A Tool for Process and Product Assessment of C++ Applications

Fabrizio Fioravanti, Paolo Nesi, Sandro Perlini
Department of Systems and Informatics,

Faculty of Engineering, University of Florence, Italy
[fioravan @aguirre, nesi@ingfil, perlini @aguirre].ing.unifi.it

Abstract

The present diffusion of the object-oriented paradigm
and of the techniques for maintaining under control the
development process must be supported by suitable tools.
These tools should be based on confident and validated
object-oriented metrics for assessing the several aspects
of product and process development: effort, maintainabil-
ity, re-usability, etc, as well as they should be capable of
supporting the definition of specific metrics, profiles and
histograms. These are useful to give the developers and
managers an immediate representation of the system status.
These tools must also provide metrics suitable for produc-
ing confident results since the early phases of the develop-
ment life cycle. Mechanisms for metrics definition, valida-
tion and tuning must be available in order to establish a
process of continuous improvement. This paper presents
TAC++ ! (Tool for Analyzing C++ Code) which supports
all mentioned features and includes the most important met-
rics presented in the literature and many others.

Index terms: object-oriented metrics, assessment tool, ef-
fort prediction, profiles and histograms, validation, tuning.

1. Introduction

The Object-Oriented Paradigm (OOP) is currently con-
sidered the best technology for obtaining the return of the
investment. In many cases, the OOP has been adopted hop-
ing to reach high degrees of portability, re-usability, main-
tainability, etc., especially for the development of large sys-
tems. The adoption of the OOP implies a change in the
whole development process. Hence, the introduction of the
OOP is not immediate, since managers, developers, etc.,
must be involved.

In order to guarantee the control of the development
process, quantitative metrics for evaluating and predicting

IThis work was partially supported by MURST Ex60% govern Min-
istry of University and Scientific and Technologic Research, and by
CESVIT, High-Tech Agency, Center for Software Quality, Florence.

0-8186-8421-6/98 $10.00 © 1998 IEEE

89

A/DJ/C | OOP | M/C/S | V/C | C/Q
Ha 0] C N M.C.S v :
Loc C N M.C.S S -
Mec[10] c N M,C.S C -
MChn 6] C N M v,C Q
CCm [6] ADC Y C Ve 0
C M, [6] C Y/N C v,C Q
HSCC 7] D.C Y C v,C cQ
NAL A YN C v Q
NAM [13] A Y C v Q
Size2 [4] A Y C v Q
TJCC (1] D.C Y C \s cQ
WMC [12] C Y C C Q
CCGI [13] AD Y c C cQ
DIT [12] D Y c . cQ
NSUP [13] D Y c . cQ
SCm 6] ADC % S v,C N
Tom [13] C N S v,C -
Rel P/A | F/B]S | T/C/P | EIM/R
Ha 9] - A F T EM
LoC - A F T EM
Me[10] . A FB T EM
MChy[6] - A EB T EMR
CCrm [6] PI PA FB,S T EMR
C M [6] - PA FB T EM,R
HSCC [T PI PA EB.S T EMR
NAL P PA S T EMR
NAM [13] PI PA S.B T EM.R
Size2 [4] P PA S.B T EM.R
TJCC [11] P PA EB.S T EM
WMC [12] - A EB T EM.R
CCGI [13] Pl PA B PC | EMR
DIT [12] I PA S PT.C M,R
NSUP [13] 1 PA S PT.C M,R
SCrm 6] Pl PA EB.S T EMR
T [13] - A EB T EM

Table 1. Taxonomy of metrics in TAC++: A/D/C
Analysis, Design and Coding; OOP object-oriented suit-
ability; M/C/S Method, Class and System level; V/C
Volume and/or Complexity metric; C/@ Conformity to
OOP and/or Quality; Relationships: is-Part-of, Inheritance;
P/A Predictive and/or A Posteriori; F{B/S Functional,
Behavioral, Structural aspect; T/C/P Technical, Cog-
nitive, Process-oriented metric; E/M /R Effort, Mainte-

nance, Reuse.

McCabe, Halstead, or LOC.

