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��� ,QWURGXFWLRQ
Presently, most of the automatic machines (for milling,
cutting, measuring, soldering, electron erosion, moving
pieces, robots, tapes, etc.) used in pipelines of production
are controlled by microprocessor-based systems. These
are usually called CNCs (Computerized Numerical
Controls) and provide a certain number of interpolated
axes and digital sensors/actuators [1]. The CNCs are
typical real-time systems [7], [8], with all their classical
problems.

In general, a CNC system receives the instructions
describing the elaboration to be performed in terms of an
ISO 1037 program. The ISO programs are generated by
CAD/CAM stations. The ISO program is composed of
elementary instructions that include instructions to specify
the PDFURSRLQWV for interpolation (plus eventually some
technical information). The CNC system, by means of an
interpolator, calculates the PLFURSRLQWV that are useful to
generate the profile required between the given

PDFURSRLQWV. The operation of a CNC can be summarized
as follows:
• Interpretation of ISO programs and interpolation.

Specific versions of ISO programs can be used for
describing both the operation made by the machine
and by its I/O ports in terms of logic equations;

• Execution of low-level commands for axes of the
machines and for the other auxiliary services by
means of several digital and analog ports (sensors);

The CNC is capable of (i) detecting errors/faults that
may occur on the machine, and (ii) monitoring its
production. Errors are corrected by a special set of
instructions and/or are reported towards the other
microprocessor-based systems that are monitoring the
automated area.

CNCs are used as the elementary component for
building complex production pipelines. These can be
organized in three hierarchical levels.

The first is usually defined as FMM (Flexible
Manufacturing Module) -- i.e., the production islands.
FMMs are constituted by a single machine tool with
auxiliary robots for charging and discharging pieces and
tools. When the required performance is low, the FMM
control may consist of a single microprocessor-based
system that coordinates the machines and the auxiliary
tools and services (e.g., 3 interpolated axes for the
machine plus 2-3 axes for each robot). When the provided
performance is high, the FMM has to be managed by a
multiprocessor system. This solution highly increases the
complexity of the system for both hardware and software
aspects. In these cases, the production process of each
FMM is managed by a central control station. All the
FMMs of the production pipeline have their own
controllers that talk with a centralized system of control
and co-ordination by means of a local communication
network.

The second level is the FMS (Flexible Manufacturing
System). It is made by several FMMs connected by a
communication channel to a central station that manages
the various production cells and the production flow.
Among the most important CNC producers, SIEMENS
proposed a network based on IEEE 802.3. Other firms



such as OMRON, ABB, Blue Chip have their own
communication networks for connecting only PLC
(Programmable Logic Controller) modules.  Intelligent
Instrumentation Inc. uses an Ethernet network to connect
its own ILHOG� EXV� modules such as Profibus, Bitbus or
CANBUS (Control Area Network BUS). These
connections are master-slave. The master manages the
communications, thus a typical centralized non-distributed
controller is obtained.

At the third level, the Factory General Supervisor
(FGS) is present. Frequently, the role of FGS is covered
by a couple of specialized machines one for managing the
administrative part and the other for controlling the
production process.

Please note that, the strong integration among layers of
control and the different machine tools is frequently
claimed by CNC producers. In effect, it is an illusion,
since it is possible only by using modules with
homogeneous performance. Most of the production
pipelines are specifically set up for a given production,
and then they are destroyed when the production is
concluded, in favor of a new pipeline.

����� &RQWH[W
Presently the complexity of FMSs is growing since a
higher number of robots and services are needed and these
cannot be confined in FMMs.  Some of these services
need many axes for their control. This local complexity of
control cannot be managed by using decentralized
numerical controllers since the remote connection by
means of serial or specific channels is not fast enough for
coordinating axes. For these reasons, some builders are
improving the capabilities of their CNCs by increasing the
power of the microprocessor.

The general diffuse problems of the above mentioned
solutions is the lack of flexibility (see also OSACA and
NETCIM EC projects). At the first level, the number of
controlled axes and their performance can change
radically from a machine to another. The solution to
provide a controller per axis is too expensive and
inflexible to be acceptable. At the second level, the
controller of FMM can be in some cases even unuseful
and under-exploited. While, the communication between
the FMM controller and the other CNCs has to be
provided by means of high performance communication
channels and not only by Field Busses, which have a
limited bandwidth.

More recently, few builders of CNCs in USA are
beginning to study multiprocessor-based systems (parallel
architectures) for implementing flexible CNCs and FMSs.
This flexibility also reduces the complexity and the
cost/price of complex numerical controls and increases the
modularity of the system.

According to the above mentioned CNC builders,
sROXWLRQV�EDVHG�RQ�KLJK�SHUIRUPDQFH�&1&�FDQQRW�EH�UH�

XVHG� IRU� FRQWUROOLQJ� PRUH� D[HV� LQ� VORZHU� SLSHOLQHV� RI
SURGXFWLRQ� VLQFH� WKH\� DUH� LQIOH[LEOH�� VROXWLRQV� EDVHG� RQ
ORZ� SHUIRUPDQFH� &1&V� FDQQRW� EH� FRPSRVHG� IRU
FRQWUROOLQJ� KLJK� SHUIRUPDQFH� PDFKLQHV� LQ� KLJK
SHUIRUPDQFH�SURGXFWLRQ�SLSHOLQHV��6\VWHPV�LQFOXGLQJ�ERWK
ORZ� DQG� KLJK� SHUIRUPDQFH� &1&V� FDQQRW� EH� EXLOW� DW
UHDVRQDEOH� FRVWV� VLQFH� WKH� UHVWUXFWXULQJ� RI� D� SLSHOLQH� RI
SURGXFWLRQ� IUHTXHQWO\� SURYRNH� WKH� LQFOXVLRQ� RI� QHZ
PDFKLQHV� ZLWK� GLIIHUHQW� &1&V� WKDW� FDQQRW� EH� HDVLO\
LQWHJUDWHG�HDFK�RWKHUV�

Moreover, these systems present several variables that
influence their performance on the basis of the
configuration chosen. This approach can be inverted to
look for a configuration that have the required
performance at the lowest price. Thus, the evaluation of
these critical systems has to be carefully performed. A
detailed evaluation and model allows identifying the
correct configurations and the final performance.

