CLoubD KNOWLEDGE MODELING AND MANAGEMENT

Pierfrancesco Bellini, Daniele Cenni, Paolo Nesi
University of Florence, Department of Information Engineering, DISIT Lab

pierfrancesco.bellini@unifi.it, daniele.cenni@unifi.it, paolo.nesi@unifi.it

http://www.disit.dinfo.unifi.it (http://www.disit.org)

keywords: ontology, smart-cloud, knowledge base, interoperability
summary

Modeling cloud knowledge can be the basis for enabling a large range of reasoning applications.
The modeling of cloud knowledge base includes ontologies for cloud model representation at level
of 1aaS, SaaS and PaaS with all details regarding cloud resources. Additional aspects related to
service level agreements and business metrics are also modeled to allow reasoning on cloud
reconfiguration and adaptation to different conditions. The present state of the art shows a
number of solutions and standards addressing mainly the problem of cloud interoperability and
thus intercloud federation. The most widespread applications areas are related to (i) facilitating
interoperability among public and private clouds, (ii) verification and validation of cloud
configuration, (iii) discovering and brokering of services and resources, (iv) computing cloud
simulation, (v) reasoning and adapting cloud workload conditions, and (vi) reasoning about cloud
security. In this chapter, the main aspects of cloud knowledge modeling are presented and
discussed by taking into account the state of the art solutions.

1. INTRODUCTION

Almost all relevant infrastructures are using cloud based approaches to manage their resources,
and set up high availability solutions addressing different layers such as laaS, PaaS, and SaaS.
Several different vendors are covering different aspects and supporting different services natively
into the cloud solutions. Most of them provide specific products addressing only a limited number
of features and services. On the other hand, the availability of a wide range of services is often the
basis for selecting different cloud solutions. Among the requested services, there is the need of
monitoring, changing, moving virtual machines and services in the same cloud for resource
optimization and among different clouds to increasing reliability and for migration purposes. To
this end, the modeling and formalization of cloud model and information are becoming more
relevant to formalize different aspects of a cloud at its different levels: laaS, PaaS, SaaS, and
towards specific resources: hosts, virtual machines, networks, memory, storage, processes,
services, applications, etc., and their relationships.

1.1 MODELING KNOWLEDGE

In the past, as to cloud data modeling, some knowledge representation formalisms were
introduced, most of them were rooted on simple data structure on description logics to model
also more complex relationships. In recent years, with the beginning of the semantic web a new
interest has been aroused in the knowledge description formalisms. The W3C introduced several
recommendations for the description of information on the web, and in general, information to be
interpreted by machines. The base of the produced standards is the RDF (Resource Description
Framework). With RDF (http://www.w3.0org/RDF/) a fact is represented with a triple made of a

subject, a predicate and an object or a data value. Moreover the subject, the predicate and the
object are represented with URI (Uniform Resource Identifier). For example, RDF triple:

http://www.example.com/p.bellini, http://xmlins.com/foaf/0.1/knows , http://www.example.com/p.nesi

states that the “thing” identified by URI http://www.example.com/p.bellini “knows” the other
“thing” identified by http.//www.example.com/p.nesi. The “knows” predicate is also defined as an
object property and it is identified by URI http://xmlIns.com/foaf/0.1/knows. This property belongs
to the FOAF (Friend Of A Friend) vocabulary defining aspects and characteristics of people and
their relations on the web (http://www.foaf-project.org/).

For a more concise writing, a part of the URI can be considered a prefix that identifies the
namespace of the thing being described. So for example “ex” could be the prefix for
http://www.example.com/ and “foaf” for http://xmlIns.com/foaf/0.1/ and thus the same triple is
expressed by:

ex:p.bellini foaf:knows ex:p.nesi

Moreover, it is also possible to state that something belongs to a class of things and also this fact
can be represented by a triple. For example, the following RDF triple states that ex:p.bellini
identifies something that belongs to the class of people:

ex:p.bellini http://www.w3.0rq/1999/02/22-rdf-syntax-ns#type foaf:Person

There is also the possibility to associate simple data values (strings, numbers, dates, etc.) with a
subject URI. In the following example, family name and given name of ex:p.bellini, are provided.
Furthermore the familyName and givenName are called data properties:

ex:p.bellini foaf:familyName “Bellini”
ex:p.bellini foaf:givenName “Pierfrancesco”

When two or more consecutive triples share the same subject URI (as in the previous example),
we can write:

ex:p.bellini foaf:familyName “Bellini”; foaf:givenName “Pierfrancesco”.

A vocabulary defines the common characteristics of things belonging to classes and their relations.
A vocabulary can be also called “an ontology”. And, it is defined using the RDFS (RDF Schema) or
OWL (Web Ontologoy Language). For example, the “knows” object property is defined as having
as domain and range class foaf:Person. When using this information, what can be inferred is that
both ex:p.bellini and ex:p.nesi belong to the class foaf:Person. Moreover, the vocabulary states
that the class foaf:Person is a sub class of a more general class foaf:Agent, thus both ex:p.bellini
and ex:p.nesi belong to the class foaf:Agent.