< metric >, metrics can be based on

product characteristics must be used. Product features are
typically: quality (see ISO 9126), cost, reuse, conformance
with the system requirements, conformance with market de-
mands, etc. Obviously, each feature must be in some way
measurable and suitable actions for its achievement must
be identified. An ever growing attention to the software
development process has created the need to get process-
oriented information and to integrate metrics into the soft-
ware development process and life-cycle; thus, both real
data and measured features have to be continuously com-
pared for controlling this process and, when needed, for
adjusting the process model (continuous process identifica-
tion and improvement). This means that it is important to
adopt a unique method and approach for project measure-
ment. This should be capable of being tuned to adapt its
parameters to different life-cycle phases, types of projects,
etc. This process of adaptation is usually performed by ad-
justing weights and thresholds [3]. Some studies with met-
rics and measurement frameworks for object-oriented sys-
tems have been presented in [4], [5], [6], [7], [8], where
general concepts for the estimation of system size, com-
plexity and reuse level have been proposed together with
many other metrics. Unfortunately, the effort for defining
new metrics has not been supported by the implementation
of assessment tools. Therefore, an integrated framework for
developing and maintaining under control the system under
development must be supported by tools for: (i) defining
and evaluating direct and indirect metrics, (ii) defining and
showing suitable views of the system (profiles, diagrams,
tables, graphs, histograms, etc.) as well as of its compo-
nents/classes (views should be focussed on assessing qual-
ity, conformance to the OOP, etc.), (iii) tuning metrics by
estimating weights and scale factors, (iv) controlling project
evolution by using reference/threshold values, (v) collecting
and comparing projects trends.

This paper describes TAC++ (Tool for Analyzing C++
code}. This research tool has been developed in several
years of work and is capable of estimating a huge num-
ber of different metrics. TAC++ is comprised of an in-
tegrated class browser/editor, which is capable of estimat-
ing the values of several direct metrics. On these bases,
high-level indirect metrics can be obtained. TAC++ pro-
vides a set of instruments for: (i) defining new metrics by
means of a visual interface; (ii) defining and visualizing
specific views/profiles even considering typical, minimum,
maximum, values; (iii} defining and visualizing statistic his-
tograms about the characteristics of the system under anal-
ysis; (iv) identifying and tuning weights contained in com-
plex indirect metrics by using a multi-linear regression tool.

2. Taxonomy of Object-Oriented Metrics

Metrics can be classified according to different criteria.
A first classification can be performed on the basis of their

90

capability in predicting and/or evaluating a posteriori sys-
tem characteristics. ‘

Metrics can also be divided in direct or indirect metrics.
Direct metrics should produce a direct measure for the pa-
rameters under consideration; for example, the measure of
the Lines of Code (LOC) for estimating the program length.
Indirect metrics are usually related to high-level character-
istics; for example, the number of system classes can be
supposed to be related to the system complexity by means
of a mathematical relationship, while LOC (as indirect met-
ric) is typically related to effort of development.

According to the classical definition of functional met-
rics, these can be classified in volume (also called size) and
complexity metrics. Metrics can be focused on considering
functional, behavioral and/or structural aspects.

Another classification is based on a technical, cognitive,
and process-oriented view of the system aspects. The tech-
nical view refers to the software engineering aspects of sys-
tem specification (size, complexity, etc.); the cognitive view
takes into account the external understandability and verifi-
ability of the system; and, the process-oriented view refers
to the system aspects that are influenced by or can influence
the process of system development (productivity, reuse, cost
of development, cost of maintenance, etc.).

Metrics are also frequently classified on the basis of the
phase in which they can produce significant estimations;
therefore, a distinction is made for analysis, design and
code metrics.

Another very important classification, specifically used
for object-oriented metrics, is based on the level of appli-
cability; thus, method, class and system level metrics can
be identified. Class level metrics are the most important,
since according to QOP, all components (structural aspects)
should be defined in terms of classes. In this case, func-
tional, behavioral and structural aspects are considered.

As pointed out by many authors, traditional metrics for
complexity/size estimation, often used for procedural lan-
guages, can be difficultly applied for evaluating object-
oriented systems [3], [5], [4].

3. Short Overview of Metrics

By using Tab.1, it is possible to identify the most suit-
able metrics for assessing specific features of the system as
described in the rest of this paper. In the next subsections
several metrics that have been used for assessing object-
oriented systems are briefly reviewed. These are organized
in three main levels: method, class, and system.

