompatible CCs. The ACs are compatible because the
FC of the second clause and the OC of the first clause are empty and so the two FCs and the two OCs are

compatible.

3.1.3 Verification of Temporal Constraints of the Class

The verification of temporal constraints of a class must be performed by controlling their completeness and
consistency, considering input and output time bounds and temporal constraints of clauses.
To achieve a complete External Specification, the time bounds for inputs and outputs and bounds on

reaction time of clauses must be defined. The detection of missing temporal constraints is trivial. On the

14



other hand, the time bounds of an output depend on the time bounds on the corresponding input according
to the temporal constraints of the clause which relate them. The relationships among temporal constraints

are a consistency problem, which is discussed in Criterion 6.

Criterion 5 — Completeness of class Temporal Constraints — Fach input, output and clause must provide a

temporal constraint, otherwise suitable default values must be assumed.

A time bound of [0, o] is assigned as default (thus they are considered fully aperiodic signals) to input
and output ports without time bounds.

In Fig.1, the specification of temporal constraints is depicted through a graphical representation, in which
the temporal domains of input and output ports are reported on x and y axes, respectively. More specifically,
in Fig.1, two particular cases are reported. On the left, the case in which both input, ¢, and output, o, have
a temporal constraint equal to [0, oc], while a constraint equal to [0, 0] is also set for the clause describing
their relationships. In this figure, the gray area represents the space of possible combinations of input,
output, and reaction occurrences. Please note that the case in which an instantaneous reaction time is
set for the clause corresponds to the diagonal line. The graph on the right presents the case in which an

input has a time bound of [0, oc], while its corresponding output has [¢.T},, 00] and the related clause has

[T, 0. Tn]. O

output output
(o)) w
0. v
¢.Tm
input input

) 0

Figure 1. Notation to represent relationships among temporal constraints.

If the temporal constraint of a clause or that of a port is missing, then bounds on its corresponding

values can be evaluated on the basis of the time bounds of related input and output ports and clauses. This
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is due to the fact that relationships of consistency can be defined among these temporal constraints.

Criterion 6 — Consistency among Temporal Constraints of input and output ports and related clause —
Temporal constraints of a reduced-form clause and related input and output ports must be consistent with

each other according to specific formulae.

A set of relationships among these temporal constraints must be satisfied as described in the sequel. We
consider now an input, 7, and output, o, having as time bounds [i.R,,,1.Ras] and [0.R,,, 0. Rpy], respectively;
these are related by means of clause ¢ with temporal constraint [¢.1,,, ©.Th]. Given the above defined time
bounds, when an input event occurs the object will provide an output message within interval [¢.T},, . Tas].
According to the perviously introduced graphical representation, in Fig.2 (on the left), the relationships
between possible occurrences of input and output events on the basis of the clause are depicted. If an input
event has occurred (“last i” in the figure) producing its corresponding output (last o), then the interval
during which the next input (output) event may occur is represented by a heavier line along the input

(output) axis.

output t output t
i.Ru+0.Tv
next o
i‘RM + (pTM ———————————
iRy +¢.Tm
(PTM ffffffffffffffffffff O'RM
lasto <—
T
o Ty b ?.Im (
input T input
"la‘st iRn ' IRy ¢ m‘°|ast, iR, iRy,
I A next i A I A A
earliest case last case earliest case last case

Figure 2. Relationships among temporal constraints associated with input, output and related clause: (i)

general case (on the left), (ii) limit case (on the right).

According to TROL model, the next input will arrive when at least 7. R, time units are elapsed since its
last occurrence. Since the next input event is constrained to occur within ¢.Rjs time units, then conditions
on the time bounds of outputs can be evaluated. According to the “earliest” case, when the next input

event exactly occurs after ¢.R,, time units, the minimum time bound for the output is evaluated to be:
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o.R, = 1Ry + o1, —¢Thy. (2)

On the contrary, for the “last” case, when the next input event exactly reaches the object after ¢.Rys

time units, the maximum time bound for the output is evaluated to be:

o.Ryy=1.Ry+ o Ty — o1, (3)

Equations (2) and (3) state the relationships among the temporal constraints of input, output and clause.
These can be used for evaluating a missing temporal constraint when the other two are known.

For safeness, the o0.R,, declared by the analyst has to be lower or equal than o.R}, . This constraint is
needed since: if the bound suggested by the user is grater than o.R},, the component could produce a value
out of the time bounds imposed. In the same manner, the 0.Ry; declared has to be grater or equal than

0.1y, to avoid the specification of unsuitable temporal constraints. Therefore, the following conditions hold:

o.R,, < W.R, + ¢ T, — oy, (4)

o.Ry > w.Ry+ Ty — @ 1. (5)

According to Fig.2, to avoid overlapping between two consecutive input events before the first is served,

the temporal constraints of clause ¢ and related input must satisfy the following condition:

0< T, <eTy <iR,. (6)

As a limit case, according to equation (6) the temporal bounds of a clause can assume the following values
@.Tyr = iRy, and 9.1, = 0 (see Fig. 2 on the right). By replacing these values in equations (2) and (3),
the following equations: o.R), = 0 and 0.R3; = i. Ry + . R, are obtained. This means that, in the earliest
case, the object instantaneously reacts, while in the last case, it produces the output simultaneously with

the arrival of the next input event. If ©.Th; > 1. R,,, the successive events on the outputs can be overlapped.