In this paper, MUPAAC (Multi Processor Architecture
for Automatic Control) architecture is presented together
with its assessment. MUPAAC HPCN ESPRIT IV project
has been developed in order to solve most of the above
discussed problems [2], [3]. HPCN technology has been
employed in defining the parallel and distributed
architecture MUPAAC. A solution has been found by
studying and implementing a set of more flexible
components that can be reused in a variety of
combinations for covering from low to high performance.
The evaluation reported has been performed for validating
the results obtained by the project, which has been
successfully concluded in February 1999. MUPAAC is
suitable for implementing CIM (Computer Integrated
Manufacturing) solutions. The discussion of CIM policies
is not on the focus of this paper.

The MUPAAC solution is a three layer architecture. A
FGS controls the whole production pipeline by means of a
set of industrial computers connected via local area
network. Each industrial computer can control one or
more machines by means of a set of specific DSP-based
boards. These specific boards and the industrial
computers control all digital inputs/outputs, sensors and
actuators of the pipeline of production via CANBUS. It
allows the construction of a variety of configurations.

The partners of MUPAAC project have been: SED
Inc.; University of Florence with the Departments of
Systems and Informatics and that of Electronic
Engineering; VALIANI Inc. (as end-user and validator);
and CESVIT (High-Tech Agency) as TETRApc-TTN
HPCN (Technology Transfer Node) partner. The
prototype produced has been tested and validated by
VALIANI in the specific field of builders for cutting
machines for producing passpartout (e.g., ZUND, Swiss;
Gunnar, Swiss).

The paper is organized as follows. Section 2 presents
the general MUPAAC architecture mainly considering



hardware aspects. Section 3 presents the software
architecture of MUPAAC. Section 4 reports the System
Evaluation as Performance Analysis of the most relevant
parts of MUPAAC architecture. Conclusions are drawn in
Section 5.

���*HQHUDO�$UFKLWHFWXUH
MUPAAC architecture presents a further level with
respect to the architectures proposed by other CNC
builders. A general machine, (MUPAAC Supervisor),
controls the whole pipeline of production by means of a
set of Special Industrial Peripheral Computers (SIPCs)
connected via local area network (see Fig.1). Each
industrial computer can control one or more machines (for
milling, cutting, measuring, soldering, electron erosion,
moving pieces, robots, tapes, etc.) by means of a set of
DSP-based boards. These and the SIPCs control all digital
input/outputs, sensors and actuators of the pipeline of
production via CANBUS. A high flexibility is reached by
allowing the construction of a distributed control by using
a variety of configurations. From the single controller to a
set of 256 industrial computers each of which may control
up to 4 industrial machines with at most 4 axes each (16
axes per SIPC thus up to 4000 axes). The distributed
control can be reconfigured in order to satisfy changes of
configurations in the production pipeline.

In MUPAAC, the flexibility has been reached by the:
(i) structure of hardware and software of DSP-based

boards that allow to manage from 1 to 4 axes;
(ii) management of inputs/outputs from both the

industrial computer (controller of the FMM) and the

DSP-boards;
(iii) reconfigurability of software for managing the

mapping of axes and inputs/outputs;
(iv) adoption of fast connections between the FMM

controller and the DSP-based boards and the FGS
and the FMMs via Fast Ethernet;

(v) SOXJ� DQG� SOD\ solutions for PCI and CANBUS
components.

The whole-distributed control can be reconfigured in
order to satisfy changes in the production pipeline
configuration with fully reusing the same boards for
covering any kind of performance needed. MUPAAC
architecture includes both hardware and software aspects.
The hardware architecture is shown in Fig.1, where the
main components are reported.

083$$&�6XSHUYLVRU is a general purpose
workstation, the user interface of the entire system and the
connection with CAD/CAM area. It sends/receives
messages to/from the actual microprocessor based systems
for controlling the machines via SIPC.

6,3&� ERDUGV� �6SHFLDO� ,QGXVWULDO� 3HULSKHUDO
&RPSXWHU� are microprocessor-based systems that
execute ISO instructions coming from the MUPAAC
Supervisor. SIPC also interacts with (i) the DSP-PCI
boards for controlling axes and receiving alarms and
synchronizations; (ii) the Remote I/O boards for activating
and receiving I/O signals via CANBUS. The CANBUS
board is based on PC104 (ISA like bus) interface while
the Network Card can be either PCI or ISA.

'63�3&,� ERDUGV are based on the Analog Device
AD2106x (SHARC) DSP, for managing up to 4 axes of
motors. At the physical level, the communication between
SIPC and its DSP-PCI boards is made via PCI bus. The
boards support SOXJ� DQG� SOD\ configuration mechanism,
so boards can be plugged directly in without any manual
or software configuration (DIP-Switches, etc.) to avoid
conflicts (interrupt line, memory map).