In order to help the reader to understand metric formu-
lation and discussion, the authors have prepared Tab.3 in
which the metrics and their corresponding meaning are re-
ported in alphabetic order.

3.1. Method Level Metrics

At the method level, traditional functional metrics can
be used, such as the McCabe Ciclomatic Complexity, Mc,
[10], [1], the Halstead measure, Ha [9], and the LOC'. The
method interface can be even effective for evaluating cogni-
tive and data-flow aspects of method complexity. A generic
method complexity can be defined as:

MCh =wmic,, MIC, + wmm,)]

where MIC,, is the Method Interface Complexity/size,
and m a complexity/size metric for method evaluation;
wMIC,,, and w,, are weights. These weights are deter-
mined by means of the validation process [6]. The presence
of M IC,, makes M C,, usable as a predictive metric, since
MIC,, can be estimated even if the method has not been
coded. m can be Mc¢, LOC, Ha, etc. The above metrics
are more complete than the simple complexity/size metrics
on which they are based.

3.2. Class Level Metrics

Class metrics can be divided into complexity/size and
class relationship metrics. The former are usually ap-
plied to estimate the effort of development or reuse, main-
tenance or documentation and the latter for assessing
object-orientedness, quality, re-usability, mainteinability,
etc. Thus, the former can be considered as technical met-
rics and the latter as cognitive metrics.

3.2.1 Complexity/Size Metrics

By using the above method level metrics, it is immediate to
define corresponding class metrics. For example: C M, is
the complexity/size metric evaluated on all class methods
by using metric m. Therefore, the following class met-
rics can be defined: CMpyy., a class level metric based
on McCabe metric (equivalent to WMC [12]); CMp,, a
class level metric based on Halstead metric and C M oc,
a class level metric based on the number of LOC (as used
in [14]). In the literature, it has been often demonstrated
that these metrics are not very suitable for evaluating object-
oriented projects, since they are not capable of considering
the object-oriented aspects [11], [7]. In fact, they neglect in-
formation about class specialization (is-a, that means code
and structure reuse), and class association and aggregation
(is-part-of and is-referred-by).

Thomas and Jacobson have suggested to estimate class
complexity, TJCOC = weac,CACL + weCL, as the
sum of attribute and method complexities [11], without con-
sidering the class external interface (i.e., method interface)
and reuse (i.e., inheritance). Henderson-Sellers has added
to the above metric a term for considering inheritance [7],
HSCC =wcacrCACL + wCLCL + wCICI.

91

A fully object-oriented metric for evaluating class com-
plexity/size has also to consider both locally defined and in-
herited attributes and methods [5], [6]. Therefore, the Class
Complexity, CCy, is regarded as the weighted sum of local
and inherited class complexities:

CCm = wecact,,CACLy +wemricr,, CMICL,
+wer,, CLm +weact,, CACI,

+wemict,, CMICIy + wer,, Cly,. 2)

where CACL,, and CACI,, are the Class Attribute Com-
plexities Local and Inherited, CMICL,,, and CMICI,,
are the Class Method Interface Complexities of Local and
Inherited methods, CL,, and CI,, are Class Complexities
due to Local and Inherited methods. In this way, CC,, takes
into account both structural and functional/behavioral as-
pects of class. CC), metrics result to be a generalization
of TJCC and HSCC. The weights or the interpretation
scale must be adjusted according to the phase of the system
life-cycle in which they are evaluated as in [5], [6].

3.2.2 Prediction of Complexity/Size

Metric CC', can also be used for predicting class complex-
ity/size. The prediction is obtained on the basis of class
definition, that is, attributes declarations and methods pro-
totypes. This estimation can be performed during system
analysis/early-design:

CC,Im = w’CACLm CACLm + wICMICLm CMICLm

+wgact,, CACIn + womicr,, CMICI,. (3)

A cheaper approach can be simply based on counting the
number of local atiributes and methods (see metric Size2 =
NAL+N M L defined by Li and Henry in [4]). On the other
hand, the simple counting of class members (attributes and
methods) could be in many cases too coarse. In order to
improve the metric precision, a more general metric can
be defined by considering the sum of the number of class
attributes and methods, both locally defined and inherited.
This is named N AM in our framework. As demonstrated
by means of experiments (see Tab.2), this more complex
metric does not increase too much the capability of com-
plexity prediction with respect to Size2 [6], while CC), is
better ranked.

