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Abstract

In this paper, a method to determine the spatial
orientation of a 3-D planar-faced object from a single
perspective view is presented. In this method the junc-
tions, that is the concurrences of three object edges in a
vertex, are considered as key features. A new geometric
constraint, related to the perspective projection of the
object junctions, is shown and exploited to make the
process fasier and more efficient. In this way, the
knowledge of only two parameters is sufficient to verify
the object orientation in 3-D space. A new system of
equations is proposed which define the orientations
space for a junction as a subset of R° | instead of R
as in the previous literature.

Introduction

Recently, early vision processes, as "shape from" techni-
ques, binocular stereo matching, structure from motion and
surface reconstruction, have been intensively investigated in
order to comprehend human vision mechanisms and to
develop image understanding or object recognition systems.

The primary purpose of early vision processes is to
retrieve physical properties of a 3-D object, like its structure,
motion or orientation, from one or more images. Unfor-
tunately, the projection transform of a 3-D object in a 2-D
plane 1s not an information preserving mapping, since the
dimension along the optical axis is not recoverable. As a
consequence a single image can be arisen from infinite
objects, and is not enough to infer the 3-D shape of an
imaged object. In other words, the problem of retrievin g the
3-D object structure from a single 2-D view has not an
unique solution and is heavily ill-posed, unless additional
data are considered. In the several approach proposed in
literature, this supplementary information frequently comes
from constraints on the projection transform or from heuris-
tic rules.

Inorder to recognize a 3-D object from a single 2-D view
and o estimate its spatial orientation, its six degrees of
freedom must be determined. Generally this task is ac-
complished considering the matching between three image
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lines and three model lines.

In this framework both orthographic [1], [2] and perspec-
tive [3-10] projection model have been adopted, the latter
being of major interest as it resembles the way human vision
operates, and because it is more constraining [3], [4].

Using perspective projection, Barnard [5] describes a
computational method to backproject image features, such
as angles and curvatures, into 3-D space. Referring to the
"right-angle illusion" [6], he interprets a triplet of image
lines as the projection of a right-angled vertex, since he
asserts three lines are always seen as a rectangular trihedral
vertex unless they form two very acute angles.

Shakunaga and Kaneko [7] introduce a new relation,
named Perspective Angle Transform (PAT), to recover a
3-D object configuration from a single image. Although
using this transform several non-linear constraints are
reduced to algebraic equations, this approach imposes undu-
ly constraining assumptions on the orthogonality of certain
model lines.

Dhome et al. [3] present an analytical solution to the
problem of determining the attitude of a 3-D object from a
single perspective view, but they still need Lowe’s logical
rules [11] to prune the set of multiple solutions the find
analytically.

Horaud [8] proposes a backprojection method to deter-
mine the possible orientations of a 3-D object, by analyzing
the object junctions, that is the intersections of three non-
coplanar straight edges in an object vertex, and considerin g
three space angles as known.

A similar approach is presented by Kanatani [9] who
studies the constraints on the spatial orientation of line
segments, assuming lengths and angles as known.

In this paper, a backprojection method to determine the
spatial orientation of a 3-D planar-faced object from a sin gle
perspective view is presented. In this method, as in Horaud’s
approach [8], the junctions of three object edges are con-
sidered. A new geometric constraint, related to the perspec-
tive projection of the junctions, is shown and exploited to
make the process faster and more efficient. In this way, the
knowledge of only two parameters, instead of three, allows
to verify the object orientation in 3-D space.




Backprojection of a space junction

Hereafter, the perspective projection model is used and
for the sake of clarity, lines and planes are referred to in
italics and their orientations in boldface. A left-handed Car-
tesian coordinate system is adopted, centered in the camera
focus F, with the z-axis along the optical axis and the image
plane coinciding with the plane z = f where f is the focal
length (see Fig.1).

s interpretation plane P

Fig.1 - Cartesian coordinate system and
Gaussian sphere

The direction of a line and the orientation of a plane are
represented as points on the unit Gaussian sphere centered
at the camera focus F. In practice, only one hemisphere is
sufficient to map the space of all possible orientations [6].
In this paper the hemisphere oriented toward the viewer,
determined by the points with spheric coordinates (¢, B)
with o (%2, 3%2) and Be (2, 72), is considered and repre-
sented as an o—f plane. Any image entity is backprojected
on a space plane S (see Fig.1), whose orientation § must
satisfy the geometric constraints due to the perspective
projection. These constraints force S to belong to loci of
points on the considered hemisphere and hence on the o—f3
plane.

