Overhead Estimation and Comparison for Multitasking
Operating Systems for Personal Computers

G. Bucci and P. Nesi
Department of Systems and Informatics, Faculty of Engineering
University of Florence, Via S. Marta 3, 50139 Firenze, Italy
bucci@dsi.unifi.it, http://www.dsi.unifi.it/“bucci, tel.: +39-55-4796266, fax.: +39-55-4796363
nesi@ingfil.ing.unifi.it, http://www.dsi.unifi.it/ "nesi, tel.: +39-55-4796523, fax.: +39-55-4796363

Abstract

A method for analyzing multitasking operating sys-
tem overhead and its variance is proposed. The
method is supported by mathematical rationale. Re-
sults of its application to well-known operating sys-
tems (Windows 95, Windows NT, OS/2 Warp and

Linux) are reported.

1 Introduction

Personal Computers are currently used for imple-
menting real-time as well as reactive systems. Since
these systems have to comply with timing constraints,
the measurement (and the prediction) of the perfor-
mance achievable with PCs becomes an important is-
sue [1]. In this paper, we are concerned with the soft-
ware aspect of performance. More specifically, we are
interested in the evaluation of the overhead of Multi-
tasking Operating Systems (MOS) for Personal Com-
puters, in the perspective of their usage in real time-
applications.

In selecting a MOS for a reactive/real-time applica-
tion, the candidates must provide a sufficient support
for implementing the system under development [3],
[4]. In particular, they must allow the definition of
processes, threads, semaphores, interprocess queues,
scheduling policies, etc.'.

Modeling the performance of commercial MOSs is
not an easy task, since technical information concern-
ing the implementation of the above features is seldom
available: it cannot be found even in the documen-
tation accompanying professional toolkits or red/blue
books. Therefore, a black-box evaluation methodology
is needed. In addition, some of the above features can
be hardly modeled, because of their variability due to
caching and paging [4].

IMOSs compliant with POSIX.4, present most of the above-
mentioned features.

Some MOSs provide efficient profilers for measuring
system activity (task execution time, number of con-
text switches, etc.), but, unfortunately, profilers are
intrusive and can strongly impact the outcome of the
measures taken. Depending on MOS specific facili-
ties, the influence of a profiler can be different from
MOS to MOS, thus reducing the value of the com-
parison. On the contrary, a measure must be MOS-
independent and as less intrusive as possible. In [4]
several algorithms for evaluating MOSs have been in-
troduced. However, the analysis produced consistent
errors in measuring the overhead.

In the perspective of reactive/real-time applica-
tions, the most relevant performance index of an oper-
ating system is the overhead associated with task man-
agement. However, real-time applications not only
require little OS overhead but also require overhead
predictability, therefore the variance of the overhead
is, at least, as important as the overhead itself. For
the estimation of the overhead and its variance, we
must define both a method for measurements and a
mathematical model by which the analyst can demon-
strate the relationships among the measured quanti-
ties. The mathematical model would be employed to
predict bounds for the MOS behavior during the sys-
tem analysis, as well as at run-time [2]. The model
should also be capable of allowing a black-box evalua-
tion of the overhead.

In this paper, we make a step towards the model-
ing of MOS performance. We present a method for
measuring the overhead of multitasking operating sys-
tems, and describe a related benchmark program. The
benchmark is portable across different MOS and can
easily be employed by a generic user in order to gather
overhead data. We develop an approximate, but ex-
pressive, mathematical model that provides interpre-
tation of the measured data.

2 Estimation Approach

A task is a concurrent piece of code: a process or a
thread. A process is an executable independent piece
of code under concurrent execution with respect to the
other processes and internal tasks. A process presents
its independent data and resources. A thread is a
procedure concurrently executed with respect to the
other threads and processes. A thread is generated
by a process or by another thread and shares with
its creator data and/or resources. Usually, the cost
for context switching is higher for processes than for
threads. In the sequel we shall assume that both pro-
cesses and threads are scheduled by the MOS with an
unknown preemptive policy. An operating system im-
plements a number of internal tasks — 1.e., tasks that
manage the user tasks and the MOS itself. The most
important MOS internal task is the scheduler, which
executes the algorithm of task preemption. Scheduler
execution time and task switching time are the essen-
tial components of MOS overhead.

In the following we develop a model for MOS over-
head and make a number of assumptions which will be
demonstrated to be actually feasible.