OWL is a family of three ontology languages: OWL-Lite, OWL-DL, and OWL-Full. The first two
languages can be considered syntactic variants of SHIF(D) and SHOIN(D) description logics (DL),
respectively, whereas the third language was designed to provide full compatibility with RDF(S)
(Bellandi et al., 2012). The OWL version 2 language proposed by W3C is quite powerful; it allows
the definition of disjunctive classes, union and intersection of classes, functional properties,
symmetric, transitive properties, minimum and maximum cardinality of the associated elements of
a property and other features. OWL 2 is still based on RDF semantics and provides datatype. OWL
2 has three profiles: OWL2 EL, OWL2 QL and OWL2 RL specifically designed and suitable for
reasoning with existential quantifications, query formalization and access, reasoning and
formalization of rules, respectively (http://www.w3.org/TR/owl2-profiles/).

In order to exploit the information encoded as a set of RDF triples, it can be stored in RDF stores
which are optimized for the RDF data management and for the activation of reasoning processes
on the collected knowledge. To this end, a specific query language was designed to find
information on RDF store reticular information. Thus, the SPARQL (SPARQL Protocol and RDF
Query Language, recursive definition (http://www.w3.0rg/TR/2004/WD-rdf-sparql-query-
20041012/)) uses an advanced matching algorithm to match portion of the RDF graph with a
specified template. For example, the following query lists names of people known by a person
(identified with his email) directly and indirectly through one or more people:

SELECT ?n WHERE {
?p1 foaf:mbox <mailto:pbellini@unifi.it>.
?p1 rdf:knows+ ?p2.
?p2 foaf:name ?n.

}

Moreover, integrated ontologies can be adopted to enforce capabilities into the model. For
example, by exploiting vocabularies (ontology segments) to define properties such as the FOAF for
people and structures, Dublin Core for metadata, wgs84 pos for latitude and longitude
representation, OWL-Time or TimeOnt for reasoning about time and temporal aspects, INDL for
infrastructure and network description, and QoSOnt to define Quality of Service aspects.

1.2 EXPLOITING KNOWLEDGE

The main motivations for modeling and using a cloud knowledge base is related to its exploitation
for semantic computing and thus for reasoning about cloud (Androcec, 2012). The modeling can
be performed by using ontology in OWL and RDF. A Cloud Ontology and Knowledge base consists
in an ontology which can be used as model for a big data RDF store including cloud resource
configurations and conditions at level of laaS, PaaS, and SaaS, SLA (Service Level Agreement) of
multitier applications and deployments, monitoring data, supporting reselling, brokerage, etc., and
real instance data. In the seminal work (Youseff et al., 2008), an approach to create a cloud
ontology has been proposed decomposing problems into five layers: applications, software
environments, software infrastructure, software kernel, and hardware. The work identified the
challenges and verbally discussed the ontology. First attempts to model cloud aspects have been
grounded on the several taxonomical and SKOS (Simple Knowledge Organization System)
proposed models (Appistry, 2008), (Lairds, 2009), (Hoff, 2009).

A more precise understanding of the effective usage of cloud knowledge modeling exploitation
can be taken from the literature analysis where cloud knowledge bases are used for: (i) facilitating
interoperability among public and private clouds including automated configurations and deploy
(e.g., virtual machine, storage and services cloning or migration); (ii) verification and validation of
cloud configuration structures, virtual machine patterns, hosts, etc., against available resources
and structures; (iii) services and resources discovering and brokering, including service level
agreement, SLA, analysis and matchmaking; (iv) computing cloud simulation for resource and costs
planning, prediction and optimization; (v) reasoning about cloud workload conditions estimated by
monitoring and needed for decision taking on exploiting resources, thus moving virtual machine,
changing resource parameters, negotiating different agreements according to SLA, detecting
critical conditions, etc.; (vi) reasoning about cloud security condition and evolution.

A deeper review of the above potential application fields for cloud knowledge is discussed as
follows. Open Grid Forum (OGF, http://forge.ogf.org/sf/projects/occi-wg) with its Open Cloud
Computing Interface (OGF-OCCI) aims at defining interfaces for unified interface at level of laaS.

3

This would allow the creation of an interoperable layer among different vendors, by using an UML
model (Unified Modeling Language). In mOSAIC EC FP7-ICT project (Moscato et al., 2011), the
cloud knowledge modeling has been addressed with the aim of creating a common model to cope
with the heterogeneity of terms used by different clouds vendors, and with the number of
standards referring to cloud systems with different terminology. The major issue for cloud
interoperability is the lack of standardized APIs, thus the interaction and migration of VMs is a
difficult task. The problem of interoperability has been recently addressed by IEEE Project, P2301 -
Guide for Cloud Portability and Interoperability Profiles (CPIP), and by IEEE P2302 — draft Standard
for intercloud interoperability and federation with the aim of both defining common
interoperability protocols among federated clouds and defining configuration, functionalities, and
management of inter-cloud interoperability (IEEE 2014).