Therefore, in order to have more realistic and safer relationships for the class, condition (6) should be
modified, by assuming a reaction time always greater than zero and ¢. Ty < ¢.R,,. Then condition (6)
becomes:

0< T, <oy <iR,, (7)
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As a consequence, Criterion 6 states that: for each reduced-form clause (direct or reverse) ¢, the
temporal constraints of the clause and those associated with its related input and output ports must satisfy

conditions (7), (4) and (5):

VoeWU: ieport(FC) Ao € port(CC) AN (oW =direct) A (0 < @1, < T < t.Ry) A

(0.Ry, iRy + @1 — @ Thv) A (0.Ry > 0.Ry + 0T — 0.10);

while for reverse clauses:

Vo eW: i€port(FC)Ao € port(CC) N (oW =reverse) A (0 < p.T,, < Ty <o.Ry) A

(t.Rp <o.Ry + @1 — @ Tv) AN (i.Ry > 0.Ry + 0T — 0.10);

O

Criterion 6 must be verified by each class clause. This means that, on its basis, some changes to the
temporal constraints of ports of clauses may be needed in order to obtain its verification (thus constraining
the specification to be consistent and more effective). These changes can lead to diffuse changes along all
class temporal constraints; thus, an iterative verification of all class clauses is needed.

When a direct clause and a reverse clause are specified over the same ports a special condition have
to be considered. In this case, conditions of Criterion 6 are not sufficient to verify the consistency of time
bounds for input and output. In fact, the condition for direct clauses ensures the output bound if the input
time bounds are guaranteed; respectively, the condition for reverse clauses ensures input time bounds if
the output time bounds are guaranteed. Therefore, this bi-directional condition between input and output
bounds does not allow the application of the above criteria. In this condition, 0.R}, is the sum of the
minimum reaction time bounds of the reverse and direct clauses, and 0./}, is the sum of the maximum

reaction time of the two clauses. For the input time bounds the same condition hold:
o.R, =i.R, <oT,+ ¢ T, (8)
o.Ryr =Ry > T + ¢ T, (9)

where, ¢ is a direct clause from input ¢ to output o, and ¢, is a reverse clause from output o to input .
The above and other less relevant criteria are used in TOOMS to verify in detail the completeness and

consistency of the External Specification of all class clauses.
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3.2 Verification of High Level Behavior

This section presents the analysis of the high-level description enforced in the External Specification of the
class. A high-level specification is given by means of the so-called High-Level Clauses, HLCs. Each HLC
implicitly specifies a sequence of events on inputs/outputs and the related relationships described by means
of a set of reduced-form clauses. Moreover, each HLC can be regarded as a sort of trace, history-trace,
or message sequence chart of scenarios such as in ROOMChart or in OSDL [16], [9], [5]. An HLC can be
obtained for the conjunction of reduced-form clauses or can be directly given on the basis of the system
requirements. In this last case, their verification against the External Specification can be regarded as a
validation.

Before identifying the HLCs of the class and applying the related criteria, the class reduced-form clauses
have to pass the criteria presented in the previous sub-sections.

An HLC can be formally expressed as an ordered set of class reduced-form clauses, {¢;|j =1,2,...,n,}.
Since a direct clause can activate a reverse clause and vice versa, the ordered set is built by direct and reverse
clauses in alternated manner. Direct clauses describe the class behavior, while reverse clauses describe how
the environment (in which the object of a class is used) reacts to class requests. Thus, each couple of

consecutive clauses belonging to an HLC must satisfy the following condition:

Vie[l,n,—1]: ¢ € HLON @i W # @it W A (05 = 0iy1).

The first part specifies that consecutive clauses must be different in type (direct/reverse), while “=” states
that ¢; activates ¢;41. A clause activates another clause when its C'C' makes true the AC' of the second
clause (also considering the class status in the OC of both clauses). Please note that no class clause activates
the first clause, since the activation of the sequence only depends on the external events. Formally, the set
of HLCs of a class is modeled as HLC = {hlcy, hley, ..., hlc,,, }. As a limit case, the simplest HLC is a

stand alone reduced-form clause.

An HLC can have a subset of clauses which may result in a cyclic loop of activations. Although suitable
messages may activate other actions, this condition could lead to a live-lock and thus should be carefully
analyzed. In certain contexts, the presence of such a condition is functional for the application (e.g., a
protocol of hand-shaking), for this reason the non-satisfaction of this criterion results in a warning alarm

for the analyst. This fact is specified by the following criterion.
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Criterion 7 — Cyclic sequence of class clauses — A clause, ¢;, belonging to a HLC, should not activate any

other previous clause in the HLC itself:

Vi, 05 €413 Pyt 1 (5> 1) A W #£ 0;. W) A =(0f = @4).

In some cases, Criterion 7 can be false without causing any problem in the specification — e.g., a cyclic

sequence used for specifying communication protocols as shown in Section 4. O

Moreover, two HLCs: hlc;, hic; € HLC, are in conflict with each other if their sub-sequences of clauses
are simultaneously activated and produce compatible results. This can occur even if their reduced-form
clauses are decoupled (not in conflict). For example, let us now consider a couple of simple sequences of

clauses formed by a sequence of reduced-form clauses (¢1, 2, @2 and ., ¢, @) as follows:

©1 : A=b — E=1; ©q : A= — F=8;
po(reverse) : E=1 — C=10; ¢p(reverse) : F=8 — D=81;
©3 : C=10 — B=5; ©e : D=81 — B=6;

Both sequences of clauses are activated as soon as a message having a value equal to 5 reaches input A;
hence, ¢1 and ¢, are decoupled (not in conflict) since these generate different actions. Please note that ¢
and ¢, are capable of activating @9 and p, and these in turn activate @3 and ., respectively. In this case,
@3 and ¢, are decoupled (not in conflict) since they have different AC's. By considering sequences @1, @2, @3
and @g, @3, ., the derived HLCs are in conflict since the same firing condition leads to produce C'C's which
are in conflict (i.e., B=56 and B=6) and, thus, non-acceptable because they are inconsistent.

For the above reasons the following criterion has been introduced for detecting conflicts in each couple

of HLCs of the class when this is not satisfied.

Criterion 8 — Consistency between subsequences of HLCs— In HLC each couple of HLCs: hle,,, hlc,, must

not be in conflict by considering also their sub-sequences — i.e., decoupled clauses:

Vhley,, hle, € HLC : Vi, @5 € hley, @ (j > 0) AVer, @1 € hle, © (1> k) A

;. W =W A @i W = W A clauses_decoupled(A({ i, ..., v;1), A{ ek, ..., @1}));

where: {p;, ..., p;} is a subsequence of ordered clauses in hlc,,, {pk, ..., o1} is a subsequence of ordered clauses

in hlc,, and A() is a function for obtaining a reduced-form clause ¢ from a HLC (HLC — ¢):
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A{piy . p)) - (AAC = ¢ AC) N (A.CC = ;.CC).

From the computational point of view, it should be noted that if N is the number clauses of a hlc, the
number of possible clause subsequences is N (/N —1)/2 and the number of subsequences starting and ending
with a certain type of clause (normal or reverse) is approximately N?/8. Therefore, by using force brute
algorithm to check the above criterion between two HL.Cs the asymptotical complexity is an O(N*) and for
checking all the possible pairs of HLCs the asymptotical complexity is an O(M?N*) where M is the number
of HL.Cs in ‘HLC and N is their length in terms of clauses.

4 The External Specification of a Cellular Phone

In this section, the External Specification of a cellular phone system is used to illustrate the application of
the criteria presented in the previous sections.

The following functionalities of the cellular phone have been extracted from the textual specifications:
“The mobile phone receives and sends calls by means of a telecommunication channel (with the possibility of
storing a set of call-numbers through an agenda mechanism) (see Fig.3). The connection with the mother
station of the current cell is obtained and maintained according to the standard protocol ETACSY. Accord-
ing to that protocol, the frequency can be automatically changed and two main systems for controlling the
communication quality are provided (the measure of: the main information, and that of the tone called su-
pertone at 6 KHz). The user interface of the cellular phone is comprised of (i) an LCD display on which the
information about the phone status (call, ring, etc.) and the number called are shown (messages as battery
down and the low-frequency status are shown on special areas), (ii) a keyboard with buttons and switches,
to dial the number, to pass from normal to agenda status and vice-versa, to adjust the volume, to switch
off /on the cellular phone, etc. The phone provides a beeper for keys, ringing and alarms.” From the detailed

requirements the most important clauses describing the behavior of the cellular phone can be identified.

'ETACS (Extended Total Access Communication System, 900 MHz): adopted in Italy and derived from the American
standard AMPS (Advanced Mobile Phone Service). This system has been specified in the context of a joint collaboration

between the University of Florence and OTE S.p.A. [35], [40].
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Figure 3. The cellular phone with its components.

4.1 Cellular Phone: TOOMS/TROL External Specification

The External Specification of the Phone Controller is assigned to the main system/class as reported in
TOOMS/TROL notation in Figs. 4 and 5 (the whole TROL specification can be found in [40], while a
partial description has been reported in [35]). Please note that we have specified subsystem Phone Controller
as class CellularPhone. The specification reported in Fig. 4 presents some problems of consistency and
completeness which have been detected during the verification phases, as shown in the rest of the section.
These cannot be easily detected by merely observing the specification.