A space junction is the concurrence of three non-coplanar
straight lines in a point in space, called vertex. Let us now
consider the generic space junction in Fig.2. L1, L, and L3
give rise to three image lines, {1, [2, 13 in the image plane.
For any image line /;, i=1,2,3, it is possible to determine the
interpretation plane P; that passes through the camera focus
F and contains both /; and L;. Let S be the normal unit vector
of the plane S formed by L1 and L2, 6 and y the angles formed
by the projection of L3 on § with L1 and L3, respectively, and
¢ the angle between L1 and Ly (see Fig.2). In order to
determine the junction orientation, two items must be con-
sidered: L1 and Lz form the angle ¢ on the space plane S:

Li-Lz = 1Ly 1 L2 Il cos(¢) (1)
and L3 belongs to the interpretation plane P3:
L3-P3=0 2)
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image plane

space plane S

Fig.2 - Backprojection of a space junction

Since L and L belong to the interpretation planes P1, P2,
and lie on the space plane S, their unit direction vectors can

be expressed as:
L S xP; .
Li=ysxpr =12 @)

and a constraint on the orientation of the space plane § is

obtained as follows:

(SXP1)- (SxP2)=IISXP1IINSxP2Icos(q). @
Equation (2) represents the constraint on orientation L3.

With respect to the local Cartesian coordinate system

defined by S, L 1 and (S X L 1), the direction vector L 3 can

be expressed as:

L3 = § sin(y) + L1 cos(0) cos(y) + (S X L1) sin(0) cos(y)

Considering equation (3) for the unit vector L1, and the cross

product’s rules, equation (2) can be written as:

(S - P3)IIS x Py lIsin(y) + (S - (P1 x P3))cos(B)cos(y) +
+ [(s -P1) (S -P3)—(P1- Ps)] sin®) cos(y)=0  (5)
Equations (4) and (5) are defined in terms of five un-
knowns: the space angles @, 8, y, and the spheric coordinates
(a,B) of S, hence the solution space of these equations is in
QR°. These equations are non-linear and solutions cannot
easily be determined analytically. According to Horaud [8],
a constructive method can be implemented on a computer
system. By setting specific values for the angles ¢, 6, v, and
making the orientation § vary over the Gaussian hemisphere,
two curves can be plotted in the o—f plane, which intersect
in 0, 1 or 2 points, the latter case being due to the Necker’s
cube illusion. The intersections, if any, correspond to the
orientations of plane § for the space angles chosen. In Fig.3,
the curves C1 and C2, corresponding to equations (4) and (5)
respectively, have been built for a sample junction with
¢=109.4°,0=35.7%, y=45°,
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Fig.3 - Backprojection of a sample space
junction

Now, considering the "vertex angles" ®1, w2 and w3
formed by the three space lines (see Fig.2), the relationships:

w1=Q (6a)

cos(m2) = cos(y) cos(p + 0) (6b)

cos(®3) = cos(y) cos(0) (6¢)

and their inverse:

o= (72)
B cos(m3) cos(wi1) — cos(wy)

0= arctg cos(w3) sin{wi) } (70)
B cos(w3)

W =arcos| Tooa (79

can be stated. These allow to express equations (4) and (5)

in terms of @1, w2, W3, respectively in the form:

(SXP1) - (SXPp)=1SxP IS xP; Il cos(wr) ®)

(S - P3)IIS x P1ll(w1, 2, 03) + (S - (P1 X P3))cos(ws) +
+[(s -P1) (S - P3)—(P) - P3) Jg(on, 02,03) =0 (9

where:

g(w1, w2, w3) =

h(w1, 02, 03) = sin[ arco:i:

cos(m3) cos(m1) — cos(m2)

sin(mi)
cos(m3z) J

cos[arctg (g(un, w2, (03))]