The problems of service discovering, negotiation and composition of services for cloud
infrastructure based on ontological models have been discussed in (Sim, 2011). The proposed
solution included a reasoner for similarity analysis and compatibility analysis. In (Dastjerdi et al.,
2010), an architecture and solution to provide virtual appliance on demand has been proposed.
The idea is mainly derived from the SLA models adopted for grid computing solutions. For the
description of SLAs some efforts were made in the past, beginning with WSLA for the definition of
SLAs of WebServices (Ludwig 2003).

As to cloud simulation, a significant example is CloudSim (Calheiros, et al., 2011), where several
layers of the typical cloud stack can be simulated, including: laaS, SLA, etc., without using a
knowledge base modeling. The solution is fit to simulate simple cloud solutions, but not problems
related to the verification and validation of configurations, smart strategies, etc.

The usage of a knowledge base for reasoning about cloud structures and resources, which means
automated provisioning and verification of service composition, configuration, optimizations and
deployment, can be defined as “Smart Cloud”. This may consist of a set of semantic modeling and
computing tools for cloud status reasoning while considering the cloud status and evolution via
the Cloud Knowledge Base. The intelligence on smart cloud is enforced by means of a set of
algorithms to perform: detection and prediction of critical conditions, verification and validation of
configurations (feasibility in terms of consistency and completeness, while taking into account
present and possibly available resources), unexpected correlations about facts on cloud evolution,
estimation of slack, automated verification of completeness and consistency, verification of
compatibility of SLA (service level agreement) against available resources in time, etc.

Currently there are several efforts in building smart cloud solutions grounded on ontology on
cloud computing (Androcec, 2012). Most efforts are focused on the description of the services
available on the cloud, to allow users to search and compare services (Zhang et al., 2012).

The most interesting projects on this topic are: (i) Linked USDL (Unified Service Description
Language http://www.linked-usdl.org/) used by the FI-WARE European project (Linked USDL)
providing a set of vocabularies for the description of the different service aspects (core service
description, SLA, security, price and IPR (intellectual property rights), even though it is focused on
service search and discovery, (ii) the mOSAIC project developed a wide ontology covering many
aspects from service deployment to service description and it is also focused on cloud service
search (Moscato, 2011), (iii) the Icaro Cloud project developed an ontology for the description of
both infrastructure and services considering verification and validation of configurations and
monitoring information and SLAs (http://www.disit.org/5482), as well.

In addition to the above reported innovative solutions, there are state of the affairs solutions
provided by major vendors such as IBM, VMware, HP, Microsoft, etc. and some specific additional
tools and plugins that enforce intelligence on the mentioned infrastructure management systems.

2. CLOUD KNOWLEDGE MODELING FOR SMART CLOUD

This section reports the current efforts in modeling Cloud Knowledge; it is focused on the
description of the infrastructure, the platform, applications and business processes.

2.1 MODELING IAAS INFORMATION

The laaS information contains the parts related to the physical structure of a datacenter that is
made of Host Machines connected on one or more networks, while hosts may have virtual
machines assigned. What follows is a possible example of a datacenter with 100 hosts, one
external storage and two firewalls described using the vocabulary being developed for the Icaro
project (http://www.disit.org/5482).

ex:datacenterl rdf:type c/d:DataCenter;
cld:hasName “production data center”;
cld:hasPart ex:host1;

cld:hasPart ex:host100;
cld:hasPart ex:storagel;
cld:hasPart ex:firewalll;
cld:hasPart ex:firewall2;

Each host machine can have details on the number of CPUs available, the memory size in GB, the
disk size in GB, the network adapters and the installed operative system, as it occurs in the next
example:

ex:host1 rdf:type c/d:HostMachine;
cld:hasName “host 1”;
cld:hasCPUCount 16;
cld:hasCPUSpeed 2.2;
cld:hasCPUType “Intel Xeon X56607;
cld:hasMemorysSize 16;
cld:hasDiskSize 300;
cld:hasLocalStorage ex:hostl_disk;
cld:hasNetworkAdapter ex:hostl_netl;
cld:hasNetworkAdapter ex:hostl_net2;
cld:hasOS cld:vmware_esxi;
cld:isPartOf ex:datacenterl;

ex:hostl_netl rdf:type cld:NetworkAdapter;
cld:hasIPAddress “192.168.1.1";
cld:boundToNetwork ex:network1;

ex:hostl_disk rdf:type cld:LocalStorage;
cld:hasDiskSize 300.

ex:firewalll rdf:type cld:Firewall;

cld:hasName “Firewall 1”;
cld:hasNetworkAdapter ex:firewalll_net1;
cld:hasNetworkAdapter ex:firewalll_net2.

Each host machine contains a number of virtual machines; for example, a virtual machine with 2
CPUs, 1GB of RAM, 10GB of disk, one network adapter, with Windows XP professional running on
host5, which is described as:

ex:vm1 rdf:type cld:VirtualMachine
cld:hasName “vm 1, windows xp”;
cld:hasCPUCount 2;
cld:hasMemorySize 1,;
cld:hasVirtualStorage ex:vm1_disk;
cld:hasNetworkAdapter ex:vm1_netl;
cld:hasOS cld:windowsXP_Prof;
cld:isStoredOn ex:host1_disk
cld:isPartOf ex:host1;

ex:vm1_disk rdf:type cld:VirtualStorage;
cld:hasDiskSize 10.

Moreover each element can have associated information needed for monitoring aspects (see
section 3.4).

As to the description of infrastructure resources, ontology like INDL-Infrastructure and Network
Description Language may be used (Ghijsen et al., 2012). It defines a generic Node that is linked
with other Nodes through Interfaces and Links. VirtualNodes are used to represent virtual
machines running on Nodes. NodeComponents are used to represent the Processing, Memory and
Storage components of a Node.

The differences between the two formalizations seem mainly related to the description of
networking aspects, namely in INDL it is more detailed though it lacks some details as the IP
address.

The mOSAIC Ontology allows to describe some information about the host and the virtual
machines (e.g., CPU, memory, storage), but it does not describe how they are connected in the
network and how the virtual machines are related with the host machine. Virtual machines are
stored in some storage and associated with some hosts or clusters.

2.2 MODELING PAAS INFORMATION

This section reports current efforts in modeling the platform level, while considering the services
used to create applications. In the cloud, services are the building blocks used to create more
complex and complete applications which can be used by users. In general, an application uses
some services, like a database service, a file system service, a mail service, as well as some web
servers or web application servers. Generally these services are requested by other specific
applications at SaaS level by allocating them on a set of virtual machines. These virtual machines
can host and implement more than one service or cooperate with other virtual machines to
implement a service (e.g., a DB cluster). Moreover, these virtual machines can provide services for
only one specific customer or can be shared among multiple customers. In the latter case, some
kind of authentication and service sharing mechanisms are used.

An application can be modeled using specific constraints (e.g., max 4 web servers), the application
can be seen as a class containing the specific application instances. A way to represent an
application is by defining its relations using the OWL constructs. What is reported below is the
general definition of the class of Applications expressed using the OWL2 Manchester syntax
(http://www.w3.org/TR/owl2-manchester-syntax):

Application = Software
and (hasldentifier exactly 1 string)
and (hasName exactly 1 string)
and (developedBy some Developer) and (developedBy only Developer)
and (createdBy exactly 1 Creator) and (createdBy only Creator)
and (administeredBy only Administrator)
and (needs only (Service or Application or ApplicationModule))
and (hasSLA max 1 ServicelLevelAgreement)
and (hasSLA only ServicelLevelAgreement)
and (useVM some VirtualMachine) and (useVM only VirtualMachine)

It states that an Application is a Software, which has exactly one identifier and one name, it has
been developed by one or more developers (and only by developers!), it has been created
(instantiated) by a creator user, it can be administered only by administrator users, it needs only
Services, other Applications or ApplicationModules, it has at most one SLA and it uses some virtual
machines. Sub classes of the Service are the services running on a virtual machine. A specific
application, for example Joomla, is a sub class of Application with some additional constraints:

Joomla SubClassOf Application
and (needs exactly 1 MySQlServer)
and (needs exactly 1 HttpBalancer)
and (needs exactly 1 NFSServer)
and (needs min 1 (ApacheWebServer and (supportsLanguage value php_5)))

The Joomla class is defined as a subclass of the intersection of the Application class with the
classes of things that need exactly one MySQL Server, one Http Balancer, one NFS server and at
least one Apache WebServer supporting PHP 5.

A specific instance of the Joomla application is as follows:

ex:Joomlal rdf:type app:Joomla;
cld:hasName “Joomla for my business”;
cld:developedBy ex:user;
cld:createdBy ex:ul;
cld:needs ex:mysqgll, ex:apachel, ex:apache2, ex:httpbalancerl, ex:nfsserverl;
cld:hasSLA ex:slal;

ex:mysqll rdf:type cld:MySQLServer;
runsOnVM ex:vm1;

ex:apachel rdf:type cld:ApacheWebServer;
cld:runsOnVM ex:vm?2;
cld:supportsLanguage cld:php_5;

2.3 MODELING SAAS AND XAAS INFORMATION

This section describes the current efforts in modeling the whole service that is provided by the
cloud, by considering also the interoperability aspects and the brokerage of services from different
clouds, as well as the description of a whole business process.

As shown in section 3.2, an application may be described by its parts (the services being used) and
it may also have associated: pricing information, description of the provided functionalities,
service level description, and other aspects. When using this kind of information, a third-party can
store all such application descriptions and provide a service allowing to search for applications
having some functionality (e.g., an ERP, Enterprise resource planning) with some pricing
constraints and some other interesting features.