MOSs manage task priority on the basis of priority.
If all tasks have the same priority, the scheduler per-
forms substantially as a round-robin algorithm. This
provides a means for putting distinct MOSs in equiv-
alent operating conditions.

Let us now consider the case in which n identical
user tasks, 7, are executed on a MOS with the mini-
mum number of active MOS internal tasks?. The to-
tality of tasks is the CPU workload. The overhead is
the CPU time spent by all MOS internal tasks (in-
cluding the scheduler) plus the time spent in context
switching. However, before proceeding, some further
cautions are to be taken.

First, we must avoid the influence of the underlying
hardware. Therefore, 1t is mandatory to obtain nor-
malized measures or make direct comparisons on the
basis of the same hardware. Talking about PCs, our
attention is restricted to Intel architectures. However,
in spite of the same architecture, great differences are
observed from one machine to another. To exclude any
hardware impact, all the experiments were performed
on exactly the same machine.

Second, we must guarantee that the elapsed CPU
time for each single task, 7, is independent of the
MOS under analysis. This is obtained by running a
set of identical tasks, that is, generating each of them
by cloning the same piece of machine-level code. How-
ever, recent system facilities, like caches, virtual mem-
ory (pagination and/or swapping), can lead to wrong
estimations since they may differently impact the dif-
ferent MOSs under evaluation. The effects of these

2The minimum number of internal tasks can vary from MOS

to MOS.

facilities can be practically reduced to zero if the task
code is small enough so as to show high locality, mak-
ing negligible the number of cache misses, page swaps
and TLB updates. This assumption can be satisfied by
using a very small procedure (executed several times in
each task) with a small number of local variables, such
as a procedure performing some polynomial iterative
calculus. In our experiments, user tasks repeatedly
executed the polynomial estimation of p-Greek, (7).
Please note that the latter assumption is consis-
tent with the target of using commercial MOSs in
reactive/real-time applications. In fact, a typical real-
time application requires casual or repeated execu-
tion of fast, short control algorithms, such as, for
instance, a PID (proportional-integrative-derivative)
control. Several benchmark tools for assessing CPU
overhead and context switching have been presented
in the past. Usually, they obtain estimations with er-
rors in the order of 10-15 % — e.g., [4]. The method
proposed produces more precise results and its is ca-
pable of evaluating the variability of the phenomena.

3 Estimation Model

A general model can be defined by considering the
execution time, Te(n), as the sum of the overhead,
Ov(n) (as directly dependent on the execution time
itself), and the elapsed CPU time for completing the
n tasks, nT;:

Te(n) = Ov(n) + nTy, (1)
where Ov(n) = Q(n)Te(n), (2)
and @Q(n) is the overhead per second. Tt should be

noted that definition (1) is recursive and leads to ob-
tain:

nl,
(1-Q(n)

Thus the overhead per second can be estimated by
using:

Te(n) =

Q) = 3)

T, must be considered as unknown since its esti-
mation cannot be performed neither by counting clock
of instructions nor with profiles which are intrusive.
Q(n) can be approximately estimated by considering
Te(1) instead of T;. This can be performed since for
equation (3) we have Te(1) = (1_77% and Q(1) << 1.
On this basis, an approximated version of the overhead
per second from equation (3) is obtained:

Te(n) —nTe(1)

/

= 4
@ = (1
Then the approximated version of the overhead results
to be:

O'v(n) = Q' (n)Te(n) = Te(n) — nTe(1), (5)

where the second part of this formula has been derived
considering equation (1) and T, = Te(1).
In this case, the error on the overhead per second per-
formed by estimating @(n) with Q'(n) is:

Eq(n) = Q'(n) — Q(n),

Faln) = —nPekTe(l) = Q)1 - Q). (0

where the last part has been obtained by using equa-
tion (5). Since all measures are positive Eg(n) re-
sults to be negative. This means that the overhead
per second estimated by using equation (4) is an un-
derestimation of the real overhead per second: Q(n) =
Q' (n)+ | Eg(n) | and thus also equation (5) for the es-
timation produce an underestimation of the overhead
Ov(n). The error decrease with the increasing of the
number of tasks since the Q(n) increase with the num-
ber of tasks. This dependence obviously depends on
the scheduling algorithm that may have a linear or
higher complexity.

On this basis, it can be demonstrated that if for two
distinct MOSs, m and z, the trends of the execution
time follow the relationships:

Te (1) Tem(7)
Teol) ~ Tem()

Tey (i) > Tem(i),
for {i:2.n}, then:
Qq (i) > Qm (1),

Q5 (1) > Q. (i),
and | Eq,, (i) [>| Eq. (%) |-

Ov (1) > Ovp, (7),
O'vy (1) > O'v(4),

The above relationships guarantee that the proper-
ties that hold for approximate measurements hold as
well for non-approximate quantities. The last relation-
ship means that a bigger error per second is present
by measuring the lowest overhead per second.

4 Algorithms for Measuring the Exe-
cution Time

According to the above discussion, a comparison
among different MOSs can be performed by measuring
the execution time, T'e(n), as a function of the number
of tasks. To this end, we need to enforce the following
two assumptions:

1st assumption: each single task T needs to be
executed by using the same CPU time 7, in every

MOS.

Stort End

Figure 1. The Estimation Section, ES.

2nd assumption: all tasks start and finish at the
same time instant.

The 1st assumption can be easily satisfied: (a)
by coding the program of tasks directly in Assembly
(without enabling any optimization to produce the ex-
ecutable program), (b) if all MOSs have been assessed
on the same physical hardware.

The 2nd assumption is the more difficult to be sat-
isfied. Usually, once the tasks have been created, they
are immediately executed; this tends to produce sig-
nificant differences of phases (i.e., skews) among the
tasks in the workload. On the contrary, the execution
time should be measured in a time interval in which
the load conditions of the system are constant (i.e.,
with the tasks already in execution). This concept
is best explained by Fig.1: the Estimation Section,
ES, 18 comprised between the start and end instants
of times. Start corresponds to the activation of the
last task, while End corresponds to the termination of
the first task. Between Start and End, all tasks are
in execution, leading to a constant workload. In ES
each task 7 executes repeatedly a small piece of code.
By measuring the number of times the piece of code
is executed within ES| the exact CPU time consumed
by each task can be computed. The executing time
required by the piece of code represents the precision
of the method: the shorter this time the more precise
the measure.

In order to obtain reliable measures, ES must be
chosen several orders greater that the MOS time slice,
Tiie even when only one task 1s executed —1.e., T'T7 >>
Eic~

5 Experimental Results

All the experiments have been performed on the
same hardware for all MOSs, a Pentium 100 MHz, with
a 256 Kbytes of cache and 32 Mbytes of main memory.
The assessed MOSs are OS/2 Warp, MS Windows 95,
MS Windows NT ver. 3.51, and Linux 1.2. The ex-
ecutable code has been produced by using Microsoft
Visual C+4 2.0 for Windows 95 and Windows NT,
IBM C Set ++ 2.1 for 0OS/2, and GNU GCC 2.6.3
for Linux. All these operating systems work in Intel
protected mode.

The experiments consisted in the execution of n
identical tasks 7. Each task T performs repeated exe-
cution of the polynomial computation of p-Greek, (),
a short code which satisfies the principle of locality for
cache and paging systems. In fact, no swaps from and
to the disk were registered during the experiments®.

In order to compare different MOSs,; the compar-
ison requires the same number. M, of computation
of p-Greek, (7). This was done by measuring the ac-
tual number of executions performed by each task, Np,
and normalizing this this number to M. The number
of p-Greek estimations, M, has been fixed to 52000
corresponding to about 20 sec of execution for a single
task.

Results of our experiments are reported in Fig.2 and
Fig.3. In Fig.2, plots labeled with P are relative to
processes, while plots labeled with T are relative to
threads. Fig.3 refers only to processes.

5.1 Processes

In Fig.2 (up) the trend of the overhead as a function
of n is reported. From this figure, it can be observed
that the behavior is quite linear for all MOSs and,
among them, Linux and OS/2 Warp are better ranked.
In Fig.2 (down) the trend of the corrected overhead per
second, @'c(n), as a function of the number of tasks
is shown. This figure highlights a different behavior
for Windows 95 with respect to the other MOSs which
have a very low increment in the overhead per sec-
ond with the increasing of the number of tasks. On
the contrary, this behavior is much more evident for
Windows 95. This mainly depends on the scheduler of
Windows 95

In order to evaluate predictability of MOS overhead,
a variance analysis has been preformed (see Fig.3).
This analysis 1s very useful to understand the behav-
ior of MOSs with respect to the repeatability of the
scheduling of the planned workload. On the basis of
these results, it is evident that a sensitive difference
in behavior among MOSs has been registered. Also in
this case OS/2, Windows NT and Linux result to be
better ranked with respect to Windows 95. For OS/2
the cost of the overhead can be quite predictable —
e.g., maximizing its cost to a reasonable value over its
median value on the basis of the variance. From this
point of view, OS/2 Warp is the best among the MOSs
compared, while Windows 95 is the less.