As the External Specification of class CellularPhone passes the syntax verifications, clauses specified
by the analyst are collected as reported in Fig. 5. According to TROL model, dashed lines represent clauses
called reverse, by specifying that the corresponding output sends a message in order to receive another
message from the related input.

Please note that according to TROL model and language, New() and Ready() are special functions.
These specify the conditions in which a new message is received by an input port and a message is ready to
be transmitted by an output port, respectively. This allows the writing of more abstract clauses by merely
specifying the presence of messages without the need of identifying their specific or possible values. For
example, clause Link specifies that a message received on Rin port always produces a message on StateOut.
A more detailed clause of this general property is NewCall2.

Let us now describe some of the clauses presented in Fig.5. During a call, we have StateOut=Talking,

thus:
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multitype TypeLcd = { Message: String; BFLcd:TypeStateBF; BattLcd:TypeBattery; LinkLcd: Real; TKey: Character};
typedef TypeStateBF = {Vol:Integer; Mute:Boolean; Voice:Boolean};

typedef TypeFrequencies = {UpLink:Real; DownLink:Reall};

typedef {TypeBattery = Integer};

enum TypeCtrlBF {VolUp, VolDown, Mute, SP_Phone, Busy, Free};

enum TypeState {Init, Idle, Ringing, Talking, Waiting};

enum TypeBeep {Beep, Ring, RingBatt, Off};

Provided_services: // Inputs:

Rin [3000,4000]: String; // Frame from Radio Receiver (DownLink),ETACS
Meter [3000,4000]: Real; // Level of Power in High Frequency
Supertone [3000,4000]: Real; // Quality of Connection at Low-Freq (6Khz)

Key buffered [3000,4000]: Character; // (Buffered) Keys from Keyboard, Number, HOOK, etc

Battery [3000,4000]: Integer; // Power-Level of Battery

StateBF [3000,4000]: TypeStateBF; // Status of Hardware Modules at Low Frequency (Audio Stage)
Required_services: // Outputs:

Rout [3000,4000]: String; // Frame for Radio Transmitter (UpLink), ETACS

Frequencies [500,5000]: TypeFrequencies; // Possible values for UpLink and DownLink Frequencies

StateOut available [500,5000]: TypeState; // (available) Observable Phone Status

ToBF [500,5000]: TypeCtrlBF; // Controls Hardware Modules at Low Frequency (Audio Stage)
ToBeep [400,5100]: TypeBeep; // Controls of Beeper: On, Off
ToLcd [1000,6000]: Typelcd; // Messages for the LCD Display

ModAgOut available [1000,6000]: Boolean; // (available) Phone (FALSE) or Agenda (TRUE)

Figure 4. Early version of the TROL External Specification of class CellularPhone: plot generated by TOOMS
(in the plot, long names cut by TOOMS tool are marked with >).
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Dropvox
NormalTalking
NormalInit
Dropdata

Echo

Echokey
NewCall
NewCall3 (reverse)
NewCall2
Ringing
Modeswitch
Modeswitch?2
Display
Update (reverse)
Hookingl
Hooking3

Link
Acknowledgment
Start (reverse)
Handover
BatteryOff
BatteryDown
BeepOff
VolumeUp
VolumeDown
Mute

SP_Phone
CallerWait
CalleeBusy
CalleeFree
Calling
Answering
Wait

BFControl
Talking
DisplayMeter

NewFrequencies

UpdateMeter (reverse)

Supertone < LOWER_TONE_QUALITY A StateOut=Talking — StateOut=Init -- [200,300];
Supertone > LOWER_TONE_QUALITY A StateOut=Talking — StateOut=Talking -- [200,3001];
Supertone > LOWER_TONE_QUALITY A StateOut=Init — StateOut=Init -- [200,300] ;
Meter < LOWER_QUALITY A StateOut # Talking — StateOut=Init --[200,300];

Key > ’0° A Key < ’9> A StateOut=Idle — ToLcd=TKey -- [10,50];

New(Key) A StateOut # Init — ToBeep=Beep -- [10,501];

Rin=NEWCALL A StateOut=Idle — Rout=ACKCALL -- [350,500];

Rout=ACKCALL A StateOut=Idle — Rin=0KNEWCALL -- [350,500];

Rin=0KNEWCALL A StateOut=Idle — StateOut=Ringing -- [300,400];
StateOut=Ringing — ToBeep=Ring -- [200,300];

Key=AgSu A StateOut=Idle A — ModAgOut — ModAgOut -- [10,50];

Key=AgSw A ModAgOut — — ModAgOut -- [10,50];

New(StateBF) — TolLcd=BFLcd -- [10,50];

Ready(ToBF) — New(StateBF) -- [10,50] ;

Key=Hook A (StateOut=Talking V StateODut=Waiting) — StateOut=Idle -- [200,300];
Key=Hook A StateOut=Ringing — StateOut=Talking -- [100,200];

New(Rin) — Ready(StateOut) -- [20,60];

New(Rin) — Ready(Rout) -- [350,500];

Ready (Rout) — New(Rin) -- [350,500];

Rin=NEWFREQ — Ready(Frequencies) -- [10,50];

Battery < LOWER_LEVELBAT — ToLcd=BattLcd -- [100,150];

Battery < LOWER_LEVELBAT — ToBeep=RingBatt -- [100,150];

StateOut=Idle — ToBeep=0ff -- [200,300];

Key=Volup A StateOut=Talking — ToBF=VolUp -- [40,100];

Key=Voldown A StateOut=Talking — ToBF=VolDown -- [40,100];

Key=Mute A StateOut=Talking — ToBF=Mute -- [40,100];

Key=SP A StateOut=Talking — ToBF=SP Phone -- [40,100];

Key=Enter A StateOut=Idle — StateOut=Waiting -- [40,100];

Rin=Busy A StateOut=Waiting — ToBF=Busy -- [40,100];

Rin=Free A StateOut=Waiting — ToBF=Free -- [40,100];

Key=Enter A Key=Hook A StateOut=Waiting — Ready(StateOut) -- [40,100];
Key=Hook A StateOut=Ringing A StateOut=Talking — Ready(StateOut)-- [40,100];
New(Rin) A StateOut=Waiting — Ready(ToBF) -- [60,200];

New (Key) A StateOut=Talking — Ready(ToBF) -- [60,200];

New (Supertone) A StateOut=Talking — Ready(StateOut) -- [40,100];

New(Meter) — TolLcd=LinkLcd -- [200,300];

Meter < LOWER_QUALITY A StateDut=Talking — Ready(Frequencies) -- [400,500];

Ready (Frequencies) — New(Meter) -- [100,300];
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e clauses VolumeUp, VolumeDown, Mute, SP_Phone express that different messages are sent to module

Audio Stage for controlling low-frequency;

e clause Dropvox states that the communication is interrupted, when the signal power Supertone is

under threshold LOWER_TONE_QUALITY;

e clause NormalTalking states that if Supertone is not under threshold LOWER_TONE_QUALITY, the phone

status is maintained.

The last condition also holds when StateOut=Init as specified by clause NormalInit.

For clause Dropdata no communication is carried out (when StateOut # Talking) and the quality of
the connection is evaluated by means of a VU-meter which is maintained under control for maintaining the
phone ready for an answer.

When the phone is not in Init status, clause Echokey specifies that pressing a key on keyboard produces a
beep sound. Other clauses specify that the effects on output ToBeep are BeepOff, Ringing and BatteryDown,
even if different sounds could be required.

When a CellularPhone is in Idle state the following clauses have been specified:

e clause Echo expresses that the phone makes the echo on the LCD display of each number pressed with

a given fixed range of delay;

e clause NewCall establishes that when the phone receives a call, an acknowledgment is sent to the main

station by means of Rout;

e clause NewCall2 states that when message OKNEWCALL is received the phone accepts the call by passing

to the state of Ringing;
e clause NewCall3 defines the behavior of the main station for accepting a new call;
e clause Modeswitch states that the agenda mechanism is activated when the related button is pressed;

e clause BeepOff expresses that the phone beeper is usually off.

Please note that the above list of clauses is only a part of the complete External Specification. In the
next sections, the proposed criteria are applied in order to detect problems of consistency and completeness

on the External Specification of class CellularPhone.
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4.2 Cellular Phone: Verification of External Specification

As can be easily verified, some of the above clauses are not yet in reduced form. For example, clause

Hookingl is comprised of the following reduced-form clauses:

Hookingla : Key=Hook A StateOut=Talking — StateQut=Idle -- [200,300];

Hookingilb : Key=Hook A StateOut=Waiting — StateOut=Idle -- [200,300];

The above clauses state that, when the caller hangs up, clause Hookingl (when StateOut=Talking or
StateOut=Waiting) specifies that the phone returns to the Idle State. Please note that clause Hooking3
(when the caller hangs up and StateOut=Ringing) expresses that the communication is established.

Once the syntax verification and the generation of reduced-form clauses are performed, the verification

process can start.

4.2.1 Cellular Phone: Completeness of the External Specification

According to Criterion 1, each single element of the External Specification of class CellularPhone must
be complete. For example, some verifications have been performed: all possible values of output ToBeep
are set in the C'C's of clauses Echokey, BeepOff, BatteryDown and Ringing. These clauses use different
values/messages on the same port — i.e., Ring (for ringing), RingBatt (alarm when the battery level is

down), Beep (when a key is pressed), and Off for turning off the beeper after RingBatt or Ring.