5HPRWH� ,�2� ERDUGV allow the reading/writing of I/O
ports. They are endowed with a microprocessor for
interpreting messages sent on CANBUS, which are
specific commands for managing I/O ports and managing
the SOXJ�DQG�SOD\ mechanism. On the CANBUS up to 64
Remote Is/Os can be attached. Each Remote I/O board
can have on its CAN-interface and up to 8 I/O Modules
via SPI bus (Serial Peripheral Interface). Therefore, a
SIPC can indirectly have up to 512 I/O Modules. Two
different CAN-interfaces have been realized: (1) with an
Intel 8051 for I/O modules with a limited needs of
calculation power, and (2) with Hitachi SH7000 for
satisfy high demand of calculation. Different types of I/O
Modules are possible for digital inputs, digital outputs,
outputs with relays, counters, encoder, analog inputs,
analog input, and low performance monoaxis control.
These boards support a kind of SOXJ� DQG� SOD\
configuration mechanism, since the I/O modules have

)LJXUH����+DUGZDUH�DUFKLWHFWXUH�RI�083$$&

I/O CPU CAN

SPI Bus

I/
O

 M
od

ul
e

I/O CPU
CAN

'63�3&,

%RDUG

P
C

10
4-

C
A

N

&$1�EXV

E
th

er
ne

t o
r 

F
as

t
E

th
er

ne
t

E
th

er
ne

t

Machine

P
C

I 
br

id
ge

MUPAAC

Supervisor

I/
O

 M
od

ul
e

I/
O

 M
od

ul
e

3
&
,

EX
V

SIPC

E
th

er
ne

t

Machine

SPI Bus

I/
O

 M
od

ul
e

I/
O

 M
od

ul
e

Remote I/ORemote I/O

'63�3&,

%RDUGPC
I 

br
id

ge



special attributes that permit to know the types of the
modules.

&$1%86 is a 1Mb/s serial communication bus for
establishing communications between each SIPC and its
I/O boards.

3&,� %86� is a specific communication support based
on PCI. It is used by each SIPC board for communicating
with its DSP-PCI boards.

7&3�,3�EDVHG� 1HWZRUN� is� an Ethernet or Fast
Ethernet network based on TCP/IP.

MUPAAC solution has been obtained by reengineering
both hardware and software of INDEX-DSP architecture
of SED. This used only one DSP to control up to 4
interpolated axes and an i486 CPU to control the whole
system. For the reengineering of the software components
the classical techniques for monitoring and planning the
activities have been adopted [1], [10], [11]. A preliminary
evaluation of potential worst performance that could be
reached by the new architecture was performed. The
actual performance obtained had been better than those
supposed in several configurations.

����� )OH[LEOH�&RQILJXUDWLRQ
In Tab.1 a set of possible configurations of MUPAAC
architecture are presented. The configurations present
from 4 to 1024 axes.
• NA: Number of Axes of the whole system;
• ND: number of DSP-PCI boards in the whole system;
• NAD: Number of Axes per DSP-PCI board (at most

4);
• NS: Number of SIPC boards with NDS DSP-PCI

boards each;
• NDS: Number of DSP-PCI boards for each SIPC

board (ND/NS) (at most 4);
• C: Cost factor evaluated considering C = 2 NS +

NDS (the cost of the SIPC has been considered
double with respect to that of DSP-PCI board).

7DEOH�����([DPSOH�RI�083$$&�FRQILJXUDWLRQV

1$ 1' 1$' 16 1'6 &
4 2 2 1 2 4
4 1 4 1 1 2
4 1 4 1 1 2
4 1 4 1 1 2
4 1 4 1 1 2
8 4 2 1 4 6
8 2 4 1 2 4

16 8 2 2 4 12
16 4 4 1 4 6
32 16 2 4 4 24
32 8 4 2 4 12
64 32 2 8 4 48
64 16 4 4 4 24

128 32 4 8 4 48
256 64 4 16 4 96

1024 256 4 64 4 384

MUPAAC architecture is flexible since can fully be
reconfigured for satisfying the requirements of the
evolution of production pipelines. It can be suitable for
covering both low and high performance control
networks. Moreover, axes, DSP-PCI boards, SIPC boards
can be added/removed when needed/unuseful.
The configurations reported in Tab.1 do not take into
account the possibility to have different performance on
different SIPC and DSP-PCI boards. Different
performances are obtained by using a different number of
axes for each DSP-PCI board, and by using a variable
number of DSP-PCI boards per SIPC. Thus, they are
purely indicative of the actual flexibility of MUPAAC.

���6RIWZDUH�$UFKLWHFWXUH
The software architecture of MUPAAC system is reported
in Fig.2. The several components are distributed on the
hardware elements according to the general architecture.

����� 6XSHUYLVRU�6RIWZDUH
The Supervisor Software presents a simple 8VHU�,QWHUIDFH
that enables the users to (i) send ISO programs and single
ISO commands to each specific SIPC, and (ii) to view
errors/alarms collected by the SIPCs. The &OLHQW
&RPPXQLFDWLRQ� 0RGXOH implements the client part of a
socket-based custom communication protocol. This
permits to send ISO Programs (as text files) or single ISO
Commands (as strings) to SIPCs. It permits to receive
errors, alarms and the end-of-processing notification. This
part has been implemented under Windows NT but can be
easily ported to UNIX or any other platform. According to
our experiments, this part is not critical for the system
performance, even for a high number of SIPCs.

6XSHUYLVRU�6RIWZ� 6,3&�6RIWZDUH
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����� 6,3&�6RIWZDUH�DQG�6,3&�3&,�3URWRFRO
The SIPC is endowed with Microsoft WindowsCE 2.1. It
is quite suitable for embedded systems since it is can be
customizable and ROMable, and presents TCP/IP. It is
also a multitasking preemptive operating system quite
suitable for soft real-time applications. Before to adopt
WindowsCE, its performance and reliability have been
assessed by using methodology and measures proposed in
[4], [5], [6].

In Fig.3 and 4 the overhead and the variance of the
overhead introduced by the scheduler while scheduling
threads of the same process, is reported. In Fig. 3 and 4
WindowsCE has been compared with Windows NT 4.0.
The overhead of Windows NT is lower than that of
WindowsCE, but the variance and so the predictability of
the scheduling is much better for WindowsCE than that of
Windows NT. This is due to the several uncontrollable
tasks that are typically executed on Windows NT at kernel
level. In [6], Windows NT has been compared with
LINUX, OS/2 and Win95.

The 8VHU�,QWHUIDFH for the SIPC is optional, since the
operations can be remotely done from the Supervisor PC.
It was developed only for debugging purposes, but a local
emergency/supervising interface may be useful.

The SIPC-Software component is mainly used to:
1. communicate with the Supervisor to receive the ISO

Program to be executed;
2. notify errors and alarms to the Supervisor;
3. coordinate the I/O management;

These activities have been assigned to independent
thread of execution. The first two present the same
priority while the third is temporized to start every a
predefined number of milliseconds.

The 6HUYHU� &RPPXQLFDWLRQ� 0RGXOH implements the
counterpart of the protocol used to receive the ISO
Programs/Commands. The ISO program is temporally
stored in a RAM file and then each instruction of the
program is sent to the proper DSP-PCI board. The
program is stored locally since the same program has to
be frequently repeated for the production.

Before sending an ISO command/entity to the DSP-
PCI board, it is tokenized (by the 7RNHQL]HU). The string
representing the command is coded with a sequence of
numbers for reducing its dimensions.

The ISO commands are sent to a DSP-PCI board
through the PCI bus by using a specific SIPC-DSP
Protocol. The communication with the DSP is interrupt
driven and is based on a dual port RAM for data
communication. The dual port memory is subdivided in
three regions, one used to transmit data from the SIPC to
the DSP, one to receive, and the last presents the status
region. In this region, (i) the values of inputs and of the
outputs of the CAN, (ii) the flags associated with the axes
and (iii) the ideal and real quota of the axes, are stored.
When the SIPC writes a message, it generates the interrupt
to the DSP and waits for an ACK from the DSP. This
protocol has been implemented in a specific WindowsCE
PCI Driver for the DSP-PCI board. Another important
task of this module is to send error and alarms messages
to the Supervisor that have been received from the DSP-
boards, the Remote I/Os or internally generated.

Another task of this component is used to coordinate
the '63�ERDUGV with the 5HPRWH�,�2�0RGXOHV connected
with the CANBUS (,�2� &RRUGLQDWRU� 0RGXOH). This
module has to update regularly (every 10ms) the outputs
and to get the inputs; it uses the &$1�'ULYHU to access to
the 5HPRWH� ,�2. This has been implemented with a
specific WindowsCE driver for the PC104-CAN board.
The outputs can be set from the DSP-boards (by updating
the Status region) via the logic equation solver (,(&����
0RGXOH��  The logic equation solver gets the inputs values,
the flags, the real and ideal quotas of the axes (using the
3&,� 'ULYHU to access to the status region of DSP-PCI
board) and produces the outputs to be sent to the Output
Modules on the CAN based on particular logic conditions.
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����� &$1%86�3URWRFRO�DQG�5HPRWH�,�2�%RDUGV
6RIWZDUH
The CANBUS is a serial communications protocol that
efficiently supports distributed real-time control with a
very high level of security. Its application domain ranges
from high-speed networks to low cost multiplex wiring. In
automotive electronics, engine control units, sensors, etc.,
are connected using CANBUS with bit-rates up to
1Mbit/s. A CANBUS node has a layered structure:

$SSOLFDWLRQ�/D\HU
2EMHFW�/D\HU
7UDQVIHU�/D\HU
3K\VLFDO�/D\HU

The goal of the 3K\VLFDO� /D\HU is the transfer of the
bits between the different nodes with respect to all
electrical properties. Within one network physical layer,
of course, it has to be the same for all nodes. The 2EMHFW
/D\HU and the 7UDQVIHU� /D\HU comprise all services and
functions of the data link layer defined by the ISO/OSI
model. The $SSOLFDWLRQ� /D\HU is used to establish
communication between applications. This level has not
been standardized; and various protocols have been
presented  (SDS, CanOpen, DeviceNet).

In MUPAAC, the Intel 82527 chip was chosen for the
CANBUS module for realizing the Physical, Transfer and
Object Layers. For the Application Layer was chosen to
implement a SDS subset, called MUPAAC-SDS.

The communication model supported by MUPAAC-
SDS is the master/slaves communication, where the
master device (the SIPC) uses the I/O services provided
by the slave devices (the Remote I/O). The master views
each slave device as an object with:
• a set of attributes that may be read or written;
• a set of actions that may be called;

A slave device is identified by: Device Address (6bit);
and the EOID (Embedded Object Identifier) (4bit);

In MUPAAC-SDS are implemented three Application
Layer services:

• The 5HDG� 6HUYLFH to read an attribute value of an
Embedded object. For example, this service could be
used to read the sensor value.

• The :ULWH� 6HUYLFH to modify an attribute of an
Embedded object. For example, this service could be
used to set an actuator output.

• The $FWLRQ�6HUYLFH to execute the actions specified
for an Embedded object. For example, this service
could be used to move an axis to a target position.