3.2.3 Class Relationship Metrics

For a better evaluation of features related to cognitive as-
pects Class CoGnitive Index, CC'G1, is introduced:

ECD ECD
ceel = e = EBep+ 10T -
CACI+ CACL+CMICI+CMICL
CACI +CACL +CMICI+CMICL+CI+CL

C))

Metric CC'G1 indicates to what extent the class can be un-
derstood by using the information contained in the external
class description with respect to its global complexity. For
example, if a class presents several small methods in its def-
inition, then it is more understandable than a class that, hav-

ing the same total complexity/size, presents a lower number

of members.

According to ICI and ECD definitions, metrics
CCGIL and CCGII can be easily derived. These can be
useful for evaluating whether unsuitable values of CCGI
are due to the presence of local or inherited conditions.

The structure of the inheritance hierarchy impacts on
system maintainability, re-usability, extensibility, etc., since
a high number of superclasses can make classes hard to be
understood and tested. In the literature, the so-called DIT,
Depth of Inheritance Tree metric has been proposed. DIT
estimates the number of direct superclasses until the root 1s
reached [12]. A more useful metrics is the NSU P, Num-
ber of SUPerclasses till the roots are reached. Please note
that the difference between DIT and NSU P can be rele-
vant even if the height of the inheritance tree is limited to 3
in the case of multiple inheritance.

3.3. System Level Metrics

According to the current C++ interpretation of the OOP,
the system level is comprised of: (i) a set of classes which
can be organized in one or several class trees, (ii) a set of
C functions/procedures (even the main program can be con-
sidered as a function/procedure), (iii) a set of global defini-
tions, and (iv) a set of global declarations of variables.

Therefore, System Complexity, SCyy,, can be computed
by using the complexity of all system classes added to the
functional and data complexities due to non object-oriented
parts. SC\, metric is capable of producing a more precise
evaluation of system complexity since it considers func-
tional, behavioral and structural aspects, differently from
traditional pure functional metrics: Total McCabe Com-
plexity (T'as.) indirectly based on McCabe’s metric, the To-
tal Halstead Tfr,), and the Total LOC (Tp o) defined as the
sum of their respective metrics on all class methods of the
system. These metrics can give a concise system evaluation,
but in several occasions, they can lead to wrong deductions
since the manager (the evaluator) is not capable of identify-
ing the critical conditions.

4. Controlling Object-Oriented Development

The above-mentioned metrics, as many others, can be
evaluated by using TAC++ (see Fig.1). TAC++ is a re-
search prototype suitable for studying the metric behavior
and development process, which includes a class browser
with editing capabilities. TAC++ also allows to define new
high-level metrics on the basis of the available metrics by

92

composing them with simple operators. In addition, a ded-
icated visualizer can be used for defining specific graphi-
cal representations of views/profiles (by using Kiviat, line
graphs, bars, pies, etc.). The defined views can be used for
monitoring aspects of the system under assessment, at the
level of method, class, and system. In these graphical view
profiles, different weights, reference thresholds, minimum
and maximum values for diagrams can be set according to
the company/user goals and product profile.

By using TAC++ a direct control on the indicators for
classes and methods is performed. This allows to maintain
subsystem quality, effort, etc., within predefined ranges. On
the other hand, the continuous meitrication must be associ-
ated with a continuous re-validation of the adopted indica-
tors. To this end, the measured values of class indicators
have to be collected in a database. Non-automatically mea-
surable data, such as the effort related to class are collected
by filling forms or Java pages, which are stored into the -
project database.

As can be observed in Fig.1, in order to perform the
above operations TAC++ is comprised of five main compo-
nents addressing the problems of: navigating in the system
classes, evaluating low-level metrics, defining and evaluat-
ing high-level metrics, defining and showing system profiles
and histograms, and statistically system analyzing for met-
ric validating and tuning.