According to Criterion 2, the External Specification must be verified to be complete with respect to all
class elements. In fact, all OC's of the class clauses must be present in at least one C'C of class clauses. In
class CellularPhone, outputs of type available are StateOut and ModAgOut. These have been defined as
enumerate collections, and thus their possible values must be present at least once in both C'C's and OC's
of a clause of the External Specification.

The possible values of StateOut: Init, Idle, Ringing, Talking, and Waiting can be reached by
the phone status (see Fig. 4) as it has been stated by C'Cs of clauses: Dropvox, NormalInit, Dropdata,
Hookingla, Hookinglb, NewCall2, NormalTalking, Hooking3 and CallerWait. These are compatible with
OC's of clauses described above. For example, compatible(StateOut = Idle, StateOut = Idle) is true for

OC of clauses NewCall and NewCall2 with C'C' of clauses Hookingla and Hookingib:
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NewCall :  Rin=NEWCALL A StateOut=Idle — Rout=ACKCALL -- [350,500];

NewCall2 :  Rin=O0KNEWCALL A StateOut=Idle — StateOut=Ringing -- [300,400];
Hookingla : Key=Hook A StateOut=Talking — StateQut=Idle -- [200,300];
Hookingilb : Key=Hook A StateOut=Waiting — StateOut=Idle -- [200,300];

On the other hand, Criterion 2 is also verified for clause Modeswitch2 which can fire depending on a

condition on the available output port ModAgOut; since its OC is compatible with C'C of clause Modeswitch.

4.2.2 Cellular Phone: Consistency of the External Specification

By applying Criterion 3, it is verified that any clause of class CellularPhone is not in conflict with respect
to the domain of its variables. For example, clause Calling is inconsistent, since the components of its
condition for firing are not compatible (which key is pressed? Hook or Enter?), while clause Answering is
not consistent since the components of its OC' are not compatible with each other (in the meantime, the

phone should be ringing and talking).

As regards Criterion 4, although some clauses may have compatible AC's, the cross-consistency depends
on their CCs. For example, clauses BatteryOff and BatteryDown are decoupled (not in conflict), since
when the battery power is under the battery level (Battery < LOWER_LEVELBAT), clause BatteryOff states
that a message is sent to the LCD display, while clause BatteryDown specifies that a message is sent to the
beeper of the phone. Predicate clauses_decoupled(Battery0ff,BatteryDown) is true and, thus, Criterion 4
is satisfied.

Clauses Acknowledgment and Link present the same AC. The specific message from the radio stage
(input Rin) can constrain the phone to react in different ways, but this is not specified in these abstract
clauses. In particular, clause Acknowledgment sends an acknowledgement message and clause Link updates
the phone status (output StateOut). All these clauses are decoupled.

Clauses Echokey and BatteryDown are inconsistent with respect to clause BeepOff, since they have
compatible ACs and C'C's and work on the same ports producing different results (Criterion 4 detects a
problem). The beeper cannot remain quiet (off) when it is activated for the pressing of a key or for the

presence of an alarm. The above clauses must be removed or modified. The second choice leads to:

BeepOff : StateOut=Init — ToBeep=0ff -- [200,300];

At this point, this clause is still in conflict with clause BatteryDown that specifies that a sound is
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produced as soon as the battery level is too low disregarding the phone status. To this end, this last clause

has been changed in:

BatteryDown : Battery < LOWERLEVELBAT A StateOut#Init — ToBeep=RingBatt -- [100,150];

Please note that clause Ringing was not in conflict with both the previous and the updated versions of
the clauses, since it has a compatible C'C’ with clauses BatteryDown and EchoKey even though these present

compatible ACs. This is allowed by Criterion 4.

4.2.3 Cellular Phone: Temporal Constraints of the Class

If Criterion 5 is not verified, the External Specification must be considered incomplete. In the case of class
CellularPhone, all the temporal constraints have been specified. According to Criterion 6, these must be

consistent with each other.
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Figure 6. Temporal constraints of clause Dropvox of class CellularPhone.

For example, in Fig. 6, the temporal constraints of clause Dropvox and related input and output ports are
depicted through the graphical representation introduced in Section 3.1.3. These must be verified according

to conditions of Criterion 6. In clause Dropvox, when input Supertone is under the threshold (during a

28



talk), the phone passes to the state Idle after at least 200 time units and no later than 300 time units.

Therefore, Criterion 6 is satisfied with these values since:

0 < Dropvox.T,, < Dropvox.Th < Supertone. R,,, 0 < 200 < 300 < 3000,
StateOut.R,, < Supertone.R,, + Dropvox.T,, — Dropvox.Ths, 500 < 2900,

StateOut.Rys > Supertone. Ry + Dropvox.Th — Dropvox.Ty,, 5000 > 4100.