It will be shown that the knowledge of the interpretation
plane P3 allows to verify the orientation of a space junction
by setting only two of the three vertex angles, thus reducing
the solution space of the equations (8) and (9) from R0
9R“. Let us assume angles o1 and @3 are known. If the
orientation S is set, the direction vectors L1, Ly are derived
with equation (3). Considering the cone C obtained from the
rotation of a generic straightline L, starting from the junction
vertex V, around L1 with aperture angle at w3, the straight
line L3 corresponds to the intersection of C with the inter-
pretation plane P3. If the junction vertex V coincides with
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the origin of the coordinate system, as in Fig.4, cone C can
be expressed as:

Li-L =L llcos(ws) (10)

image plane

space plane S

Fig.4 - Cone Cformed by L3 around L4

Since 3 belongs both to the cone surface and the plane
P3, the unit vector L3 satisfies the following constraints:

NLsll =1 (11a)
Ly - L3 = cos(w3) (11b)
L3 -P3=0 (11¢)

Equations (11) form a system of three equations in the
three unknown components of L3, that generally admits two
solutions, considering the inherent ambiguity of the 2-D
projection of 3-D objects. Once L3 is obtained, angle w2 can
be directly determined from the dot product:

L - L3 = cos(wy) (15)

These results are true if the vertex V of the space junction
corresponds to the origin of the coordinate system. Actually,
the direction vector L3 of the intersection between C and
P13, is invariant under a spatial shift of the junction along the
optical axis (z-axis), provided that V lies on this axis. This
implies that the vertex v of the image junction coincides with
the center of the image plane (the origin of the image
coordinate system). In general, this assumption is not always
verified, and the vertex v must be moved to the center of the
image plane. A simple translation would fake the projected
image, therefore a rotation is needed. In line with Haralick
[10], a representation in homogeneous coordinates can be
used to describe this transformation. Obviously if the camera
isrotated by a rotation matrix R = (7;), the scene will rotate
by the inverse Rl= (sij), therefore the homogeneous coor-
dinates (x, y, z, I) of a generic point in the scene must be
rotated by R‘l, translated to the image plane, and then



perspectively projected. Considering the Cartesian coor-
dinate system here adopted, the perspective projection and
the translation can be represented by the transformation
matrices M), and M; respectively, where:

el [heee
MP—OIOO,M!= 001—f
001 000 1

Hence, the rotated homogeneous coordinates o, y*, *y of
(x, y, z) are:

» S11 8125130
Sy S 550
531 83 855 0

0 0 01

P4

¥ | = Mp My
*
t

— N R

and the rotated image coordinates are:
, X XSy tysptIsy LY XSutYSptisy
x=7*__fxsn+ys32+zs33 T T xsytysptsy

Further explanations of these equations can be found in
[10]. In order to move the vertex v to the center of the image
plane the standard transformation reported in [9] can be
applied. The associated standard rotation R(a,b) represents
acamerarotation that maps a given point (a,b/f) to the origin
(0,0,p) on the image plane. Since the matrix R(la,b) is or-
thogonal with unit determinant [9], theinverse R coincides
with the transpose R, therefore the image point (x,y) is
transformed into the image point (x’, y') with coordinates:

L XTIt Yrytfry ,_fxr12+)”22+fr32

S xratyrptfry’ Y Xrs+yrptfry

By using the appropriate standard rotation R(xy,yv), the
vertex v of the image junction can be moved to the image
origin and the vertex V of the space junction to the z-axis, so
that equations (11) still hold. As a consequence, the equa-
tions (8) and (9) can be verified by imposing a value only
for the vertex angles ®; and 3.

In order to solve equations (8) and (9), a constructive
method, similar to the procedure sketched above, can be
adopted. In this case, specific values for only two angles,
instead of three as in Horaud’s approach, must be set. With
respect to the same sample junction (vertex angles
1= 109.4%, 3= 54.7%), the curves C1 and C3 in Fig.3 have
been obtained computing equations (8) and (9), respectively,
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for each point in the a—f space. Curve C3is slightly different
from curve C2 corresponding to equation (5). Nevertheless,
the solutions of equations (8) and (9) (the intersections
between Cj and C3) and the solutions of equations (4) and
(5) (the intersections between C1 and C2) are the same. This
reveals that, taking into account the constraints related to the
perspective projection of a space junction, the knowledge
of only two vertex angles, instead of three, is sufficient to
evaluate the possible orientations of that junction, thus
reducing the solution space from R° to R°.
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