Pianificazione e supervisione della produzione in isole robotizzate

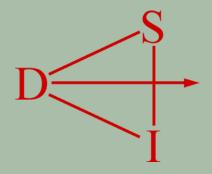
Candidato

Stefano Cappugi

Relatori

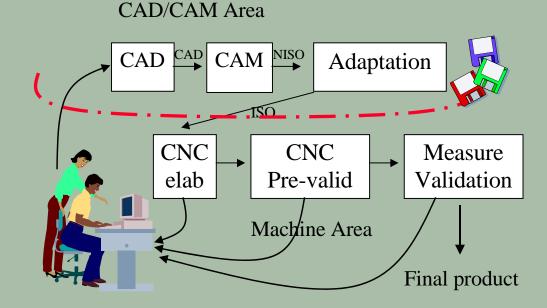
Prof.Ing. G.Bucci

Prof.Ing. P.Nesi


Dott.Ing. F.Fioravanti

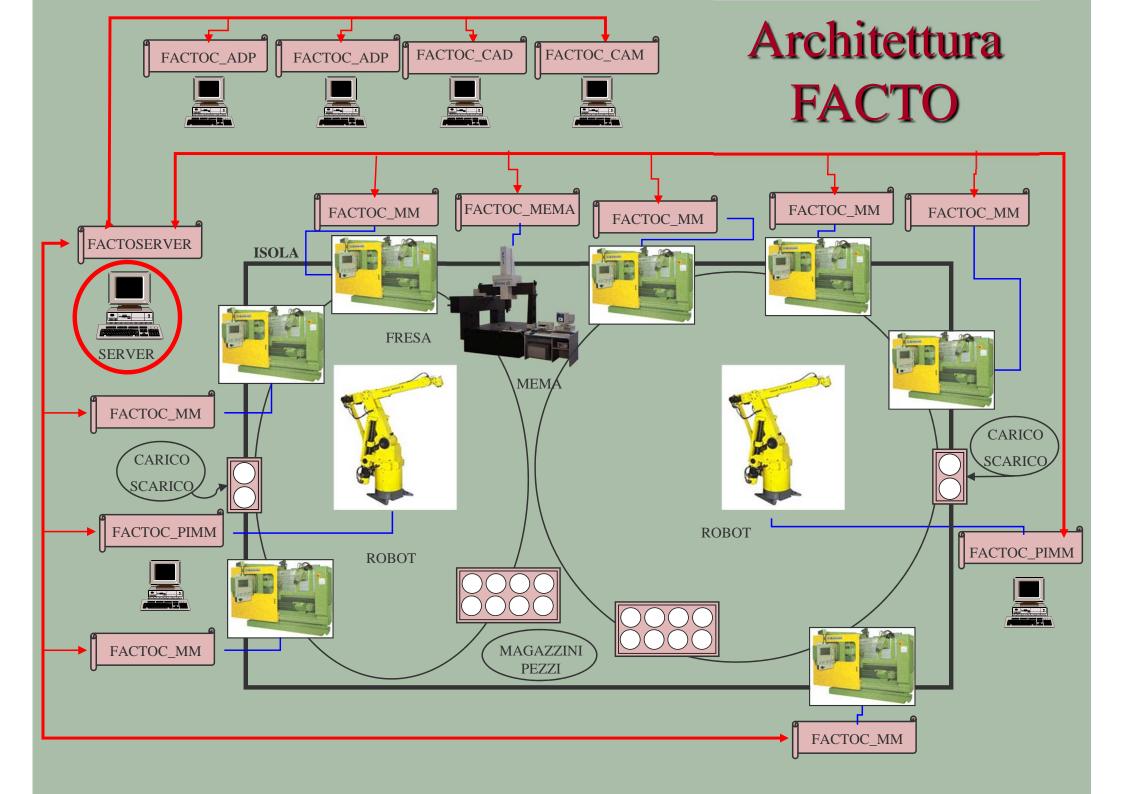
Ing. A. Villoresi

Ing. M.Perfetti

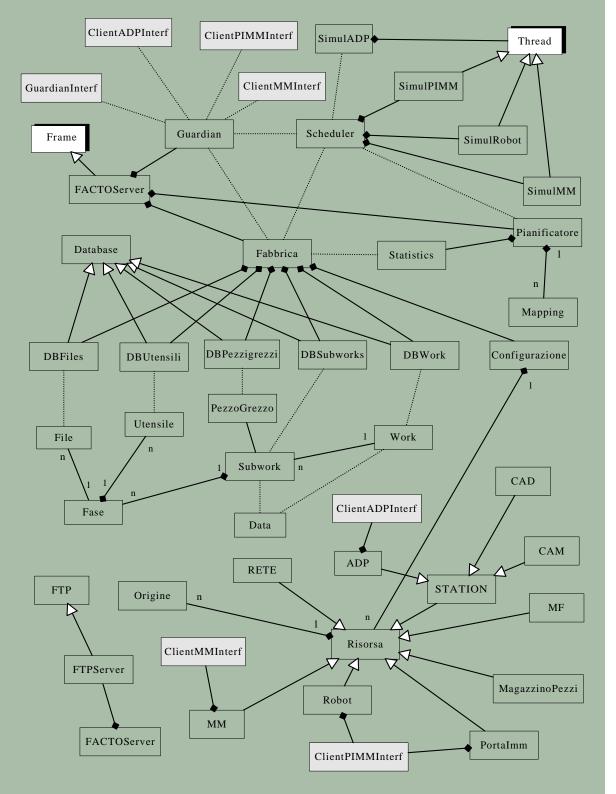

Dipartimento di Sistemi ed Informatica Anno Accademico 1997-1998

Contesto

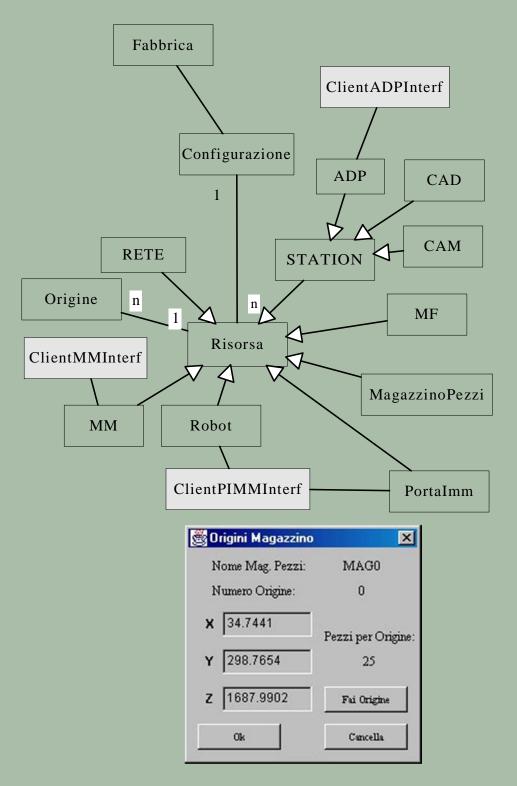
- Progetto SAMOPROS di elexa srl
- Architettura CIM (Computer Integrated Manufacturing)
- Caratteristiche della produzione di stampi
 - Epezzi unici, differenti disegni, utensili, lavorazioni
 - macchine di uso generico
 - Intelligenza concentrata nel programma di gestione


Ciclo del prodotto:

Obiettivi

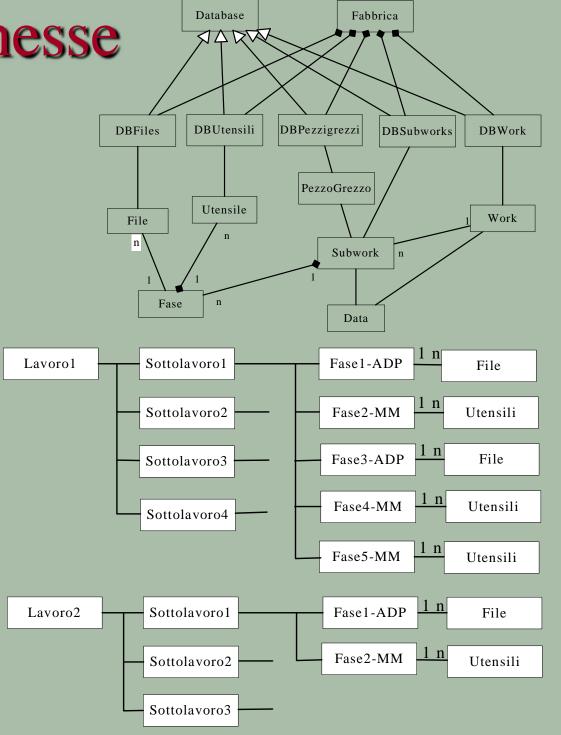

Automazione isola di lavoro

- Configurazione trasparente dell'impianto
 - · Riconoscere le risorse presenti
 - · Configurare quelle aggiunte successivamente
- Inserimento e modifica delle commesse
- Ottimizzazione del processo produttivo
 - · Relativamente ai lavori non ancora terminati
- Supervisione e gestione del processo produttivo (per simulazione e gestione diretta delle macchine)


Diagramma delle classi

- Configurazione
- •Immissione commesse
- •Pianificazione e supervisione

Configurazione


- Le risorse aggiunte sono automaticamente configurate all'avvio del programma
- E' necessario che l'utente indichi al robot la posizione esatta della risorsa da raggiungere, rispetto al sistema di riferimento scelto (origini)

Inserimento commesse

Ogni lavoro può contenere *n* sottolavori

Ogni sottolavoro può essere definito da *m* fasi

Ottimizzazione di Processo

- Problema flexible Job-Shop (NP completo)
 - · ogni job richiede l'intervento di più macchine
 - · l'ordine di esecuzione delle operazioni è diverso da job a job
 - · la macchina sulla quale è eseguita l'operazione è preassegnata