The constraints of Criterion 6 to be satisfied are reported on the left, while the actual values are on the
right. The values of the temporal constraints must be coherent with those obtained by verifying all the other
clauses in which the same input and/or output ports are involved. In this case, clauses NormalTalking,
DropData, NormalInit, NewCall2, Hookingla, Hookinglb, Hooking3, etc., must be verified. For example,
according to clause Link the phone status (output StateOut) is updated not earlier than 20 time units and

not later than 60 time units. In this case, Criterion 6 is satisfied:

0 < Link.7T},, < Link. T < Rin. R, 0 < 20 €60 < 3000,
StateOut.R,, < Rin. R,, + Link.T,, — Link.T}hy, 500 < 2960,

StateOut.Ry > Rin. Ry 4+ Link. Ry — Link.7,,, 5000 > 4040.

After having performed a similar verification on the rest of class clauses for controlling their consistency, it

resulted that Criterion 6 is not satisfied by clause Update. In particular we have:

0 < Update.T,, < Update. T < ToBF.R,,, 0 < 10 < 50 < 500,
StateBF.R,, < ToBF.R,, + Update.T},, — Update. T, 3000 £ 460,

StateBF.Rys > ToBF. Ry 4+ Update.Thy — Update.T;,, 4000 ¥ 5040.

Therefore, the last conditions are not satisfied, and a solution can be to modify the temporal constraints
of input StateBF. A modification of temporal constraints for input/output ports (and for reverse clauses)
can be regarded as a revision of the external requirements of the system. A modification of the temporal
constraint associated with a direct clause is a revision of the internal specification of the system (in fact, the
temporal constraints of the clause specify bounds on the internal implementation of the class itself). For
example, StateBF.R,, = 450 < 460 and StateBF.Ry; = 5100 > 5040 satisfy the above constraints. Clause
Display also depends on input StateBF and, with the new values for the temporal constraint, Criterion 6
is satisfied for ToLed having [400,5500]. With these values, clauses Echo, DisplayMeter and BatteryOff
are also verified.

Please note that in the External Specification there exists two pairs of clauses which describe the com-

munication protocol between the Cellular Phone and the mother station — e.g., Acknowledgment, Start,
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and NewCall, NewCall3. These two pairs of clauses reference the same input and output ports, in that each
couple presents both a direct and a reverse clause on the same input/output ports —i.e., Rin and Rout. This
fact may produce inconsistency on temporal constraints which must be corrected in order to guarantee the
right system behavior.

According to the early version of the specification, Criterion 6 is not satisfied for both pairs of clauses.

For example, for the Acknowledgment and Start clauses the following relationships should hold:

0 < Acknowledgment.}, < Acknowledgment.Th < Rin.R,,, 0 < 350 < 500 < 3000,

0 < Start.T,, < Start. Ty < Rout.R,,, 0 < 350 < 500 < 3000,
Rin.R,, = Rout.R,, < Acknowledgment.T,, + Start.T.,, 3000 = 3000 £ 700,
Rin.Ryr = Rout. Ry > Acknowledgment. Ty 4+ Start.Thy, 4000 = 4000 > 1000.

As can be noted on the right a constraint is violated. This can be solved by revising the specification,
for example by specifying a temporal constraint of [700,4000] for both Rin and Rout. These values also
solve similar problems related to clauses NewCall and NewCall3.

Clauses UpdateMeter and NewFrequencies also present similar problems:

0 < UpdateMeter.T;, < UpdateMeter.Ty < Frequencies.R,,, 0 < 200 < 300 < 500,
0 < NewFrequencies.T,, < NewFrequencies. Ty < Meter.R,,, 0 < 400 < 500 < 3000,
Meter.R,, = Frequencies. R,, < NewFrequencies.T,, + UpdateMeter.T},, 3000 # 500, 3000 £ 600, 500 < 600,

Meter.Ry = Frequencies. Ry > NewFrequencies. Ty + UpdateMeter. Ty, 4000 # 5000, 4000 > 800, 5000 > 800.
Two conditions are not satisfied. In this case, a solution can also be to modify some temporal constraints —
e.g., by imposing [600,4500] for both Frequencies and Meter which satisfy the above conditions. Criterion
6 is also satisfied by clauses DisplayMeter, and Dropdata with the new values for the temporal constraint.
Even if these conditions have been corrected, the mechanism of producer/consumer established between
the cellular phone and the outside environment must be better defined in the system implementation. In
fact, problems may occur for the reception of more messages than those the consumer is able to cope with.

A solution can be obtained by using one of the validation techniques mentioned in the introduction.

4.3 Cellular Phone: Verification of High Level Behavior

For the following steps, the high-level behavior of the class/system is captured by deriving HLCs from the
External Specification of class CellularPhone.

Some sequences of clauses which subsequently activate each other have been identified. In particular,
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clauses Acknowledgment activates the reverse clause Start, etc. This means that as soon as the phone sends
an acknowledgement to the Radio Stage, it is again constrained to set a new value in Rin within a time
interval. In turn, clause Start activates other direct clauses (Link and Acknowledgment). Thus, the phone
can send an acknowledgement to the radio stage or report the status (output StateOut) as well. Similarly,
both clauses BFControl and Wait activate the reverse clause Update which in turn activates clause Display.
In this way, when the low-frequency part of the phone is controlled or get a busy/free signal from the Audio
Stage, the phone status is signalled in the LCD display. For each of these sequences, an HL.C can be derived.