Data transmission can be Basic (for data with length
less or equal to 6 bytes) or Fragmented (for data greater
than 6 bytes). When a Request (Read/Write/Action) is
sent from the master (SIPC) a Result (positive or
negative) is sent from the slave (Remote I/O).

The master of MUPAAC-SDS protocol has been
directly implemented in the &$1�'ULYHU�on Windows CE.
It exports to the application the functions needed to
Read/Write attributes and to execute actions on remote
I/O ports. Specific software has been implemented for
i8051 and SH7000 CPU located in the Remote I/O CAN-
interface boards. Mainly, it has to interpret the requests
received from the SIPC (read an attribute, write an
attribute, etc.) and to send a response or an ACK.

In the case of a complex configuration, a part of the
workload of the ,(&�����0RGXOH of the SIPC may be
demanded to the SH7000 CPU on to a CAN-interface
board. In fact, it may be programmed to resolve
autonomously some logic constraints among its input and
output modules.

����� '63�3&,�6RIWZDUH
The DSP-Software component is used to receive the
tokenized ISO Commands from the PCI bus (trough the
3&,�'ULYHU) and to manage their execution (see Fig.5).

Two types of interpolations can be used on DSP
software, the linear and the circular one.

The commands received from the SIPC are stored in
the 5DZ�&RPPDQG�4XHXH and then are interpreted by the
0DFUR�,QVWUXFWLRQ�,QWHUSUHWHU.  The processed instructions
with additional information are then stored in the
,QWHUSUHWHG� &RPPDQG� 4XHXH� ready to be used by the
interpolator�

If the received command is for moving axes, it is firstly
elaborated for calculating some important data for the
interpolation. For example: the length of the trajectory to
realize, the test for the continuity between two
movements, calculus of the movement velocity, center
coordinates of the circle (only for circular interpolation),
etc. In the case of a non-movement command, they have
to be checked if must be executed immediately or if must
be executed after a complete stop of the axes. In the first
case, the command is executed immediately, else the end
of the previous movement has to be waited, and then the
command requested can be performed. Example of a
command executed after a stop of the axes is the change
of PID (Proportional Integrative Derivative control
algorithm) parameters. In the opposite, an example of
command that may be executed before the stop of the axes
is the transmission on the PCI bus of the value read from a
space transducer (encoder). The DSP-PCI board software
also controls the analog outputs of the board which are
connected to the motor’s power-driver.

On the DSP-PCI board, some inputs and outputs must
be directly controlled by the interpolator software for their
importance for the machine safety. They are the enabling
bits of the motors, the limit switches, encoders zero
signals. These I/O signals with the Servo Error (maximum
trajectory error allowed by the system) are controlled
every servo cycle (bottom part of Fig.5) before the



micropoints generation.
The interpolator must also know other inputs from

CANBUS. To this end, the DSP software may access the
State region to get the last value assumed from an input
that the interpolator want to know.

In the Interpolation phase, the micropoints that are
used in driving the machine’s motors to realize the piece
profile are generated.

The algorithms used in this elaboration are critical for
the quality of the system. In this phase, algorithms that
guarantee the maximum precision rate in the elaboration
must be used, and these algorithms must be as fast as
possible. The velocity of the elaboration affects the
precision of the elaboration.

The software realized for this board use EXACT DDA
algorithm for the linear interpolation, while for the
circular interpolation an interpolation with Sin Cosine has
been adopted, because it guarantees to us more precision
than the DDA one. In certain cases, more sophisticated
interpolation algorithms can be used -- Nurbs, Splines.

The interpolation produces the micropoints that are the
set point used by the PID algorithm. This is quite sensible
to the elaboration time.

The above described operations are performed by three
concurrent tasks: PCI driver, interpreting and
interpolation, PID.

���6\VWHP�(YDOXDWLRQ�DV��3HUIRUPDQFH
$QDO\VLV
CNC can be classified on the basis of the refresh time

(period) for evaluating/generating the actions on axes,
RefAx (Refresh Axes Time, servo cycle time). For lower
values of RefAx higher performance and costs are
provided, since a short refresh time leads to reduce errors
(in cutting, soldering, etc., i.e., in following the planned
profile) and executing elaborations in shorter time.
• +,*+�SHUIRUPDQFH��5HI$[����PV��

PMAC (USA), GALIL (Israel), Allen Bradley
(USA), Siemens (Germany), NUM (France), etc.

• 0(',80�SHUIRUPDQFH����PV���5HI$[����PV��
Fagor (Spain), Siemens (Germany),  etc.

• /2:�SHUIRUPDQFH��5HI$[�!���PV��
SIPRO (Italy), SED with INDEX-DSP architecture
(Italy), ECS (Italy), Siemens (Germany), etc.

Please note that some CNC builders present several
types of solutions that are capable of covering different
sectors of the market -- e.g., Siemens, ECS, etc. Presently
the controllers that are employed on cutting, soldering,
moving, machine tools belong typically to MEDIUM and
LOW categories. The adoption of high performance
solution increases the precision of elaboration.

In order to show the main results achieved with
MUPAAC prototype, some relevant parameters for the
evaluation of motion controller systems have to be
considered.  These parameters are:
• Time of servo cycle axis (RefAx mentioned in the

introduction).
• Number of Entities (elements of the ISO program)

Processed per Second (1(36) passed from the SIPC
to the DSP board.

• Time of cycle for updating  I/O via CANBUS.
• Flexibility of composition and reuse.

The first three factors are used to measure the goodness
of a control system for production pipeline in terms of
working precision. These metrics are typically considered
by pipeline builders to identify the most suitable and
powerful solutions.

The last aspect to be considered is the flexibility. This
can be measured based on the range of applicability of the
same component (as well as numerical control) with
respect to the different performance categories. In project
MUPAAC, a special attention has been given to solution
flexibility and reusability. In these cases, if a CNC has
flexible components it can be easily reused during the
reengineering and the reconfiguration of production
pipelines.

����� 6HUYR�ORRS�F\FOH�WLPH
The software located on the DSP-PCI board is the only
involved in the management of the axes control and thus
of RefAx factor. By using external probes, it has been
possible to measure the time elapsed between the
beginning and the end of every control cycle. The DSP-
PCI board can manage different types of interpolations,
thus different execution times have been registered for
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different interpolation algorithms. A shorted RefAx allows
to increase precision.

The initial value obtained by the servo cycle time was
57µs for a circular interpolation of two axes, and 91µs
adding other two axes in linear interpolation. The
estimations were performed by considering a classical
PID algorithm for motor controls.

The servo loop time for only one axis in linear
interpolation is of 32µs. These values resulted better than
those predicted in the early phases of the project.

In the following table, the detailed values of time for
each single operation of the algorithm are reported.

'63�3&,�ERDUG��PDLQ�WDVNV 7LPH��µV�
Control Algorithm and I/O operations** 8 + 14 (per axis)
Acceleration Slope calculation time 7
Linear Interpolation 3 per axis
Circular Interpolation 7 per axis

** The I/O operations consider the DACs and the encoders (see Fig.5).

An improvement has been obtained by modifying the
programmable logic chip for managing the Digital Analog
Converter, DAC, of the velocity feedback. After this
change, the servo loop cycle time passed from 57µs (as 8
+ 28 + 7 + 14) to 53µs for a circular interpolation of two
axes (49 for linear) and from 91µs to 83µs for 4 axes: two
in circular and two in linear interpolation.

The number of axes controlled by a single DSP-PCI
board can be from 1 to 4 obtaining performance from 32
to 99µs (4 axes in circular interpolation). On the other
hand, RefAx has to be fixed for guaranteeing the exact
controllability of the motors via the control equation
algorithm. Thus, it can be fixed to 100µs by considering
the worst condition as that with: 2 axes in circular
interpolation plus 2 axes in linear interpolation, that is,
83µs. In this case, 17µs up to 100µs can be used by the
other tasks to perform the interpretation and the
communication via PCI. This means that, for each
instruction (interpretation and communication) more than
one RefAx cycle has to be performed.

With this performance the MUPAAC CNC can be
located in the high performance category of numerical
controls.

����� 1XPEHU�RI�(QWLWLHV�3URFHVVHG�SHU�6HFRQG
The measure of NEPS shows the ability of the system to
process geometric entities. The entities correspond to the
elementary ISO instruction of the part program that the
numerical control executes for producing pieces. If
standard elementary entities are used, the number of
entities correspond to the number of macropoints. The
micropoints have to be calculated by the DSP-PCI board
according to the interpolation algorithms. In order to be
more precise, many users of numerical controllers prefer
(for managing complex curvilinear profiles) to produce

ISO program directly specifying the micropoints -- for
example, when there is the needs of adopting Nurbs of
Splines for the interpolations. In these cases, the
numerical control has to be capable of processing a higher
number of entities.

At the first glance, the ideal number of entities passed
via PCI bus could be calculated by considering the
bandwidth of the PCI. This evaluation is too trivial since
the entities are in the order of 50 bytes and a specific
protocol based on interrupt has been defined in order to
synchronize the DSP-PCI board and the SIPC.

The effective measure is quite complex since it
depends on: the ISO program instruction type; (ii) the
maximum velocity set for moving motors; (iii) the
interpolation algorithm chosen; (iv) the communication
performance and mechanisms; (v) protocol for
communicating between the SIPC and DSP-PCI boards,
etc. All these factors cannot be measured together, thus, a
distinct evaluation of the single phases is needed.

In order to perform the measure of NEPS processed by
the system (and the following measures) a specific testing
architecture has been defined and set: a MUPAAC
Supervisor connected via Ethernet to a SIPC controlling
two DSP-PCI boards. Each DSP-PCI board has been
devoted to control a machine for producing passpartouts
(three axes: two interpolated axes and a liner axis for the
tool orientation). Even if this configuration is simple, it is
sufficient to estimate all detailed execution costs.

To make the measures, a test ISO program based on
500 G1 (linear interpolation) and 500 G2 (circular
interpolation) ISO instructions was realized, and sent via
SIPC to both the DSP-PCI boards at the same time via the
PCI bus. The same ISO program was put on execution of
both machines at the same time simulating a production
phase (with a velocity of 40 meters per minute). This
process has been repeated 1000 times, estimating the
elapsed time between the start and the completion of the
program in order to have a mean estimation of the
execution time. In this way, the estimation of NEPS has
been possible with the precision needed. The result
obtained has been of NEPS = 2556. This was a first result
since the planned value was to reach at least NEPS =
1200. On the other hand, in order to evaluate the actual
performance of the CNC part managed inside the DSP-
PCI board several detailed issues have to be considered.

The entities are passed from the SIPC to the DSP-PCI
board via PCI bus. Then the DSP-PCI has to interpret the
instructions and to control the axes based on their set
points. Therefore, the detailed execution times of the
following phases has to be considered in order to evaluate
in detail the general execution costs (see Fig.5):
(i) the communication between the SIPC and DSP-PCI

boards,
(ii) the interpretation of the instructions,
(iii) the already discussed execution time, RefAx.



By using the results of a detailed performance
evaluation a more precise prediction of the actual
performance in other cases can be performed.