4.1. Collecting Low-Level Measures

The process for collecting low-level measures is based
on a first phase of preprocessing, such as those usually
adopted in compilers. It allows definition solving, macro
exploding, etc. The code obtained is processed by a lexical-
grammatical analyzer. The relationships among classes are
identified and stored in a suitable multi-linked structure
(System Class Description). All relationships are estab-
lished by iterating overall system classes.

To perform this process, the user can decide to assess or
not class libraries (if any). In any case, the C++ headers files
of the libraries used must be available. If the code of class
library is available, it can be considered into the assessment
process.

The above process is capable of producing Low-Level
Metrics (LLM). These are direct metrics — such as LOC,
Mc, Ha, NA, NM, MIC, etc. LLMs Evaluator saves on
a file the multi-linked structure.

The results produced by the LLMs Estimator can be col-
lected on the basis of the life-cycle phase in which they are
estimated. The browser shows the list of classes with a syn-
thetic description of their relationship: class hierarchy, list
of methods, etc. By selecting a class and a method, the cor-
responding code is directly available in a separate editing
window.

Class Browser Editor

Lex/Gram Analyzer

LLM Evaluator

System
Class
Descr.

5?1 Values

Profilc manager

: mvf

Figure 1. TAC++ Structure, Organization and Features

4.2. Defining and Collecting High-Level Metrics

High-Level Metrics (HLMs) can be defined by the user
on the basis of LLMs. To this end, a specific interactive tool
allows the definition of new metrics by means of a visual
editor. HLMs can be defined according to the following
structure:

Wu, > Ui

Wo, 3, D: ®

NewMetric = Z W, M;
where z is the context in which the sum is performed — for
instance (i) on all system classes, (ii) on all class methods,
(iii) on all class attributes, etc. Each sum on x can be set
to operate on a single value, thus transforming the terms
in a single term. Weights can be imposed on the basis of
company experience and goals by using a set of reference
projects with the aim of improving the related database of
weights.

The HLLMs Evaluator obtains the values of indirect met-
rics on the basis of the current definitions of HLMs and by
using LLMs values.

4.3. Visualizing Results

In order to provide a fast and understandable view of the
project status, the values obtained for LLMs and HLMs can
be visualized in a set of specific views. Views can be his-
tograms or profiles.

93

Figure 3. TAC++ generated histograms.

4.3.1 Profiles

A profile is a consumptive view which is capable of show-
ing the values of several metrics with respect to their spe-
cific mean, maximum and minimum values. The min-
imum/maximum value(s) can be considered as the low-
est/greatest value(s) under/over which a correction should
be needed. By the use of normalized graphs shows these
views: Kiviat, bar, pie, etc. by means of the Viewer (see
Fig.2). For example, in order to monitor class quality a view
reporting values of metrics: NA, NM, CCp,, CM,, /[N M,
CCGI, NSUP, eic., can be defined.

4.3.2 Histograms

By using TAC++ it is also possible to evaluate the statis-
tic view of each metric for the system under assessment.
For example: (i) the number of classes for the complex-
ity of classes, (ii) the number of methods for the complex-
ity of methods, (iii) the number of classes for their CCG1,
etc. (see Fig.3). These histograms are useful for identify-
ing which classes are outside of the bounds established or
recommended by the company.

4.4. Validating and Tuning Metrics

Despite the high number of metrics, there exist in the
literature only few papers reporting accurate validations of
meirics. It mainly consists in‘identifying metric parameters
(weights) on the basis of the knowledge of actual data, de-
pending on the goals of the metric under validation.

The validation process can be used for (i) verifying
which terms of each identified metric are relevant for its es-
timation (i1) evaluating the confidence of the measures ob-
tained, (i11) tuning metric models according to different con-
text and profiles (weights and scale identification), (iv) iden-
tifying metric parameters along the development life-cycle
for evaluating the development progress with respect to ref-
erence trends. Usually, the validation can be performed by
using mathematical and statistical techniques such as multi-
linear regression tools [15]. Real data reporting direct mea-
sures of the features that should be evaluated by metrics are
needed — e.g., real effort, number of defects identified, etc.
Using a Data Collector, which in our tool is developed in
Java, to be portable in a wide number of platforms, col-
lects this information. The Statistic Analyzer is capable of
estimating all the metric weights used in a metric if the cor-
responding real value of the metric is available. Usually, a
metric may present a high number of components, but not
all the terms have the same importance. By using the Statis-
tic tool, it 1s possible to verify not only the correlation of the
whole metric with respect to the real data, but also the cor-
relation of each term of the metric with respect to the col-
lected effort, maintenance or other real data. In this way, a
process of refinement can be performed in order to identify
whose terms of the metric are more significant than others
for obtaining the indirect measure,

Please note that the most important metrics of TAC++
have been analyzed and validated by using the above tech-
nique, during the development of several C++ projects.

The engine of Statistic Analyzer is mainly based on
multilinear regression techniques [15] (Progress). Since
Progress tool presents a textual interface, a graphical user
interface has been added to make it more user friendly.

Moreover, the result of multilinear regressions can be easily

interpreted since they can be graphically visualized as dot
diagrams (see Fig.4).

4.5. Experiments on Effort Evaluation and Predic-
tion

In Tab.2, the most diffuse metrics for effort estimation at
the level of class are compared with the well known pure
functional metrics. The comparison is made on the basis
of correlation and variance values obtained by the TAC++
Statistic Analyzer (confidence values and values of weights
have been omitted) (see [6] for the validation process).

Lower values of variance correspond to a less spread
distribution. The analysis reported shows that traditional

94

Figure 4. TAC++ Statistical Tool

A Posteriori Corr. | Variance
WMC = CLp.[12] | 090 245
CMroc [14] 0.91 186
CMpyg, 9 0.82 423
CCue [6] 0.93 149
CCygq [6) 0.94 216
CCroc [6] 0.94 145
TJCC [11] 0.93 157
HSCC (7] 0.93 146
Predictive Corr. | Variance
CC”LOC [6] 0.88 770
NAM [13] 0.73 1100
Size2 [4] 0.72 1700

Table 2. Comparison between metrics defined for evalua-
tion and prediction of class effort.

functional metrics can be profitably employed for evaluat-
ing object-oriented systems if they are used as a basis for
more complete metrics (as in [14], [12]). The metrics pro-
posed in [6] present both a higher value of correlation and a
lower value of variance.

In order to estimate the trend of selected metrics and
weights for subsequent evaluations, it is very important to
record values during the early phases of the system life-
cycle. Once the weights are identified, the adoption of pre-
dictive metrics is very useful (see Tab.2 in which the corre-
lation values obtained for these metrics are very encourag-
ing) because small errors can be accepted in the early phase
of software development cycle. By using TAC++, a col-
lection of development trends for some projects have been
recorded by the workgroup of the authors in order to estab-
lish bounds for metrics and values for the weight depending
on the application field.

5. Discussion and Conclusions

The adoption of the OOP has produced a great demand of
specific metrics. Several direct and indirect metrics for the
evaluating effort, maintenance and re-usability costs, have
been defined. Therefore, an integrated tool for defining,
showing and validating them is mandatory in order to man-
age this large number of metrics.

The tool presented in this paper offers developers, sub-
system and project managers a highly configurable environ-
ment to control all the aspects of C++ projects since the
early phases of system development. TAC++ provides many
features for aiding project development and maintenance:
(i) direct manipulation of code, (ii) low-level metric evalu-
ation, (iii) high level metric definition and evaluation, (iv)
graphical representation of metric profiles and histogram,
(v) metrics validation and tuning by the means of a multi-
linear regression engine, and (vi) real data collector - i.e.
real effort in person-hours, number of errors and faults, etc.

TAC++ has been profitably used for controlling the de-
velopment and maintenance of several projects by the re-
search group of the authors in order to validate its use in the
application field. The results obtained by the above men-
tioned tests have permitted to the research group to establish
bounds, reference profiles and histograms for a wide typol-
ogy of applications, that will be used for developing present
and future C++ projects.

Acknowledgments

The authors would like to thank all the members of
TAC++ team. A special thank to B. Pages for an early
version of the class browser (i.e., Xcoral), and to A. Borri
of CESVIT, for his help in designing the first version of
TAC++.

