
Overhead Estimation and Comparison for Multitasking

Operating Systems for Personal Computers

G� Bucci and P� Nesi

Department of Systems and Informatics� Faculty of Engineering

University of Florence� Via S� Marta �� ����� Firenze� Italy

bucci�dsi�uni��it� http���www�dsi�uni��it��bucci� tel�� 	
����������� fax�� 	
�������
�


nesi�ing���ing�uni��it� http���www�dsi�uni��it��nesi� tel�� 	
��������
� fax�� 	
�������
�


Abstract

A method for analyzing multitasking operating sys�
tem overhead and its variance is proposed� The
method is supported by mathematical rationale� Re�
sults of its application to well�known operating sys�
tems �Windows ��� Windows NT� OS�	 Warp and
Linux
 are reported�

� Introduction

Personal Computers are currently used for imple�
menting real�time as well as reactive systems� Since
these systems have to comply with timing constraints�
the measurement �and the prediction
 of the perfor�
mance achievable with PCs becomes an important is�
sue ��� In this paper� we are concerned with the soft�
ware aspect of performance� More speci�cally� we are
interested in the evaluation of the overhead of Multi�
tasking Operating Systems �MOS
 for Personal Com�
puters� in the perspective of their usage in real time�
applications�

In selecting a MOS for a reactive�real�time applica�
tion� the candidates must provide a su�cient support
for implementing the system under development ���
��� In particular� they must allow the de�nition of
processes� threads� semaphores� interprocess queues�
scheduling policies� etc���

Modeling the performance of commercial MOSs is
not an easy task� since technical information concern�
ing the implementation of the above features is seldom
available� it cannot be found even in the documen�
tation accompanying professional toolkits or red�blue
books� Therefore� a black�box evaluation methodology
is needed� In addition� some of the above features can
be hardly modeled� because of their variability due to
caching and paging ���

�MOSs compliant with POSIX��� present most of the above�
mentioned features�

SomeMOSs provide e�cient pro�lers for measuring
system activity �task execution time� number of con�
text switches� etc�
� but� unfortunately� pro�lers are
intrusive and can strongly impact the outcome of the
measures taken� Depending on MOS speci�c facili�
ties� the in�uence of a pro�ler can be di�erent from
MOS to MOS� thus reducing the value of the com�
parison� On the contrary� a measure must be MOS�
independent and as less intrusive as possible� In ��
several algorithms for evaluating MOSs have been in�
troduced� However� the analysis produced consistent
errors in measuring the overhead�

In the perspective of reactive�real�time applica�
tions� the most relevant performance index of an oper�
ating system is the overhead associated with task man�
agement� However� real�time applications not only
require little OS overhead but also require overhead
predictability� therefore the variance of the overhead
is� at least� as important as the overhead itself� For
the estimation of the overhead and its variance� we
must de�ne both a method for measurements and a
mathematical model by which the analyst can demon�
strate the relationships among the measured quanti�
ties� The mathematical model would be employed to
predict bounds for the MOS behavior during the sys�
tem analysis� as well as at run�time �	� The model
should also be capable of allowing a black�box evalua�
tion of the overhead�

In this paper� we make a step towards the model�
ing of MOS performance� We present a method for
measuring the overhead of multitasking operating sys�
tems� and describe a related benchmark program� The
benchmark is portable across di�erent MOS and can
easily be employed by a generic user in order to gather
overhead data� We develop an approximate� but ex�
pressive� mathematical model that provides interpre�
tation of the measured data�

�



� Estimation Approach

A task is a concurrent piece of code� a process or a
thread� A process is an executable independent piece
of code under concurrent execution with respect to the
other processes and internal tasks� A process presents
its independent data and resources� A thread is a
procedure concurrently executed with respect to the
other threads and processes� A thread is generated
by a process or by another thread and shares with
its creator data and�or resources� Usually� the cost
for context switching is higher for processes than for
threads� In the sequel we shall assume that both pro�

cesses and threads are scheduled by the MOS with an

unknown preemptive policy� An operating system im�
plements a number of internal tasks � i�e�� tasks that
manage the user tasks and the MOS itself� The most
important MOS internal task is the scheduler� which
executes the algorithm of task preemption� Scheduler
execution time and task switching time are the essen�
tial components of MOS overhead�

In the following we develop a model for MOS over�
head and make a number of assumptions which will be
demonstrated to be actually feasible�

MOSs manage task priority on the basis of priority�
If all tasks have the same priority� the scheduler per�
forms substantially as a round�robin algorithm� This
provides a means for putting distinct MOSs in equiv�
alent operating conditions�

Let us now consider the case in which n identical
user tasks� � � are executed on a MOS with the mini�
mum number of active MOS internal tasks�� The to�
tality of tasks is the CPU workload� The overhead is
the CPU time spent by all MOS internal tasks �in�
cluding the scheduler
 plus the time spent in context
switching� However� before proceeding� some further
cautions are to be taken�

First� we must avoid the in�uence of the underlying
hardware� Therefore� it is mandatory to obtain nor�
malized measures or make direct comparisons on the
basis of the same hardware� Talking about PCs� our
attention is restricted to Intel architectures� However�
in spite of the same architecture� great di�erences are
observed from one machine to another� To exclude any
hardware impact� all the experiments were performed
on exactly the same machine�

Second� we must guarantee that the elapsed CPU
time for each single task� T� � is independent of the
MOS under analysis� This is obtained by running a
set of identical tasks� that is� generating each of them
by cloning the same piece of machine�level code� How�
ever� recent system facilities� like caches� virtual mem�
ory �pagination and�or swapping
� can lead to wrong
estimations since they may di�erently impact the dif�
ferent MOSs under evaluation� The e�ects of these

�The minimum number of internal tasks can vary fromMOS
to MOS�

facilities can be practically reduced to zero if the task
code is small enough so as to show high locality� mak�
ing negligible the number of cache misses� page swaps
and TLB updates� This assumption can be satis�ed by
using a very small procedure �executed several times in
each task
 with a small number of local variables� such
as a procedure performing some polynomial iterative
calculus� In our experiments� user tasks repeatedly
executed the polynomial estimation of p�Greek� ��
�

Please note that the latter assumption is consis�
tent with the target of using commercial MOSs in
reactive�real�time applications� In fact� a typical real�
time application requires casual or repeated execu�
tion of fast� short control algorithms� such as� for
instance� a PID �proportional�integrative�derivative

control� Several benchmark tools for assessing CPU
overhead and context switching have been presented
in the past� Usually� they obtain estimations with er�
rors in the order of ����� � � e�g�� ��� The method
proposed produces more precise results and its is ca�
pable of evaluating the variability of the phenomena�

� Estimation Model

A general model can be de�ned by considering the
execution time� Te�n
� as the sum of the overhead�
Ov�n
 �as directly dependent on the execution time
itself
� and the elapsed CPU time for completing the
n tasks� nT� �

Te�n
 � Ov�n
 � nT� � ��


where Ov�n
 � Q�n
Te�n
� �	


and Q�n
 is the overhead per second� It should be
noted that de�nition ��
 is recursive and leads to ob�
tain�

Te�n
 �
nT�

���Q�n


�

Thus the overhead per second can be estimated by
using�

Q�n
 �
Te�n
� nT�

Te�n

� ��


T� must be considered as unknown since its esti�
mation cannot be performed neither by counting clock
of instructions nor with pro�les which are intrusive�
Q�n
 can be approximately estimated by considering
Te��
 instead of T� � This can be performed since for
equation ��
 we have Te��
 � T�

���Q���� and Q��
 �� ��

On this basis� an approximated version of the overhead
per second from equation ��
 is obtained�

Q��n
 �
Te�n
 � nTe��


Te�n

� ��


Then the approximated version of the overhead results
to be�

	



O�v�n
 � Q��n
Te�n
 � Te�n
 � nTe��
� ��


where the second part of this formula has been derived
considering equation ��
 and T� � Te��
�
In this case� the error on the overhead per second per�
formed by estimating Q�n
 with Q��n
 is�

EQ�n
 � Q��n
 �Q�n
�

EQ�n
 � �n
Q��


Te�n

Te��
 � �Q��
���Q��n

� ��


where the last part has been obtained by using equa�
tion ��
� Since all measures are positive EQ�n
 re�
sults to be negative� This means that the overhead
per second estimated by using equation ��
 is an un�
derestimation of the real overhead per second� Q�n
 �
Q��n
� j EQ�n
 j and thus also equation ��
 for the es�
timation produce an underestimation of the overhead
Ov�n
� The error decrease with the increasing of the
number of tasks since the Q�n
 increase with the num�
ber of tasks� This dependence obviously depends on
the scheduling algorithm that may have a linear or
higher complexity�

On this basis� it can be demonstrated that if for two
distinct MOSs� m and x� the trends of the execution

time follow the relationships�

Tex�i
 � Tem�i
�
T ex�i


Tex��

�

Tem�i


Tem��

� ��


for fi � 	��ng� then�

Qx�i
 � Qm�i
� Ovx�i
 � Ovm�i
�

Q�

x�i
 � Q�

m�i
� O�vx�i
 � O�vm�i
�

and j EQm �i
 j�j EQx�i
 j�

The above relationships guarantee that the proper�
ties that hold for approximate measurements hold as
well for non�approximate quantities� The last relation�
ship means that a bigger error per second is present
by measuring the lowest overhead per second�

� Algorithms for Measuring the Exe�
cution Time

According to the above discussion� a comparison
among di�erent MOSs can be performed by measuring
the execution time� Te�n
� as a function of the number
of tasks� To this end� we need to enforce the following
two assumptions�

�st assumption� each single task � needs to be
executed by using the same CPU time T� in every
MOS�

Figure 1. The Estimation Section, ES.

�nd assumption� all tasks start and �nish at the
same time instant�

The �st assumption can be easily satis�ed� �a

by coding the program of tasks directly in Assembly
�without enabling any optimization to produce the ex�
ecutable program
� �b
 if all MOSs have been assessed
on the same physical hardware�

The 	nd assumption is the more di�cult to be sat�
is�ed� Usually� once the tasks have been created� they
are immediately executed� this tends to produce sig�
ni�cant di�erences of phases �i�e�� skews
 among the
tasks in the workload� On the contrary� the execution
time should be measured in a time interval in which
the load conditions of the system are constant �i�e��
with the tasks already in execution
� This concept
is best explained by Fig��� the Estimation Section�
ES� is comprised between the start and end instants
of times� Start corresponds to the activation of the
last task� while End corresponds to the termination of
the �rst task� Between Start and End� all tasks are
in execution� leading to a constant workload� In ES
each task � executes repeatedly a small piece of code�
By measuring the number of times the piece of code
is executed within ES� the exact CPU time consumed
by each task can be computed� The executing time
required by the piece of code represents the precision
of the method� the shorter this time the more precise
the measure�

In order to obtain reliable measures� ES must be
chosen several orders greater that the MOS time slice�
Ttic even when only one task is executed � i�e�� T� ��
Ttic�

� Experimental Results

All the experiments have been performed on the
same hardware for all MOSs� a Pentium ��� MHz� with
a 	�� Kbytes of cache and �	 Mbytes of main memory�
The assessed MOSs are OS�	 Warp� MS Windows ���
MS Windows NT ver� ����� and Linux ��	� The ex�
ecutable code has been produced by using Microsoft
Visual C�� 	�� for Windows �� and Windows NT�
IBM C Set �� 	�� for OS�	� and GNU GCC 	����
for Linux� All these operating systems work in Intel
protected mode�

�



The experiments consisted in the execution of n
identical tasks � � Each task � performs repeated exe�
cution of the polynomial computation of p�Greek� ��
�
a short code which satis�es the principle of locality for
cache and paging systems� In fact� no swaps from and
to the disk were registered during the experiments��

In order to compare di�erent MOSs� the compar�
ison requires the same number� M � of computation
of p�Greek� ��
� This was done by measuring the ac�
tual number of executions performed by each task� Np�
and normalizing this this number to M � The number
of p�Greek estimations� M � has been �xed to �	���
corresponding to about 	� sec of execution for a single
task�

Results of our experiments are reported in Fig�	 and
Fig��� In Fig�	� plots labeled with P are relative to
processes� while plots labeled with T are relative to
threads� Fig�� refers only to processes�

��� Processes

In Fig�	 �up
 the trend of the overhead as a function
of n is reported� From this �gure� it can be observed
that the behavior is quite linear for all MOSs and�
among them� Linux and OS�	 Warp are better ranked�
In Fig�	�down
 the trend of the corrected overhead per
second� �Q�c�n
� as a function of the number of tasks
is shown� This �gure highlights a di�erent behavior
for Windows �� with respect to the other MOSs which
have a very low increment in the overhead per sec�
ond with the increasing of the number of tasks� On
the contrary� this behavior is much more evident for
Windows ��� This mainly depends on the scheduler of
Windows ��

In order to evaluate predictability of MOS overhead�
a variance analysis has been preformed �see Fig��
�
This analysis is very useful to understand the behav�
ior of MOSs with respect to the repeatability of the
scheduling of the planned workload� On the basis of
these results� it is evident that a sensitive di�erence
in behavior among MOSs has been registered� Also in
this case OS�	� Windows NT and Linux result to be
better ranked with respect to Windows ��� For OS�	
the cost of the overhead can be quite predictable �
e�g�� maximizing its cost to a reasonable value over its
median value on the basis of the variance� From this
point of view� OS�	 Warp is the best among the MOSs
compared� while Windows �� is the less�

��� Threads

Linux has not been tested for threads since no of�
�cial version of a support for preemptive threads was
found� As regards the execution time� the OS�	 re�
sulted to be the fastest while the lowest overhead has

�In addition� no mouse was moved� no communication with
other machines took place �actually� net support was not in�
stalled�� etc�

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2 4 6 8 10 12 16 20 24 28

m
ea

n 
O

’v
c(

n)
 (

se
c)

n tasks

T

T

T

P

P

P

P

Windows NT 3.51

Os/2 Warp 

LinuxWindows NT 3.51

Windows 95

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

2 4 6 8 10 12 16 20 24 28

m
ea

n 
Q

’c
(n

) 
(s

ec
)

n tasks

OS/2 WARP P

Windows NT P

Windows 95 P

Linux P

Os/2 Warp T

Windows NT 3.51 T

Windows 95 T

Figure 2. Overhead �O�vc�n
 and the over-
head per second, �Q�c�n
, as a function of the
number of Tasks (Processes/Treads) for OS/2
Warp, Windows NT, Windows 95, and Linux.

been achieved by Windows NT� From Fig� 	 it can
be observed that the behavior is linear for all MOSs
and� among them� OS�	 Warp and Windows NT are
better ranked� For the overhead per second a di�erent
behavior between Windows �� and the other MOSs�
In fact� for these a very low increment in the overhead
with the increase in the number of tasks has been ob�
tained� while this behavior is much more evident for
Windows ���

Fig�	� shows that threads are lighter than processes�
Windows NT is the operating system with the great�
est di�erence of costs between processes and threads�
while OS�	 presents the lowest di�erence� Windows
NT threads are really light with respect to the other
MOSs� The comparison among MOSs for processes
and threads on the basis of the overhead per p�Greek
estimation as a function of the number of tasks is re�
ported in on the right� This �gure con�rms that Win�
dows NT is better ranked than Windows �� in sup�
porting multitasking� since the �rst presents a lower
cost for managing tasks� Similar results are obtained

�



0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

2 4 6 8 10 12 16 20 24 28

V
ar

ia
nc

e 
of

 O
’v

c(
n)

n Processes

Os/2 Warp 
Linux

Windows 95

Windows NT

Figure 3. The variance of O�vc�n
 as a func-
tion of the number of processes for OS/2
Warp, Windows NT, Windows 95 and Linux.

for the overhead per second�
The real di�erences among MOSs have been regis�

tered about the variance of overhead time� For some
MOSs problems arise when more than � threads or 	�
processes are concurrently executed�

� Conclusions

A technique has been proposed which allows the
analysis of the system overhead as a function of the
number of processes and threads� Error estimation
has also been discussed� The analysis performed is
not exhaustive� but provides more information than
that usually available for evaluating MOSs�

Acknowledgments

The authors would like to thank M� Perfetti of Elexa
and F� Butera for their help in coding the algorithms�

References

��� G� Bucci� M� Campanai� and P� Nesi� �Tools for Speci�
fying Real�Time Systems�� Journal of Real�Time Sys�
tems� Vol� �� March ����

��� A� Burns� K� Tindell� and A� Wellings� �E�ective
Analysis for Engineering Real Time Fixed Priority
Schedulers�� IEEE Trans� on Soft� Eng�� Vol� ��� May
����

�
� J� B� Chen� Y� Endo� K� Chan� D� Mazieres� A� Dias�
M� Seltzer� and M� D� Smith� �The Measured Perfor�
mances of Personal Computer Operating Systems��
ACM Trans� on Comp� Sys�� Vol� ��� Feb� �����

��� L� McVoy� �lmbench� Portable Tools for Performance
Analysis�� in Proc� of ���� USENIX Tech� Conf��
USA� Jan� �����

�


