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Abstract

Fault proneness detection in object-oriented systems is
an interesting area for software companies and researchers.
Several hundreds of metrics have been defined with the aim
of measuring the different aspects of object-oriented sys-
tems. Only a few of them have been validated for fault de-
tection, several interesting works with this view have been
considered. This paper reports a research study started
from the analysis of more than 200 different object-oriented
metrics extracted from the literature with the aim of iden-
tifying suitable models for the detection of fault-proneness
of classes. Such a large number of metrics allows extract-
ing a subset of them in order to obtain models that can be
adopted for fault proneness detection. To this end, the whole
set of metrics has been classified on the basis of the mea-
sured aspect in order to reduce their number to a manage-
able one; then statistical techniques have been employed to
produce a hybrid model comprised of 12 metrics. The work
has been focussed on identifying models that can detect as
many faulty classes as possible and, at the same time, mod-
els that are based on a manageable small set of metrics.
A compromise between these aspects and the classification
correctness of faulty and non-faulty classes was the main
challenge of the research. As a result, two models for fault-
proneness classes detection have been obtained and vali-
dated.

Index terms: object-oriented metrics, maintenance, fault
estimation, empirical validation.

1 Introduction

Since the adoption of the Object-Oriented paradigm, sev-
eral metrics and suites have been defined and validated in
order to cover the different aspects of system development
e.g., [1], [3], [5], [6], [7], [13], [17], [19], [22], [24]. These
metrics have been defined and validated for different goals:
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effort estimation and prediction, reusability, maintenance,
etc.

Some studies of metrics and measurement frameworks
for object-oriented systems have been presented in [6], [10],
[12], (17], [18], [19], [24], where general concepts for the
estimation of system size, complexity and reuse level have
been proposed together with many other metrics.

Fault-proneness detection is an interesting area. Quality
and maintenance effort control depend on the understanding
of this concept. In the last years, a lot of effort and work
have been performed in order to define suitable metrics and
models for fault detection [1], [3], [4].

This paper reports a research study of more than 200
different object-oriented metrics extracted from the litera-
ture with the aim of identifying suitable models for fault-
proneness classes detection. The considered object-oriented
metrics have been estimated by using three assessment tools
for the analysis of C++ code. These measuring tools are:
TAC++, developed at the Department of Systems and In-
formatics of the University of Florence [6], [10], [19];
CPP-Analyzer, developed by Harry M. Sneed [21]; and M-
System, [1], [3], [4] developed at FHG-IESE. These tools
estimate the metrics defined by the corresponding research
teams but also several other metrics published in the litera-
ture, for a total of 226 different metrics at class level.

In this paper, an investigation on how all these metrics
are related to fault-proneness detection and how many of
these metrics are needed to obtain a good model for fault
detection has been performed. The work has been focussed
on identifying models that can predict as many errors as
possible and at the same time are comprised of a manage-
able small set of metrics. To this end, the finding of a sat-
isfactory compromise between these aspects and the classi-
fication correctness of faulty and non-faulty classes was the
main challenge. The research study has been based on the
estimated metric values and on a set of projects developed
at the University of Maryland.

To this end, two models for fault-proneness detection
based on logistic regression have been defined. These have



been validated against a well-known set of projects in the
literature, and compared with similar models already de-
fined in the literature [4]. This work can be regarded as an
extension and a confirmation of the results obtained in [4].
One of the results of this paper is that only few of the 226
metrics are relevant for obtaining a good identification of
faulty classes in small-medium sized projects. To this end,
the metrics have been classified on the basis of the measured
aspects to reduce their number to a manageable one. This
operation has reduced the number of metrics to be consid-
ered to 42, obtaining a first model for fault-proneness detec-
tion. This first model has been considered unsuitable since
the number of metrics was still too high to be effectively us-
able. Starting from this model, statistical techniques based
on logistic regression have been employed to produce a hy-
brid model comprised of only 12 metrics.

The large number of metrics selected as independent
variables and the several aspects taken into account by them
suggest that a hybrid model with metrics that considers dif-
ferent aspects can be suitably employed. This statement
has been also partially supported in [4] where the hybrid
model obtained a score non completely satisfactory with re-
spect to other models. This paper confirms that a model
(hybrid-model) that covers several distinct aspects related to
the object-oriented paradigm (coupling and cohesion, struc-
tural, functional) can be suitably applied to faulty class
identification obtaining a very high value of confidence.
The experiments reported in this paper and in [4] and [5],
were based on the same data set such as briefly described
in the following. The main novelties of this paper are: the

adoption of a different process to identify the model and
the usage of PCA for reducing the number of metrics to a

manageable one.

This paper is organized as follows. In Section 2, the
study and the data adopted are presented. In Section 3,
the statistical techniques adopted during the study are dis-
cussed. In Section 4, the proposed models are presented
together with a discussion and comparison with other mod-
els presented in the literature. Conclusions are drawn in
Section S.

2 Empirical Study Background

In this section, the variables involved in the empirical
study are presented together with the main goals of the
study reported in this paper.

2.1 Dependent Variable

The systems adopted for the validation of the models de-
fined during this study were developed by students partic-
ipating in the upper division undergraduate/graduate level
course at the University of Maryland. These projects and
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data were used several other times for studying quality mod-
els for object-oriented systems [1], [4], [S]. The students
were grouped in 8 groups, and they were asked to develop a
medium-sized management information system in C++ on
the basis of a waterfall life cycle model and applying OMT
[20] as the Object-Oriented Analysis/Design method (sev-
eral libraries were used during the development). Details
can be recovered in [1]. The testing phase was performed
by an independent group of experienced software profes-
sionals that provided feedback about the detected faults by
means of filled forms. This set of projects has been identi-
fied as a test case for the reasons reported in the following.
It is quite difficult to recover large object-oriented industrial
projects with a detailed list of faults detected during and af-
ter the development. The definition of new models has to
deal with the comparison of the models already presented
in the literature, for that reasons we have choosen to adopt
this data-set.

The data related to faults have been used as the depen-
dent variable for this study. In particular, a class has been
considered faulty if at least a fault has been detected. Since
the number of cases against which the model could be fitted
was limited, no further inspection on the relationships be-
tween faulty classes with 2 or more faults and metrics have
been carried out.

The number of cases collected in the data set was of 113
classes, with about one third of faulty classes.

2.2 Independent Variables

The independent variables are several object-oriented
metrics calculated by means of the three tools for the anal-
ysis of C++ code mentioned in the introduction.

The cited tools are capable of processing C++ sources
for producing measures of 226 metrics: 82 extracted by
TAC++, 68 by CPP-Analyzer and 76 by M-System. All
these metrics could be potentially considered as indepen-
dent variables for the definition of models for estimation
and prediction of fault-proneness in object-oriented sys-
tems. The considered metrics cover all the aspects of object-
oriented measures presented in the cited literature. For lack
of space, it is impossible to describe all these metrics and
cite all the technical papers in which they are defined and
discussed.

At more general level, CPP-Analyzer is mainly focused
on the evaluation of functional and high-level quality met-
rics such as object points, and several other metrics related
to Quality and Functional code estimation.

M-System evaluates metrics mainly related to class co-
hesion and coupling estimation and covers also the struc-
tural and design aspects relevant for object oriented sys-
tems. The considered metrics are mainly extracted from
suites presented in the literature: Chidamber and Kemerer



[7], Li and Henry [17], Lee et al. [23], Bieman and Kang
[2], and several others.

The TAC++ tool generates complexity, size, structural
and cognitive metrics for effort estimation and prediction,
completing the covering of the possible metrics suitably em-
ployed for the assessment of object-oriented systems: the
suite of metrics proposed by the authors in the past [6],
[10], [11]; some Henderson-Sellers metrics [12], [13]; some
Thomas and Jacobson metrics [22], etc.

2.3 Target of the Study

The main goal of this study has been to define and val-
idate models for fault-proneness detection. The starting
point has been to collect the measures of different sets of
object-oriented metrics available in the literature (as dis-
cussed above). These metrics have been used to identify the
most suitable model for fault-proneness detection by using
statistical techniques and tools, such as Principal Compo-
nent Analysis and Logistic Regression.

In particular, the planned goals can be summarized as
follows:

- to define a model with the aim of obtaining a suitable
accuracy in the fault proneness detection (the target
was a detection capability greater than 90%) disregard-
ing the number of metrics involved in the model. This
was defined in order to see if that value can be reached
or not, even considering a very high number of metrics.

- to refine and modify the previous model in order to ob-
tain the lowest degradation possible in performance (at
least a detection capability of 80%) and reducing the
number of metrics employed in the model to a man-
ageable number.

The first model can be adopted to verify which metrics
are useful for fault-proneness detection and which metrics
cover all aspects related to fault identification, while the
second model can be applicable in real conditions for the
number of metrics involved. The models can be used to
highlight which metrics and aspects are more relevant for
the faulty problems of object-oriented systems.

3 Statistical Techniques for Data Analysis

In order to obtain a suitable model for fault proneness de-
tection two commonly used statistical techniques have been
adopted. The former is the Principal Component Analysis,
while the latter is the multivariate logistic regression. In
the following subsections, these techniques are briefly dis-
cussed together with their principal contributions and draw-
backs.
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3.1 Principal Component Analysis

In the analysis of a data set with many variables it can
be difficult to reduce the number of variables that explain
the variability of the data under analysis without losing in-
formation. This result can be performed by using Princi-
pal Component Analysis (PCA) [9]. Principal Components
(PCs) are the orthogonal linear combinations of variables
whose variance is equal to those observed. The first PC is
the linear combination of variables which explain the max-
imum amount of variance in the data set. The other PCs are
orthogonal to the previously extracted components and ex-
plain in turn the maximum amount of the residual variance.

Usually only a small subset of all the variables has a
large coefficient (loading) in a PC, and therefore only these
variables should be considered significant from a statistical
point of view. The variables having a high loading usually
identify the dimension captured, even if a certain degree of
interpretation is required. In order to simplify the struc-
ture of the PCs, a rotation of the components is usually per-
formed. This operation is focused on the reduction of the
loading of the coefficients that were small in the component
matrix and increases the loading of the already significant
components.

In this paper, the Varimax rotation method has been
adopted [16]. This rotation process works on the compo-
nent columns allowing a reduction of the number of signifi-
cant variables for each component. The criteria represented
in Fig.1 and described in the following have been adopted
for extracting the PCs from the data set under analysis.

o [dentification of variables/metrics to be included in the
analysis. Usually all variables/metrics are included in
the analysis, except some specific variables that can
be excluded a-priori because they are not statistically
significant (i.e., they have a null variance).

Definition of the matrix on which to perform the analy-
sis. Usually the correlation matrix is adopted, because
it is symmetric and contains the correlation of all vari-
ables.

Definition of the number of factors to be extracted. The
maximum number of factors is the rank of the correla-
tion matrix, even if in general a lower number of fac-
tors is typically considered.

Definition of criteria for stopping the extraction of fac-
tors. The commonly used procedure consists in ex-
tracting the PCs since the eigenvalue reaches a prede-
fined value, or stopping their extraction when a suffi-
cient variance is explained.

Application of the rotation criteria. The rotation meth-
ods can be orthogonal or oblique and they are targeted



Identification of variables
to be included in the analysis

Definition of the matrix
on which perform analysis

Define the number of
factors to be extracted

Define the criteria for stopping
factors extraction

Application of rotation criteria

Evaluation of solution
goodness

Figure 1. Sequence of steps to perform a factorial analy-
sis by using PCs.

to simplify the factors’ interpretation depending on the
target chosen (i.e., Varimax method is useful for reduc-
ing the number of variables for each component, while
Quartimax method is more focused on enhancing the
contribution of the most significant variable among all
the PCs).

o Evaluation of solution goodness. Statistical indexes
and/or graphical representations can be adopted to
judge the suitability of extracted PCs for the problem
under analysis.

In order to apply the above mentioned steps, it is neces-
sary to define a criterion to select a certain number of PCs
that explain a good percentage of the variance. Several cri-
teria can be suitably employed. The most commonly used
are: (i) to fix the number of PCs in advance, (ii) to fix the
target explained variance, (iii) to fix the eigenvalue related
to a component. In this study, the second approach has been
adopted and the cut-off value for the total explained vari-
ance eigenvalue has been imposed at 85%.
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3.2 Multivariate Logistic Regression

Multivariate logistic regression is a standard technique
to estimate the regression function that better matches the
probability of owning a dichotomic (or binomial) attribute
by a set of independent variables [15]. The result of the
regression is always a number between 0 and 1, and the ob-
tained value can be mapped to the target binomial attribute
(0 or 1) by using a cut-off. The logistic regression function
is represented in equation (1):

q

logit(n(x)) = Bo + Y _ Bis, M

where (3; are the coefficients evaluated by the logistic re-

gression process (in particular §y is the constant to be

included in the model), x; are the metrics values and

logit(m(z)) is the ratio between the success and fault prob-
()

abilities:
logit(mw(z)) =In [m] ,

and w(z) is the probability that the attribute assumes the
value 1 as a function of the set of independent variables.
Please note the logit(m(z)) ranges from —oco to +00, while
the related probability is always comprised between 0 and 1
since the probability of the target attribute can be described
like a logistic function:

(2)

eX8

—. 3

14 eX8 S
In Fig.2, the shape of the function used to represent the

sigmoid of logit is depicted. This shape is particularly use-

ful because it tends to the limit values (0 and 1) gradually.

w(z) =

Figure 2. Sigmoid of logit function.

It should be noted that the analysis of the results of a di-
chotomic variable is based on the evaluation of Tab.1, where
the classification performed by means of the chosen model
is represented against the observed or expected value.

Several statistical coefficients (figures) can be evaluated
on the basis of the previous Tab.1. In particular, the most
relevant figures are:



Dependent Variable (Y)
Target 0 1
Attribute | O a b a+b
(X) 1 c d c+d
a+c | b+d n

Table 1. Table for the study of the results about the signif-
icance of a dichotomic variable. In the following 1 means
Fault, and 0 means No-Fault. ”a” and d” represent the cor-
rect estimations while ”b”, ”c” are the false-positives and
false-negatives, respectively.

- Bravais-Pearson correlation coefficient:
_ ad — be
Via+b)(c+d){a+c)(b+d)

that measures the symmetry between Y and X;

“®

- Sensibility, that is the ratio of the fault-prone classes
correctly classified:

Sen =

. ®

- Correctness, that is the ratio of non fault-prone classes
correctly classified:

Cor = —— (6)

- Completeness, that is the ratio of fault-prone classes
and the total number of fault-prone classes:

Com = ——

)
- Classification Correctness, that is the percentage of
correctly classified items:

C’la:aer

(8)

- False Negative Percentage, that is the percentage of
classes predicted as non-faulty, while they are faulty:

c

=— 9

frp=— ©)

- False positive Percentage, that is the percentage of
classes predicted as faulty, while they are non-faulty:

b
fop=— (10)

n

All these figures can be calculated in order to evaluate the
result goodness of regression models. In order to increase
some of them it is necessary to adjust the cut-off value that
is used for discriminating between 0 and 1 values (no faulty
and faulty value in our case). The logistic regression model
tends to fit better the largest group. An appropriate adjust-
ment of the cut-off value equilibrates this trend.

125

4 Results Analysis

In this section, a short description of the procedures
adopted for the data analysis and for the definition of the
models is reported together with the analysis of the results
obtained with the figures selected for the evaluation of the
goodness of proposed models. :

4.1 Correctness Classification Model

As a first step; all metrics available from the above men-
tioned tools have been considered. In this phase, no limita-
tion on the number of metrics was employed. For this rea-
son, the 226 metrics calculated by the three adopted tools
have been analyzed with descriptive statistic techniques in
order to identify totally meaningless variables in the set. On
the basis of descriptive statistic, all the variables with a null
variance have been removed. The eliminated metrics were
5 (1 from TAC++ and 4 from CPP-Analyzer); these metrics
measured quantities that were not present in the analyzed
code, such as the number of goto, or the number of unions
or the number of protected attributes defined as pointers.

A number of 221 metrics is too huge to be realistically
applied in real industrial cases.

The metrics have been clustered in groups on the basis of
the aspects that they mainly address. The classification was
performed considering the following groups: cohesion and
coupling, structural, functional, cognitive, object-oriented
size and complexity. The last group includes metrics that
are based on classical size or complexity metrics and takes
also into account structural aspects of the class definition,
see for examples [11], [19]. This approach is typical of size
and complexity metrics for object-oriented systems.

The classification of the original 226 metrics into these
groups has produced the distribution reported in Tab.2.

Measured aspects num. of metrics
Functional 45
Structural 49
Coupling and Cohesion 52
Object-oriented Size and Complexity 45
Cognitive 35

Table 2. Metrics grouping on the basis of the measured
aspects. .

- After the removal of the 5 non-significant metrics pre-
viously identified, the PCA has been applied to each group
of metrics extracting components until a variance not lower
than 85% was obtained. The estimation of the PCA has pro-
duced reliable results since the number of variables, v, and
that of measures, m, satisfied the rule m/v > 2. This rule is
particularly restrictive but assures a suitable level of result
reliability.



The most relevant metrics of each PC have been selected
for the inclusion in an integrated group of metrics address-
ing the several aspects considered. This process has brought
to the elimination of several marginally influent metrics
with respect to the application of the PCA to each group,
collecting a final number of 68 metrics, classified according
to Tab. 3

Measured aspects num. of metrics
Functional 15
Structural 14
Coupling and Cohesion 17
Object-oriented Size and Complexity 12
Cognitive 10

Table 3. Metrics clustering after the PCA on each group.

Several models have been built by grouping the 68 met-
rics in different combination of 50 metrics each, taking out
18 metrics every time. For each restricted model the logis-
tic analysis has been performed in order to verify its signif-
icance as a model for fault proneness detection.

At the end of this stochastic approach, a significant
model with 50 metrics has been identified. From this model
of 50 metrics, other 8 metrics have been removed by ob-
taining a model of 42 metrics by using the PCA. This has
only marginally decreased the capability of the model in
terms of fault proneness detection. In Tab.4, the result of
the model with 42 metrics is reported. Please note that the
cut-off value has been imposed to 0.5 and no improvement
was obtained by changing that value.

Predicted
Actual No-Fault | Fault Prediction %
No-Fault 59 1 60 98.33%
Fault 2 51 53 96.23%
0 [ el ] 52 T113] |
[ Overall [ 9735% |

Table 4. Model with 42 metrics, cut-off to 0.5. The re-
ported numbers are related to faulty classes and not to the
number of faults identified.

Note that the first goal was reached since a percentage of
correct classification greater than 90% has been obtained.
Only 3 misclassifications were obtained in this case. In
Tab.5, the figures for evaluating the goodness of the logistic
regression model are reported. All the parameters reported
in Tab.5 are very close to suitable values usually adopted for
the validation of a logistic regression model, confirming the
great accuracy and validity of the proposed model.

The metrics of the above described model can be clas-
sified according to several criteria: the tool to which the
metrics belong, the aspect they cover, the type of metric,
etc. In Tab.6 a classification of the 42 metrics involved in
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figure | value | optimal value
P 0.947 1
Sen 0.967 1
Cor 0.981 1
Com 0.962 1
Cla 0.974 1
fnp 0.017 0
fop 0.009 0

Table 5. Figures obtained for the model with 42 metrics.

the model is reported. The name of the metrics is not signif-
icant at this stage, while they are detailed and commented
in the second model proposed.

Tool number of metrics
TAC + + 10
M — System 18
CPP — Analyzer 14

Metric Type numb. of metrics
Functional 13
Structural 9
Coupling and Cohesion 13
Object-oriented Size and Complexity 5
Cognitive 2

Table 6. Classification of model with 42 metrics on the
basis of the aspects covered by the metrics.

4.2 The Reduced Model

The model presented in Section 4.1 has a great identifi-
cation capability, but its usage in real conditions for system
assessment is computationally difficult for the high number
of metrics involved.

The target of the reduced model is to employ a lower
number of metrics without substantially decrease the pre-
dictive capability under the target value of 80%. Several
techniques can be adopted to reduce the number of inde-
pendent variables of a model: (i) application of PCA, {(ii)
evaluation of correlation matrix and (ii1) adoption of step-
wise logistic regression.

The second method can be questionable since there is no
evidence that two correlated metrics do not have to belong
to the same model. Therefore, after considering that a selec-
tion of metrics based on PCA and classification have been
already performed, the third method has been applied.

Stepwise logistic regression can be backward or forward.
In our case the backward elimination based on the Wald test
has been adopted since this method allows eliminating from
the models the less significant variables from a statistical



point of view. This process is quite different from that used
in [4]

The application has allowed to substantially reduce the
number of metrics. The obtained model is comprised of 12
metrics and the results are reported in Tab. 7, where a cut-
off of 0.37 has been adopted. Please note the classification
percentage is closer to 85%.

Prediction
Actual No-Fault | Fault Prediction %
No-Fault 47 13 60 78.33%
Fault 4 49 53 92.45%
| | st 62 | 113 ]
Overall 84.96% |

Table 7. Reduced model with 12 metrics and cut-off to
0.37. The reported numbers are related to faulty classes and
not to the number of faults identified.

Also in this case, the planned goals have been correctly
reached since a percentage of correct classification greater
than 80% with no more than 10 metrics has been obtained.
In Tab.8, the figures for evaluating the goodness of the lo-
gistic regression model are reported.

figure | value | optimal value
é 0.785 1

Sen 0.921 1

Cor 0.790 1

Com 0.924 1

Cla 0.849 1

fnp 0.035 0

fop 0.115 0

Table 8. Figures obtained for the model with 12 metrics.
Also in this case the figures reported in Tab.8 are close

to the optimal values confirming that also a model with a
lower number of metrics can be suitably employed for fault
detection and prediction.

The metrics involved in this model are reported in the
following list:

- CO (M-System), Connectivity [14] that is a metric de-
fined in terms of graph elements built upon LCOM
metrics;

- ICPp (M-System), Information-flow/based Coupling
[17] that is the number of called class local methods
weighed by the number of parameters of the methods.

- LCOM1 (M-System), Lack of Cohesion in Methods
1 {7] that is the number of couples of methods that do
not use attributes in common;

- LCOM2 (M-System), Lack of Cohesion in Methods
2 [7] that is the number of methods couples that do not
use attributes in common minus the number of couples
that do it;

- N AI (TAC++), Number of Attributes Inherited;

- NAM L(TAC++), Number of Attributes and Methods
Locally defined;

- NDSTT (CPP-Analyzer), Number of different State-
ments Types [21]: it counts the number of different
types declared;

- NFR (CPP-Analyzer), Number of function references
[21];

- NMImp (M-System), Number of Methods Imple-
mented (local, inherited, overridden);

- RFCy: (M-System), Response set For Class [7]: that
is the set of methods belonging to a class plus the set of
methods directly or indirectly invoked by class meth-
ods.

- STMTS (M-System), Statements that is the number
of declarations in the class methods;

- TCC (M-System), Tight Class Cohesion [2]: this met-
ric measures the number of attributes “indirectly” used
by a method, that is all the attributes that are used by
methods invoked by the method.

This model contains metrics belonging to all the above-
mentioned tools for metric estimation and covers several
distinct aspects of object-oriented metrics: (i) coupling
and cohesion (CO, ICPy, LCOM1, LCOM2, NFR,
RFCy and TCC), (ii) structural aspects (NVAI, NAML,
N M Imp), (iii) functional aspects related to method code
(NDSTT,STMTS).

Please note that all the variables reported in Tab.9 should
be considered as significant since the greatest p — value is
lower than 0.10. This fact strengths the model that can be
considered quite reliable from the statistical point of view.

The model proposed is hybrid, since it presents metrics
producing values with different measurement units, such as
several others presented in the literature. The correct unit
type is obtained by using weights, 3, of the logistic regres-
sion formula, that also play the role of converting factors. In
Tab.9, the weights to be applied for obtaining the classifica-
tion in the logistic regression model are reported together
with their standard errors and Wald test with significance.
Please note that these weights are the 3s of equation (3).

In Tab.10, the univariate logistic regression for the same
12 metrics is reported together with the statistical figures.
The univariate analysis is useful in order to verify the pre-
dictive capability of each metric involved in the model as
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Metric Weight | Stand.Error | Wald-test | p — value
co -7.897 2.672 8.733 0.003
ICP. 0.051 0.017 8.862 0.003
LCOM1 | 0.078 0.031 6.121 0.013
LCOM2 | -0.75 0.029 6.618 0.010
NAI 0.866 0.342 6.404 0.011
NAML -0.721 0.310 5.406 0.020
NDSTT | -0.108 0.033 10.399 0.001
NFR 0.066 0.032 4.359 0.037
NMImp | 0503 0.292 2.961 0.085
RFCw 0.102 0.037 7.670 0,006
STMTS | 0.022 0.009 6.496 0.011
TCC 3.943 2.180 3.271 0.070

Table 9. Coefficients for the multivariate logistic regres-
sion model with statistical figures. The Log — Likelihood
value is -46.116 and R? is 0.432.

Metric Weight | Stand.Error | Wald-test | p — value
cO -0.846 0.689 1.505 0.220
ICPy, 0.024 0.079 9.705 0.002
LCOM1 | 0.022 0.017 1.612 0.204
LCOM2 | 0.001 0.017 0.353 0.552
NAI 0.058 0.044 1.717 0.190
NAML 0.036 0.019 3.437 0.064
NDSTT | 0.027 0.008 11.878 0.001
NFR 0.038 0.012 10.147 0.001
NMImp | 0.053 0.026 3.987 0.046
RFC 0.070 0.020 12.400 0,000
STMTS | 0.01S 0.004 16.284 0.000
TCC -0.316 0.547 0.334 0.563

Table 10. Coefficients and statistical figures for the uni-
variate logistic regression, for the 12 metrics adopted in the
reduced model.

a unique predictor. Some of the variables have a strong
predictive capability even when they are singularly taken
to define a model, such as in the univariate analysis. For
example, STMTS and RFC present a correctness close
to 70%.

It should be noted that the p — values obtained in the
multivariate case are always significant, while often in the
case of univariate logistic regression the significance is not
good enough.

Similarly to what has been evidenced in the models pro-
posed in [4], some coefficients change sign in the univariate
with respect to the multivariate case. This is due to sup-
pressor relationships among the variables, which are com-
monly observed in multivariate regression analysis [8]. For
the same reasons non-significant variables in the univari-
ate model could result significant in the multivariate model.
The differences in the sign for metrics that present non sig-
nificant relevance in the univariate analysis have no sense.

In Tab.11 the residuals for the misclassifications are re-
ported. It should be noted that the residuals are high in abso-
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Actual Pred. Value | Residual
No-Fault 0,4091 -0,4091
No-Fault 0,7876 -0,7876
No-Fault 0,8927 -0,8927
Fault 0,0614 0,9386
No-Fault 0,3703 -0,3703
No-Fault 0,6852 -0,6852
No-Fault 0,6509 -0,6509
No-Fault 0,7568 -0,7568
No-Fault 0,9135 -0,9135
No-Fault 0,5064 -0,5064
Fault 0,2011 0,7989
No-Fault 0,6089 -0,6089
Fault 0,2444 0,7556
No-Fault 0,5822 -0,5822
Fault 0,1822 0,8178
No-Fault 0,6182 -0,6182
No-Fault 0,4694 -0,4694

Table 11. Residual evaluation for misclassifications

lute value confirming that an adjustment of the cut-off does
not increase the prediction capability of the model.

4.3 Comparison with Other Models

In [4], three models for fault-proneness detection have
been presented. Model I is based on size metrics,
Model 11 is based on coupling, cohesion and inheritance
metrics, while Model II1 is a "mixed”, hybrid model. In
[4] a significant work was presented by using the same data,
a reduced number of metrics and a slightly different ap-
proach to reduce their number. The approach adopted by
Briand et al. [4] for obtaining the models can be summa-
rized in the following steps:

1. Optional selection of the metrics on the basis of the
aspects/features covered — such as: cohesion, coupling,
inheritance, etc.;

. Selection of the most promising metrics on the basis of
the p — values of Univariate Logistic Regression;

3. Multivariate Logistic Regression with the metrics ob-
tained by the previous selections.

The approach followed for obtaining the models pre-
sented in this paper has been quite different. The starting
point for the model definition was the idea to use a hybrid
model. Hybrid models adoption seems to be the best ap-
proach for taking into account all aspects. To this end, we
started from 226 metrics, with the aim of covering as many
aspects as possible. Even with the idea of highlighting the
relevant aspects with fault detection:

e Selection of the metrics divided according to the mea-
sured aspects;



o Principal Component Analysis for identifying metrics
having the stronger loading within the same aspect;

e Identification of a hybrid model by considering the
best representative metrics for each aspect of the clas-
sification considered.

e Multivariate Logistic regression with backward tech-
nique for eliminating the lower significant metrics on
the basis of the obtained p — values.

The different approach followed in this paper with re-
spect to that of Briand et. al. deals with the adoption of
the PCA for the selection of the most promising metrics in-
stead of using univariate logistic regression. The assump-
tion made in [4] is that only the metrics that have a strong
statistical significance in the univariate logistic regression
should be included in a multivariate model. As can be seen
by the comparison between Tabb.9 and 10, this assumption
is not always true since metrics (i.e. LCOM2, TCC) with
a poor relevance in the univariate inspection demonstrate
their validity if inserted in a more complex model.

The approach followed in this paper to select metrics by
the means of PCA in order to choose metrics covering or-
thogonal aspects has allowed to insert in the final models
also metrics that have been discarded by the Briand method-
ology.

In Tab.12 and 13, the comparison among the models pro-
posed in this paper and those of [4] is reported according
to the figures already adopted in this paper. In the table,
Model-42 and Model-12 refer to the above-presented mod-
els with 42 and 12 metrics, respectively. Please note the
differences of values between the figures obtained for the
proposed model and the models available in the literature.

Model number of metrics %o Total % Correctly Classified
: No-Fault Fault
Model-42 42 97.35 98.33 96.23
Model-12 12 84.96 78.33 92.45
Model 1 3 62.83 65.00 60.37
Model I 7 82.30 83.33 81.13
Model Il 9 80.53 81.67 79.24

Table 13. Comparison among the prediction percentage
of the models under comparison.

5 Conclusions

A new approach to define models for fault-proneness
detection and prediction has been presented together with
the statistical techniques adopted for their definition. This
paper reports a research study on more than 200 different
object-oriented metrics extracted from the literature. On the
basis of this large set of metrics extracted by three different

" tools for the analysis of C++ code, two new metric models

b Sen Cor Com Cla fnp fpp
Model-42 0.947 | 0967 | 0.981 0.962 0974 | 0.017 0.009
Model-12 0.785 0.921 0.790 0.924 0.849 | 0.035 0.115
Model I 0.350 0.650 0.604 0.604 0.628 0.186 0.186
Model I 0.676 | 0.833 0.811 0.811 0.823 0.085 0.085
Model 111 0.633 0.814 0.778 0.792 0.796 0.097 0.106

Table 12. Comparison in terms of statistical figures
among different models.

At a general level, the obtained results confirm what
other researchers have obtained and are comparable in terms
of numerical results. The models presented in this paper are
better ranked with respect to those of the other discussed
models, confirming the validity of the approach adopted to
obtain the proposed models. Although the difference in per-
centage is not so strong, a significant result is that a suitable
model has to include a set of metrics covering coupling,
cohesion and structure aspects, while complexity, size and
functional aspects can be less relevant.
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for fault-proneness detection have been presented and vali-
dated against well-known test cases in the literature.

The first model reaches a great accuracy (more then 97%
of correctly predicted classes) in terms of classified items
even if the number of involved metrics is relevant (42 met-
rics). The second model involves only 12 metrics with a
classification correctness close to 85% in terms of faulty
classes. The metrics involved in this second model have
been presented in this paper together with the correspond-
ing weights to be applied for obtaining the logistic regres-
sion equation.

The comparison with other similar models presented in
the literature confirms the relevance of the proposed mod-
els in terms of accuracy of the results. Another significant
result is that a hybrid model is suitable and has to include
coupling, cohesion and structure metrics in order to be suit-
ably employed, while the aspects related to complexity, size
and functional aspects can be less relevant. Further studies
in this field are in progress, in order to refine and extend
the presented models to better identify the metrics that ad-
dress the fault-proneness detection and create and validate
models for non object-oriented programming.
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