5.2 Threads

Linux has not been tested for threads since no of-
ficial version of a support for preemptive threads was
found. As regards the execution time, the OS/2 re-
sulted to be the fastest while the lowest overhead has

3In addition, no mouse was moved, no communication with
other machines took place (actually, net support was not in-
stalled), etc.

Wlndows”és

mean O've(n) (sec)
.
T

0.8
0.6 [
0.4

02 f Windows NT 3.51

2 4 6 8 10 12 16 20 24 28
n tasks
0.01 T T T T T T T T
0.009 | g
0008 |- “Windows 95 P 1
0007 F T B
g 0006 e b
= : . Windows 95 T
S 0.005 - 1
o
c
©
2 0004 - 1
e Windows NT P
0003 F o B
. OS/2 WARP P
0.002 f-mmmmmme . GspWarpT]
0001 F -~ o oo Windows NT 3.51 T Lifitic B i
0 | | | | | | | |
2 4 6 8 10 12 16 20 24 28

n tasks

Figure 2. Overhead O'’vc(n) and the over-
head per second, Q'c(n), as a function of the
number of Tasks (Processes/Treads) for OS/2
Warp, Windows NT, Windows 95, and Linux.

been achieved by Windows NT. From Fig. 2 it can
be observed that the behavior is linear for all MOSs
and, among them, OS/2 Warp and Windows NT are
better ranked. For the overhead per second a different
behavior between Windows 95 and the other MOSs.
In fact, for these a very low increment in the overhead
with the increase in the number of tasks has been ob-
tained, while this behavior is much more evident for
Windows 95.

Fig.2, shows that threads are lighter than processes.
Windows NT is the operating system with the great-
est difference of costs between processes and threads,
while OS/2 presents the lowest difference. Windows
NT threads are really light with respect to the other
MOSs. The comparison among MOSs for processes
and threads on the basis of the overhead per p-Greek
estimation as a function of the number of tasks is re-
ported in on the right. This figure confirms that Win-
dows NT is better ranked than Windows 95 in sup-
porting multitasking, since the first presents a lower
cost for managing tasks. Similar results are obtained

0.008 T T T T T T T T

0.007 |- R
0.006 p
0.005 | i | /" Windows 95, R

0004 - B £ pa

Variance of O've(n)

0.003 - f Fa
o002 | E

0.001 b

16
n Processes

Figure 3. The variance of Q'vc(n) as a func-
tion of the number of processes for OS/2
Warp, Windows NT, Windows 95 and Linux.

for the overhead per second.

The real differences among MOSs have been regis-
tered about the variance of overhead time. For some
MOSs problems arise when more than 6 threads or 24
processes are concurrently executed.

6 Conclusions

A technique has been proposed which allows the
analysis of the system overhead as a function of the
number of processes and threads. FError estimation
has also been discussed. The analysis performed is
not exhaustive, but provides more information than
that usually available for evaluating MOSs.

Acknowledgments

The authors would like to thank M. Perfetti of Elexa
and F. Butera for their help in coding the algorithms.

References

[1] G. Bucci, M. Campanai, and P. Nesi, “Tools for Speci-
fying Real-Time Systems”, Journal of Real-Time Sys-
tems, Vol. 8, March 1995.

[2] A. Burns, K. Tindell, and A. Wellings, “Effective
Analysis for Engineering Real Time Fixed Priority
Schedulers”, IFEFE Trans. on Soft. Fng., Vol. 21, May
1995.

[3] J. B. Chen, Y. Endo, K. Chan, D. Mazieres, A. Dias,
M. Seltzer, and M. D. Smith, “The Measured Perfor-
mances of Personal Computer Operating Systems”,
ACM Trans. on Comp. Sys., Vol. 14, Feb. 1996.

[4] L. McVoy, “Imbench: Portable Tools for Performance
Analysis”, in Proc. of 1994 USENIX Tech. Conf.,
USA, Jan. 1994.