The most interesting project dealing with this kind of information is Linked USDL. It allows to
describe the pricing information of a service while reusing other popular vocabularies as
GoodRelations (Hepp, 2008), Dublin Core (http://dublincore.org) and FOAF, vocabularies. It allows
a service to be associated with a PricePlan having different PriceComponents which may be based
on different PriceVariables. 1t also allows modeling complex dynamic pricing. The following
example is related to a plan to use a service for 5 euro/month:

ex:Joomla rdf:type usdl-core:ServiceOffering;
usdl-price:hasPricePlan ex:;joomlaPriceplan.

ex:joomaPriceplan rdf:type usdl-price:PricePlan;
usdl-price:hasPriceComponent ex:ppc;

ex:ppc rdf:type usdl-price:PriceComponent;
price:hasPrice [rdf:type gr:PriceSpecification ;
gr:hasCurrency "EUR" ;
gr:hasCurrencyValue "5";
gr:hasUnitOfMeasurement "MON"

].

Another aspect related with SaaS is multitenancy. This approach consists in the possibility of
exploiting only a part of a shared service and not the entire software application. This portion of
the service application is defined as tenant, which behaves as if the full application, whereas the
service is shared among all the application tenants. In this case, the shared application has a set of
tenants that can have specific SLA (e.g., they may use a certain amount of storage, a certain
amount of network bandwidth, a certain amount of connections, etc.).

When the business user creates his business process on cloud, he can decide to use different
applications that can be connected to share information. A BusinessConfiguration can be
described as a set of applications or applications tenants that may have dependencies one
another. For example, a business configuration with a Joomla instance and a CRM (Customer
Relationships Management) tenant.

2.4 MODELING SLAS AND MONITORING ASPECTS

As to the formalization of SLAs some efforts were made in the past beginning with WSLA for the
definition of SLAs of WebServices (Ludwig, 2003). The SLA is described using XML schema and it is
very general, thus allowing to define and compose service metrics.

The description defines services (ServiceDefinition) on the basis of parameters (SLAParameter)
which are defined using metrics (Metric) and metrics are defined using functions which can use
other metrics. A SLA can be associated with some Obligations describing the objectives of the
service level to be guaranteed.

The WS-Agreement was developed out of the “Grid Resource Allocation Agreement Protocol
Working Group” (GRAAP-WG). The WS-Agreement Specification V1.0, defined a protocol to define
the agreement between two services, and it was published in May 2007 as an Open Grid Forum
Proposed Recommendation. The specification is composed of a schema for the agreement
description, a set of “port type” and “operation” to manage the agreements life-cycle (including
creation, termination and agreement state control). An Agreement is made of a Context and some
Terms divided into ServiceTerms and GuaranteeTerms, the latter including the conditions which
need to be guaranteed by the service. Conditions can be specified with a target value for the
parameter or using expressions, but the syntax to be used to express these conditions is not
specified, any kind of XML or textual representation can be used, thus limiting the description
interoperability.

In (Oldham, 2006), beginning with WS-Agreement an ontology for matching service requests and
offers has been defined. This ontology uses QoSOnt (Dobson, 2005) to define Quality of Service
aspects and TimeOnt for temporal aspects. This service (SWAPS) is based on semantic technologies
as IBM SNOWBASE for ontology management and IBM ABLE for the reasoning and for inference
rules. It should be noted that WSLA expressions (which can be easily modeled in OWL) are used to
define service conditions.

The European project NextGrid for the definition of an European platform for grid computing has
defined a SLA based mainly on WS-Agreement. Moreover, SLAng (Lamanna, 2003) is a different
XML schema for SLA definition, which is far less generic than WSLA and WS-Agreement. Moreover,
in the context of the FI-WARE project, the SLAware model has been proposed. SLAware defines
the formal semantic of the SLA by using the Transparent Intentional Logic (a modal temporal logic)
while the data model is defined by using UML.

In the context of FI-WARE project, the LinkedUSDL provides a part related to SLA representation
which is much simpler with respect to SLAware. On the other hand, it seems that the work on
SLAware modeling and maintenance has been stopped. In LinkedUSDL-SLA, the service level
profile is associated with some service level that can be a Guaranteed State or a Guaranteed
Action. The service level can be associated with a service level expression, representing in natural
language, the description of the condition to be met and it is also associated with variables which
are taken into account to check whether the condition is fulfilled or not.