Hence, some of the HL.Cs of CellularPhone are reported in the following:

HLCcor1urarphone =  {{Acknowledgment, Start, Link},
{Handover, UpdatelMeter, DisplayMeter},
{NewFrequencies, UpdateMeter, DisplayMeter},
{Wait, Update, Display},
{Acknowledgment, Start, Acknowledgment},

{BFControl, Update,Display}, ...}.

Please note that Criterion 7 is not verified by HLC {Acknowledgment, Start, Acknowledgment}. Such
HLC expresses the phone capability for establishing the communication and monitoring the quality with the
base station. Its consistency can be satisfied if the last Acknowledgment clause is removed from the HLC.

According to Criterion 8, no HLCs couple which are simultaneously activated must produce inconsistent
effects, by considering all sub-effects which can be produced by each clause of the HLC. In particular, an HLC
formed by {Handover, UpdateMeter, DisplayMeter} must be verified with respect to the ordered sequence
{NewFrequencies, UpdateMeter, DisplayMeter} by considering the corresponding reduced-form clause

of these HLCs. According to Criterion 8:

clauses_decoupled(A({Handover, UpdateMeter, DisplayMeter}), A({NewFrequencies, UpdateMeter, DisplayMeter})).

For the definition of the above function, since ~compatible(Rin=NEWFREQ, Meter<LOWER_QUALITY) is

true, the HLCs are not in conflict. The same verification is performed for each HLCs couple in HLC ¢e11u1arPhone-

In Fig.7, the propagation of temporal constraints of the reduced-form clauses Handover, UpdateMeter,
DisplayMeter is depicted. In this example, the propagation is due to the presence of temporal constraints
on inputs Rin and Meter, outputs Frequencies and ToLcd, and the related temporal constraints of clauses

Handover, UpdateMeter, and DisplayMeter. The grey areas below the diagonal line are delimited by both
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Figure 7. Temporal constraints of high-level clause HLCyandover_pisplayieter Of class CellularPhone.

reaction time and output time bounds and correspond to all possible occurrences of events. This figure
shows that the arrival of message Rin produces bounds on the production of Frequencies which in turn
produces bounds on the arrival of Meter, and this further produces bounds on the production of ToLcd. The
grey areas above the diagonal line are the bounds, while heavier lines in the grey areas are just an example
given on the basis of a specific instant in which output Frequencies is produced.

In this case, it has also been shown that the Criteria and the graphical notation presented are very useful

for detecting the problems and describing the relationships among features of the External Specification.

5 Conclusions

In this paper, some general criteria to verify the completeness and consistency of the External Specification
of reactive systems have been described. This problem is frequently neglected since the External Specifica-
tion is assumed to be correct during the validation process — e.g., model checking. The criteria defined can
be easily applied to other approaches such as OSDL, ObjecTime, ObjectChart. In some of these models
the addition of temporal logics or other formal tools for modeling time constraints is quite diffuse. In this

paper, most of the criteria proposed allow to verify the consistency and the completeness of the behavioral
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and temporal aspects of the external specification.

The diffusion of approaches integrating denotational and operational aspects is becoming one of the
most relevant improvement of recent specification models. These are typically called dual approaches —
[1]. To fully exploit their potentialities they have to be supported by a suitable specification framework.
TOOMS/TROL has been one of the first to move in this direction, presently several other dual methods are
coming.

Companies that have used our approach have verified its innovative capabilities and power, observing
that the effort spent in verification and validation along the development life-cycle is recovered in the phase
of final validation in which typically less problems must be solved.

It has been shown that verifying the External Specification can be very useful for detecting problems
existing in specifications during the early phases of the development life-cycle. When inconsistencies are
detected in the External Specification, the specification analysis has to be focused on preventing anomalies
with respect to both the outside environment and the definition of general system requirements. The analysis
of External Specification is not only constrained to operate in the early phases, but whenever a subsystem
is identified. In this context, the verification of the External Specification can be very useful during the
system composition/decomposition process for verifying component completeness and consistency, at least
at a high level, and for validating the internal implementation.

For these reasons, incompleteness and inconsistency detection in the External Specification allows the
revision of the specification during the whole system development and can be considered as a valid tool
for specification evolution management. In our experiences we have observed that this technique increases
the general quality of specification and allows preventing problems of validation detecting inconsistency
and incompleteness since the early phases of system specification. The approach can be used at each level
of the system specification hierarchy. The approach has been used to assist analysts/developers in using
a real middle-out approach (bottom-up and top-down) by integrating the concepts of rapid prototyping,
reuse, continuous improvement and continuous verification and validation at each level of abstraction and

specification detail.
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