References

[1]1 B. Henderson-Sellers and J. M. Edwards, “The object ori-
ented systems life cycle,” Comm. of the ACM, vol. 33, 1990.
P. Nesi, Objective Software Quality, Proc. of Objective Qual-
ity 1995, 2nd Symp. on Soft. Quality Techniques and Acqui-
sition Criteria. Berlin: LNCS, N.926, Springer, 1995.

B. Henderson-Sellers, D. Tegarden, and D. Monarchi,
“Metrics and project management support for an object-
oriented software development,” in TM2, TOOLS Europe’94,
(France), 1994.

W. Li and S. Henry, “Object-oriented metrics that predict
maintainability,” JSS, vol. 23, 1993.

P. Nesi and M. Campanai, “Metric framework for object-
oriented real-time systems specification languages,” The JSS,
vol. 34, 1996.

P. Nesi and T. Querci, “Effort estimation and prediction of
object-oriented systems,” The JSS, vol. in press, 1998.

B. Henderson-Sellers, “Some metrics for object-oriented
software engineering,” in Proc. of TOOLS 6 Pacific, USA,
1991.

[2]

(31

4

[5]

[6]
(71

95

metric comment
CACI,[6] Class Attribute Complexity/size Inherited
CACL,[6] Class Attribute Complexity/size Local
CCn[6] Class Complexity/size
ccr 161 Class Complexity/size, predictive form
CCGIf13) Class CoGnitive Index
CCGII13] Class CoGnitive Index Inherited
CCGIL[13] Class CoGnitive Index Local
CI,[6] Class Method complexity/size Inherited
CLp[6] Class Method complexity/size Local,

equivalent to C M,
C M, [6] Class Method complexity/size equivalent to CL,,
CMICI,[6] Class Method Interface Complexity/size Inherited
CMICLp,[6] | Class Method Interface Complexity/size Local
DITT12} Deep Inheritance Tree
ECD[13] External Class Description
Hal9] Halstead metric
HSCC[T7] Class Complexity by Henderson—Sellers
ICI[13] Internal Class Implementation
LocC number of Lines Of Code
Mc[10] McCabe ciclomatic Complexity
MCn (6] Method Complexity/size
MICn[6] Method Interface Complexity/size
NA Number of Attributes of a class
NAI Number of Attributes Inherited of a class
NAL Number of Attributes Locally defined of a class
NAM Number of Attributes and Methods of a class
NM Number of Methods of a class
NMI Number of Methods Inherited of a class
NML Number of Methods Local of a class
NRCI[6] Number of Root Classes in the system class tree
NSUP [13] Number of SUPerclasses of a class
SCpn[6] System Complexity/size
Size2[4] Number of class attributes and methods
Tm Total m-based functional Complexity
TJCC [11] Class Complexity
WMC [12] Weighted Methods for Class,

CL g, in our notation

Table 3. Glossary of the metrics mentioned in this pa-
per. Metrics with ,,, parameter are evaluated on the basis of
a functional metric selected from: Me¢, Ha or LOC, for
example: CCy. Class Complexity/size based on McCabe
ciclomatic Complexity.
[8] H.Zuse, *“Quality measurement — validation of software met-
rics,” in Proc. of QW’94, Software Research, 1994,
H. M. Halstead, Elements of Software Science.
North Holland, 1977.
T. J. McCabe, “A complexity measure,” IEEE Trans. on Soft.
Eng., vol. 2, no. 4, pp. 308-320, 1976.
D. Thomas and I. Jacobson, ‘‘Managing object-oriented soft-
ware engineering,” Tut. Note, TOOLS’89, (France), 1989.
S. R. Chidamber and C. F. Kemerer, “A metrics suite for
object oriented design,” IEEE Trans. on Soft. Eng., vol. 20,
1994,
F. Fioravanti, P. Nesi, and S. Perlini, “Assessment of system
evolution through characterisation,” tech. rep., DSI, Facolta“
di Ingegneria, Univ. Firenze, RT 22/97, Italy, 1998.
M. Lorenz and J. Kidd, Object-Oriented Software Metrics, A
Practical Guide. New Jersey: PTR Prentice Hall, 1994.
P. J. Rousseeuw and A. M. Leroy, Robust Regression and
Outlier Detection. New York, J. Wiley & Sons, 1987.

9] Elsevier
[10]
(11]

12)

[13]

[14]

[15]