������� �6,3&�'63�&RPPXQLFDWLRQ�&RVWV
The communication between SIPC and DSP-PCI board is
mainly due to the passing of entities. These are written on
the dual port memory via PCI with a double interrupt
solution according to the sequence of numbers in Fig. 6.

The execution times are reported in the following table.

'63�3&,��↔�6,3&�ERDUG
&RPPXQLFDWLRQ�WDVN

ZRUVW
7LPH
�µV�

%HVW
7LPH
�µV�

SIPC write on DP memory (1) 17 17
DSP Interrupt latency (2) 1 1
DSP ACK write on DP memory (3) 6 6
SIPC (WIN-CE) Interrupt latency (4) 135 40
I/O cycle  for R/W on SIPC (5) 120 0

In the worst case, the time for writing on the dual port
by the SIPC is limited also by the other task running on
the SIPC, that is devoted to the management of I/O ports
via CANBUS, reported as (5) in Fig.6. From DSP the
ACK is sent instantaneously at the arrival of the interrupt
(2). The time needed to perform an action was measured
by using WHVWSRLQWV� A digital output port has been set at
the beginning of the action and reset at the end. The time
needed to perform the action was externally measured
with a minimum overhead. Data was collected through
many executions (about 1000) and minimum and
maximum values were found.

The communication between the SIPC and each PCI-
DSP board takes about 279µs for every instruction on one
DSP in the worst case. Thus, as 3584 instructions per
second could be passed from the SIPC to one DSP. When
more than one DSP are present, the time needed is
expressed by STworst = (17+6+1+135) NDS+120 where
NDS is the number of DSP per SIPC (ST is the
Communication time).

1'6 6WZRUVW 1(36Z 67EHVW9 1(36E
1 279 3584 184 5435
2 438 2283 248 4032
3 597 1675 312 3205
4 756 1322 376 2660

The values reported in the above table are referred to
the worst (w) and best (b) cases. In effect, as
demonstrated by the general measure, the communication
performance (for a DSP with two axes) has a mean value
of 2566 NEPS. This is due to the limitation of the DSP
board as discussed in the following.

For improving the above performance it is possible to
improve this result by sending more instructions at the

same time.

������� ,QWHUSUHWDWLRQ�&RVWV
According to the architecture reported in Section 3.4, the
interpretation includes a pre-calculus and thus depends on
the interpolation used as depicted in the following table.

'63�3&,�ERDUG
,QWHUSUHWDWLRQ�WDVN

0HDVXUHG�WLPH
�µV�

I/O (from CAN via PCI) and
generic operations

25

Interpret. Linear Interpolation 9 + 15 per axis
Interpret. Circular Interpolation 40 per two axes

From this timing table, it can be seen that a time of
65µs is needed for interpreting an instruction for two axes
in circular interpolation and 104 for 4 axes: two in linear
and two in circular interpolation.

������� 'LVFXVVLRQ�RQ�1(36�
The NEPS estimated for the whole process are due to the
presence of the above costs and to the presence of queues
between the components passed by the instructions from
the SIPC to arrive at the control algorithm loop (see
Fig.5). In particular, the above reported values for NEPS
are the maximum and the minimum values that can be
obtained from the SIPC part of the system, these are
limited by the capability of the DSP-PCI in processing the
entities.

Once defined the number of axes and considering the
fixed value for the refresh cycle of motors (100µs) a small
part of this is available the interpolation and
communication of the instructions.

In the following table, the evolution of the execution
times from some elementary configurations is reported.
More complex configurations can be produced on the
basis of those values. From the Table 2, if a too small
number of cycles is planned (e.g., less than 7 for 4 axes)
the PID is capable of processing more instructions than
those that can be provided by the interpreter and the
interpolator. This problems can be avoided by increasing
the number of RefAx per each set point (#RefAx) and thus
decreasing the NEPS managed by the DSP-PCI board.

Dual Port
Memory

Write message (1)

INT for ACK (4)

INT for the arrival
of a new mesasge (2)

Write for ACK (3)

(5)

)LJXUH����'HWDLOHG�FRPPXQLFDWLRQ�SKDVHV�RQ�3&,



Hence, the Remaining Time is obtained considering (100 -
Actual RefAX)  #RefAx.

The time needed for executing the other tasks
(communication and interpretation) is fixed depending on
the number of axes. It is the sum of the DSP
communication time (6µs) and the interpretation time
(65µs with two axes or 104µs with four axes). IDX (index)
is the difference of the Remaining Time and the time for
other tasks. When IDX is negative the solution is not
feasible since the DSP has not time enough to do the
work. In these cases, the PID is capable of processing the
instructions faster than the communication and
interpretation modules. Thus, it has to wait for them. This
can be the cause of problems, such as the fragmentation of
the motor action. This can cause large imprecision and
discontinuities which may produce defects.

The NEPS(dsp) is defined as 1/(100µs #RefAx), it is
the minimum rate needed by the DSP to have always
instructions to execute. This rate, for each configuration,
has to be provided by the SIPC. This, in turn, depends on
the number of DSP boards that are present on the SIPC.
Thus, NEPSw reported in the table of Section 4.2.1 has to
be greater than NEPS(dsp) previously discussed. For
example, the first configuration in Table 2 is not possible
for two reasons, the IDX is negative and NEPS(dsp) is
greater than NEPSw. Again, problems can be avoided by
increasing the number of RefAx (#RefAx) and thus
decreasing the NEPS managed by the DSP-PCI board.