In Icaro Cloud, the SLA allows to formalize a set of conditions based on metric values associated
with applications, application tenants and/or complete business configurations. The Icaro Cloud
SLA model follows a simplified WSLA model, composing complex and/or conditions based on
comparing metric values to constant values (e.g., defined in the SLA contract). For example, Figure
1 depicts a SLA to guarantee a response time less than 5 seconds for the Apache http server and a
database size less than 1GB. In Figure 1 the SLA is represented as an oriented graph where nodes
are subject or object URI and arcs are the properties relating them.

cld:hasSLAction

cld:hasSLObjective

cld:hasSLMetric

cld:hasEndTime

cld:hasStartTime \
“2013-01-01T00:00:00”

rdf:type

cld:ServiceLevelAndMetric

“2013-01-01T00:00:00”
cld:dependsOn cld:dependsOn

rdf:type

p ., cld:hasMetricName
responseTime

cld:hasMetricValueLessThan cld:hasMetricValueLessThan
cld:dependsOn cld:dependsOn . ; ;
5 & cld:hasMetricUnit P P cId.hasMetrlcUm\Auln

“seconds” “GB”
ex:apachel

Figure 1. A graph representing a SLA in the framework of the Icaro Cloud ontology

In the MOSAIC ontology, the SLA of a Service allows to associate a set of policies. The latter, in turn
can be defined as a set of functional (e.g., monitoring, backup and recovery, replication) and non-
functional properties (e.g., CPU speed, network bandwidth, availability). For example, a virtual
machine provided as laaS with x86 CPU architecture, and two CPU cores featuring a High
replication can have a SLA represented as follows:

ex:vm_sla rdf:type msc:SLA;
msc:definedForService ex:vm;
msc:definePolicy ex:vm_policy.

ex:vm rdf:type msc:VirtualMachine;
msc:hasVirtualizationTechnology msc:Xen;

ex:vm_policy rdf:type msc:Policy;
msc:expressRequirement msc:x86;
msc:expressRequirement [msc:numberOfCPUCores 2 |;
msc:expressRequirement msc:HighReplication;

The modeling of SLAs can be very different, some approaches are focused on the specification of
service metrics bounds and conditions which need to be verified, while others, like Mosaic, are
more focused on the specification of high level requirements which are more difficult to be
verified. This is due to the fact that, some solutions are oriented to SLA verification/check,
whereas others are oriented to allow service search or match. Among solutions focused on SLA
checking, there are Linked-USDL and WS-Agreement which do not impose a way to represent the
condition which has to be met. On the other hand, other solutions such as WSLA, SWAPS, and
Icaro Cloud define specific constructs to represent conditions and fit for their automated
computation and reasoning. The latter ones are obviously more suitable for knowledge reasoning.

As far as we know, only Icaro Cloud allows to describe monitoring information associated with
host machines, virtual machines, services and applications tenants. The monitoring information
may include for example the IP address to be used for monitoring a service or the specific

10

information regarding the metrics to be monitored; particularly the ones that are specific for the
application and that are used in the SLA. For example, an apache web server may have defined a
monitor on response time

ex:apachel rdf:type cld:ApacheWebServer;
cld:runsOnVM ex:vm?2;
cld:hasMonitorinfo ex:minfol;

ex:minfo rdf:type cld:Monitorinfo;
cld:hasMetricName “responseTime”;
cld:has Arguments “http://...”; #specific arguments to be provided to the plugin
cld:hasWarningValue 1;
cld:hasCriticalValue 4;
cld:hasMaxCheckAttempts 3;
cld:hasCheckinterval 5; #check every 5 min

3. SMART CLOUD VS INDUSTRIAL APPLICATIONS

Modeling cloud knowledge can be the basis for enabling a large range of future reasoning
applications. Due to the complexity of cloud knowledge models and to the amount of data
collected by cloud monitoring systems, the cloud reasoning is becoming a big data problem (Bellini
et al., 2013). At the industrial level, one of the closest features to “Smart Cloud” reasoning is the
so called: resource optimization tool, elasticity, etc. Elasticity aims to cope with objectives such as:
performances, energy consumption, optimization of costs. These approaches could benefit from
the presence of cloud knowledge base, and yet in most cases, traditional approaches are used,
thus limiting the cloud smartness.

As a general rule, the elasticity is defined as the ability given to customers to quickly request,
receive and release as many resources as needed. The elastic paradigm in Cloud Computing is
strongly related to cloud resource monitoring and prediction, and it should not be confused with
scalability, which is the ability of a system to make use of the available increased resources. An
elastic application can automatically adapt itself in order to modify the requested or released
resources. Therefore, scalability is defined as a static property, and elasticity as a dynamic one.
Elasticity policies are divided into automatic (actions are taken on the basis of rules and settings or
SLAs) and manual (the user is responsible for the cloud environment monitoring). GoGrid,
Rackspace and Microsoft Azure are notable examples of cloud infrastructures where resources are
manually managed with no automatic elasticity policies.

Typically, elastic computing includes three different aspects: replication (i.e., horizontal scale),
migration and resizing (i.e., vertical scale). Replication includes adding/removing resource
instances from the cloud environment (e.g., virtual machines, SaaS modules). Migration includes
moving a running virtual machine from one physical server to another. Resizing includes
adding/removing processing, memory and storage resources from a running resource instance.

Automatic policies are further divided into reactive (based on rule-condition rules) and predictive.
As an example, reactive rules are implemented as it occurs in Amazon. On the contrary, predictive
policies make use of heuristics and mathematical techniques to predict the system behavior, and
hence to decide the modality and the amount of scaling. Amazon Web Services includes a
replication feature called Auto-Scaling, in the EC2 service (http://aws.amazon.com/ec2). This
feature makes use of the so called Auto Scaling Group (ASG) (i.e., a set of instances at disposal for

11

an application), and it uses an automatic reactive approach where each ASG includes a set of rules
defining the amount of rules that must be added/removed.