PIANIFICATORE

FASE 1 ADP 0

FASE 2 MM0

FASE n MM1

- Ottimizzazione ottenuta considerando le scadenze, i tempi stimati e le richieste di ogni fase
- La pianificazione viene lanciata quando è stato completato un sottolavoro oppure quando non si rispettano i tempi pianificati

LAVORI

SOTTOLAVORO

SOTTOLAVORO 2

SOTTOLAVORO r

ORIZZONTE

FASE 2 - MM0

Pianificatore e Scheduler

Pianificatore:

- Ottimizza la produzione
- Problema NP-Completo ⇒ soluzione sub-ottima
- Tecnologia object-oriented : algoritmi differenti
- Indici di efficienza
 - Anticipo percentuale rispetto alla data di consegna
 - · Percentuale di utilizzo delle singole macchine

Scheduler:

• Supervisiona e dirige la produzione

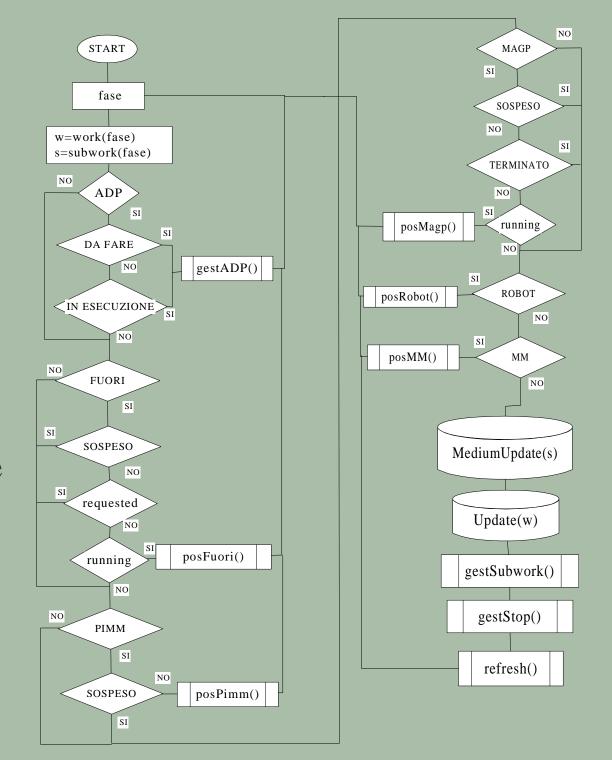
• Attua l'ottimizzazione fornita dal pianificatore

Interroga le risorse relativamente al loro stato

Muove i robot, avvia le fresatrici e posiziona i

pezzi nel magazzino
Gestisce una simulazione della produzione

Pianificatore


Esempio di pianificazione

Anticipi		Rendiment	i			Task set			
0,0)	69%	MM0 86,6%		(0,0) 17/3/99	(1,0) 19/3/99	(2,0) 16/3/99	(3,0) 19/3/99	(4,0) 26/3/99	(5,0) 20/3/99
1,0)	30,8%	MM1 70,5%		ADP0 240	ADP0 280	ADP0 120	ADP* 271	ADP* 277	MM0 1700
2,0)	59,1%	MM2 54,5%		M M 1	MM2	MM0	MM*	MM2	MM0
3,0)	44,7%	ADP0 7,09%		3800	3420	1700	1896	2780	2000
4,0)	31,3%	RM _{MM} 70,6%			MM* 2000		ADP0 145	MM1 3211	MM2 1000
5,0)	15,1%	Var _{MM} 0,017%			MM0 1200		MM* 3456	MM* 2347	MM1 1900
	41,7%	RI 54,7%					•	MM2 1764	MM2 1290
ADPO	[3,0] [3,0] [0,	0 1,0) 4,0 (2	0)	111			П	11	
ммо		15,0	(3,0)	(Z,DI	13,07	(5,0)	11,0)		(4,0)
MM1		10	.0)	(1,0)	(4	.01	(4,0)	(5,0	0
				1 1 1					

16:21 20:52 23:17 3:17 7:57 12:34 20:41 22:41 4:17 16:57 18:37 8:37 3:57 15:17 18:13 20:48 3:33 20:13 23:33 11:55 17:19 19:35 17:05 17:28

Scheduler

- Thread indipendente
- Ciclo sulle fasi ottimizzate
- Se fase ADP: gestADP()
- Se fase MM: stato e posizione del pezzo su cui è definita la fase determinano le decisioni prese
 - Salvataggio su database

Conclusioni

• Questa soluzione permetterà un notevole incremento dell'efficienza produttiva

Grazie alla

- Gestione distribuita e remota del sistema di produzione
- Pianificazione intelligente delle fasi di lavorazione