The increment of #RefAx obviously decreases the
machine velocity. On the other hand, even with values of
1 ms (10 #RefAx) the MUPAAC solution is located in the

High Performance category of CNCs.
In Tab. 2, the execution CPU time is reported in micro

seconds, and impossible configurations (for the first or the
second reason) have been marked with * and ** in the last
column.

����� 0DQDJLQJ�,�2�3RUWV�YLD�&$1%86
The cycle of refresh of the I/O ports is the part of the
MUPAAC system that, from a temporal point of view, has
the lower priority. In MUPAAC, the inputs of emergency
(the alarms), highly sensitive to the response time, are
directly connected via the DSP-PCI board managing the
axes. With this solution, for all the other I/O ports of the
system it is enough to have a refresh time of 10-15 ms.
This value obviously depends on the communication
performance of CANBUS and, thus, a timed cycle has
been set at 10 ms to perform the measures. From the
measures this value has been confirmed to be large
enough to perform all the I/O operations needed even in
the worst case. The real cost depends on the
Communication Performance via CANBUS, on the other
hand, the SIPC has to use the remaining CPU time to
execute the other tasks.

According to MUPAAC architecture, the SIPCs
manages the control of CANBUS and the interpretation of
logic equations.  The estimation of the actual value for the
communication performance and for the refresh time of
the I/O ports have been performed by using the following
typical configuration. A SIPC with (i) 64 I/O ports on
CANBUS and (ii) a DSP-PCI card with 4 axes.

������� &$1%86�&RPPXQLFDWLRQ�3HUIRUPDQFH
In order to stress the communication conditions (for
estimating the writing time) on the CANBUS and on its
peripherals: an algorithm for generating repetitive simple
writing/reading on the same digital output/input was set.
The communication protocol includes always a bi-

directional message mechanism: writing to have an ACK
back, and reading by giving an address to have the
required data back. The result was 600µs for the
reading/writing from/on an 8 bits digital port.
This means that a value of 13333 bps can be reached with
respect to the ideal CANBUS throughput of 1 Mbps.

A similar test has been performed also for the

N A N D S N A D
A ctual
R efA x #R efA x

R em ainin g
T im e

O ther
T asks ID X N E P S (d sp ) Im po ssib le

2 1 2 53 1 47 71 -24 1 0000 (*)/(**)

2 1 2 53 2 94 71 23 5 000 (**)

2 1 2 53 3 1 41 71 70 3 333
2 1 2 53 4 1 88 71 1 17 2 500

2 1 2 53 5 2 35 71 1 64 2 000

4 1 4 83 4 68 1 10 -42 2 500 (*)

4 1 4 83 5 85 1 10 -25 2 000 (*)

4 1 4 83 6 1 02 1 10 -8 1 667 (*)

4 1 4 83 7 1 19 1 10 9 1 429
4 1 4 83 8 1 36 1 10 26 1 250

(*) ID X  <  0           (**) N E P S(dsp) >  N E P Sw   (N E P S w  =  3 584  for N D S =  1)

7DEOH�����&RQILJXUDWLRQV�FRPSDULVRQ



fragmented modality of CANBUS communication. This
type of service is intended to transfer more than 6 bytes
from a node to another. In this case, a time of 1200µs to
transfer data on four ports (24 bits) has been obtained. In
this modality a throughput of 20000 bps can be reached.

����� 6\VWHP�)OH[LELOLW\
The system flexibility in MUPAAC has been reached
thanks to three main features:
1. CANBUS components are SOXJ� DQG� SOD\. Each I/O

Module has its own identification code that can be
recognized from the 8051 or SH7000 based
CANBUS Peripherals. These communicate the
information directly to the SIPC and from this to the
MUPAAC supervisor that has in this way the exact
map of physical ports available via CANBUS on the
whole system, on the whole pipeline. These are
mapped on logical names of variables.

2. DSP-PCI boards are SOXJ� DQG� SOD\. Thus, their
presence is detected by the SIPC that in turn informs
the MUPAAC Supervisor.

3. DSP-PCI boards can mange from 1 to 4 axes.
According to the values reported in the above
presented tables, it is possible to evaluate suitable
bounds for each specific configuration of the system.
In the same plant, different solutions can live
together. DSP-PCI boards controlling very fast axes
with other for slower axes.

���'LVFXVVLRQ�DQG�&RQFOXVLRQV
The MUPAAC architecture has been studied for satisfying
the needs of production pipelines builders. Numerical
controls for such a system have to be flexible and strongly
expansible and reusable since the pipelines are frequently
reconfigured for topology and performance requirements.
MUPAAC architecture is based on a set of Industrial
Computers, SIPC, connected via local area network. Each
SIPC can control one or more automatic machines by
means of a set of DSP-based boards. The input/outputs
ports are manage via CANBUS.

The flexibility is reached by allowing the construction
of a distributed control by using a variety of
configurations. From the single controller to a complex
pipeline with 4000 axes. During the final validation on
actual pipelines for producing passpartout a relevant
decrement of reconfiguration costs has been detected by
VALIANI. The measures reported in this paper allows the
identification of the most suitable configuration for
maximizing the production velocity, or maximizing
precision, or minimizing the costs. Flexible and custom
configurations are also possible with some parts
exploiting the maximum performance of the CNC and
other with presenting low performance.

The experience reported could be of a great value for
other control machine builders since describe both some

interesting metrics and the process by which we have
obtained the measures. The results of this assessment have
been used by SED for increasing the performance of the
architecture by increasing the number of entities passed
from the SIPC to the DSP-board. The performance
reached with the final version of MUPAAC CNC have
been improved of about the 30% in certain configurations,
by using 5 entities. A higher number of entities impedes
the execution of the other tasks on the SIPC.
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