4. CONCLUSIONS

The cloud knowledge models reviewed and represented in this paper have been derived from the
literature and current aims of standardization. The state of the art of cloud knowledge is presently
in evolution. A major effort is needed to fully cover all the potential capabilities of cloud
knowledge base applications. The most widespread applications are in the areas of modeling and
reasoning about cloud: (i) interoperability among public and private clouds, (ii) configuration at
the different level of cloud stack, (iii) service and application discovering and brokering including
service level agreement matchmaking, (iv) simulation for workload prediction, (v) dynamic analysis
to adapt cloud workload conditions as in the elastic computing paradigm, (vi) security, and security
analysis. Most of these application fields need to work on different cloud knowledge models,
while a common standard would be needed to make the applications and algorithms
interoperable. Modeling cloud knowledge can be the basis for enabling a large range of future
reasoning applications. Due to both the complexity of cloud knowledge models and the amount of
data collected by cloud monitoring systems, cloud reasoning is becoming a big data problem.

6. REFERENCES

1. (Androcec, 2012) D. Androcec, N. Vrcek, J. Seva, "Cloud Computing Ontologies: A
Systematic Review", Proc. of MOPAS 2012, The Third International Conference on Models
and Ontology-based Design of Protocols, Architectures and Services, Chamonix, France,
April 29, 2012.

2. (Appistry, 2008) Appistry. Cloud Taxonomy: Applications, Platform, Infrastructure:
http://www.appistry.com/blogs/sam/cloud-taxonomy-applications-platform-infrastructure
, 2008.

3. (Bellandi et al., 2012) Bellandi A., Bellini P., Cappuccio A., Nesi P., Pantaleo G., Rauch N.,
"ASSISTED KNOWLEDGE BASE GENERATION, MANAGEMENT AND COMPETENCE
RETRIEVAL", International Journal of Software Engineering and Knowledge Engineering,
World Scientific Publishing Company press, vol.32, n.8, pp.1007-1038, Dec. 2012.

4. (Bellini et al., 2013) Bellini P., Di Claudio M., Nesi P., Rauch N., "Tassonomy and Review of
Big Data Solutions Navigation", Big Data Computing, Published 26th July 2013 by Chapman
and Hall/CRC.

5. (Calheiros, et al., 2011) Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F. De
Rose, and Rajkumar Buyya. 2011. CloudSim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algorithms. Softw. Pract.
Exper. 41, 1 (January 2011), 23-50. DOI=10.1002/spe.995

6. (Dastjerdi et al., 2010) Amir Vahid Dastjerdi, Sayed Gholam Hassan Tabatabaei, and
Rajkumar Buyya. 2010. An Effective Architecture for Automated Appliance Management
System Applying Ontology-Based Cloud Discovery. In Proc. of the 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing (CCGRID '10). IEEE
Computer Society, Washington, DC, USA, 104-112.

7. (Dobson, 2005) G. Dobson, et al., "QoSOnt: a QoS ontology for service-centric systems," in
Software Engineering and Advanced Applications, 2005. 31st EUROMICRO Conference on,
2005, pp. 80-87.

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

(Ghijsen et al., 2012) Mattijs Ghijsen, Jeroen van der Ham, Paola Grosso and Cees de Laat,
“Towards an Infrastructure Description Language for Modeling Computing
Infrastructures”, In The 10th IEEE International Symposium on Parallel and Distributed
Processing with Applications , 2012.

(Guinness et al., 2004) McGuinness, D. L., van Harmelen, F. OWL Web Ontology Language
Overview. W3C Recommendation: http://www.w3.org/TR/2004/REC-owl-features-
20040210/, 2004.

(Hepp, 2008) Hepp, Martin: GoodRelations: An Ontology for Describing Products and
Services Offers on the Web, Proceedings of the 16th International Conference on
Knowledge Engineering and Knowledge Management (EKAW2008), September 29 -
October 3, 2008, Acitrezza, Italy, Springer LNCS, Vol. 5268, pp. 332-347.

(Hoff, 2009) C. Hoff. Cloud Taxonomy and Ontology:
http://rationalsecurity.typepad.com/blog/2009/01/cloud-computing-taxonomy-
ontology.html, 2009.

(IEEE 2014) IEEE P2302 -- Standard for Intercloud Interoperability and Federation (SIIF)
(Lairds, 2009) P. Lairds. Cloud Computing Taxonomy. In Procs. Interop09, pages 201-206.
IEEE Computer Society, May 2009.

(Lamanna, 2003) D.D. Lamanna, J. Skene & W. Emmerich, SLAng: A language for defining
service level agreements, in Proc. of the 9th IEEE Workshop on Future Trends in Distributed
Computing Systems-FTDCS, 2003, pages 100-106.

(Ludwig, 2003) H. Ludwig, A. Keller, A. Dan, et al, Web Service Level Agreement (WSLA)
Language Specification, January 28 2003, available at:
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf

(Moscato, 2011) Moscato, F.; Aversa, R.; Di Martino, B.; Fortis, T.; Munteanu, V., "An
analysis of mOSAIC ontology for Cloud resources annotation," Federated Conference on
Computer Science and Information Systems (FedCSIS), vol., no., pp.973,980, 18-21 Sept.
2011.

(Oldham, 2006) Oldham, N., Verma, K., Sheth, A., and Hakimpour, F. 2006. Semantic WS-
agreement partner selection. In Proceedings of the 15th International Conference on
World Wide Web (Edinburgh, Scotland, May 23 - 26, 2006). WWW '06. ACM Press, New
York, NY, 697-706.

(Sim, 2011) K. M. Sim, — Agent-based Cloud Computing , IEEE Transactions on Services
Computing, vol. PP, pp. 1-13, October 2011.

(Youseff et al., 2008) Lamia Youseff, Maria Butrico, and Dilma Da Silva. Towards a unified
ontology of cloud computing. In Grid Computing Environments Workshop, 2008. GCE ‘08,
pages 1-10, Nov 2008.

(zhang et al., 2012) Zhang, M.; Ranjan, R.; Haller, A.; Georgakopoulos, D.; Menzel, M.;
Nepal, S., "An ontology-based system for Cloud infrastructure services' discovery," 8th
International Conference on Collaborative Computing: Networking, Applications and
Worksharing (CollaborateCom), 2012, pp.524,530, 14-17 Oct. 2012.

13

Prof. Pierfrancesco Bellini is professor of Programming Methods of Electronic Calculators, Engineering
faculty in the University of Florence. He received his degree in Informatics Engineering in the 1997 and his
Ph.D. in the 2001. His main interests and skills are: software engineering, formal methods, data analytics,
metadata modeling, LOD, temporal logic, theorem proving, ontologies, distributed systems, object
modeling, mobile computing, computer music. He has been involved with EC projects such as ECLAP,
AXMEDIS, VARIAZIONI, IMAESTRO, WEDELMUSIC, MOODS, MUPAAC, IMEASY, VISICON, OPTAMS and ICCOC
and actually he is involved in industrial projects as: TRACE-IT, RAISSS and ICARO CLOUD. He has been the
program co-chair of the WEDELMUSIC, ICECCS and AXMEDIS. He has published several technical papers on
international journals and conferences on the above mentioned topics. He has been co-editor of the ISO
MPEG SMR standard in MPEG.4.

Dr. Daniele Cenni is currently Research Fellow and PhD in Engineering at the University of Florence. He
received the degree in Computer Engineering. His research interests include: indexing systems, collaborative
systems, Web Services, Social Networks, User Behavior and Profiling, Information Retrieval. He has
participated in European research and development projects like ECLAP and AXMEDIS, and in regional
research projects such as: ICARO. He was professor for the course Operating Systems (Master of Science in
Engineering, Faculty of Engineering, University of Florence). He has published technical articles in
international journals and conferences on the above mentioned subjects.

Prof. Paolo Nesi (http://www.disit.org/nesi/). He is full professor since 2001, obtained the PhD in the
University of Padova and conducted a period at the IBM research labs in Almaden (California). Its research
skills include distributed systems technologies, formal methods, artificial intelligence, grid and cloud
systems, middleware, realtime systems, digital content distribution, smart systems, smart city, intelligent
content, e-learning, crawling, data mining. He has been member many international conference committees
and editor of international publications and journals. Paolo Nesi published more than 230 articles in
international journals and congresses and has been chair and/or programme chair of: IEEE ICSM, IEEE
ICECCS, DMS, AXMEDIS, WEDELMUSIC, CSMR, and program committee member of a number of major
conferences. Prof. Paolo Nesi is full professor of Distributed Systems in Software Engineering, University of
Florence. Prof. Paolo Nesi has been project manager of many big sized European research and innovation
projects, like: ECLAP, AXMEDIS, MOODS, I-MAESTRO, WEDELMUSIC, MUSICNETWORK and for the
Department in many other projects, like ICCOC, MUPAAC, VISICON, OPTAMS, IMUTUS, IMEASY, ICARO
CLOUD, TRACE-IT, RAISSS, and Sii-Mobility. He has been coordinator of the Ad-Hoc Group for the definition
of the ISO MPEG-SMR standard and co-author of the ISO MPEG-SMR defined in the MPEG-4 format. Prof.
Paolo Nesi is coordinator and responsible of the DISIT Lab of the University of Florence
(http://www.disit.dinfo.unifi.it).

//list three or four topics//. Brief info about his/her professional contributions and
accomplishments and/or ongoing work. He/She has received //names of awards, fellowships,
honors//. For further details, visit his/her webpage //member?s web address, if any// or contact
him/her at //email address//.

14

