
A Method and Tool for Assessing Object-Oriented

Projects and Metrics Management�

F. Fioravanti, P. Nesi

Department of Systems and Informatics, University of Florence

Via di S. Marta 3, 50139, Florence, Italy, tel: +39-0554796523, fax: +39-0554796363

nesi@ing�1.ing.uni�.it, http://www.dsi.uni�.it/~nesi

January 24, 2000

Abstract

The number of metrics and tools for the assessment/control of Object-Oriented project is in-

creasing. In the last years, the e�ort spent in de�ning new metrics has not been followed by a

comparable e�ort in establishing methods and procedures for their systematic application. To make

the investment on project assessment e�ective, speci�c methods and tools for product and process

control have to be applied and customized on the basis of speci�c needs. In this paper, the experi-

ence of the authors cumulated in interpreting assessment results and de�ning a tool and a method

for the assessment of Object-Oriented systems is reported. The tool architecture and method for

system assessment provide support for: (i) customizing the assessment process to satisfy company

needs, project typology, product pro�le, etc.; (ii) visualizing results in an understandable way; (iii)

suggesting actions for tackling with problems; (iv) avoiding unuseful interventions and shortening

the assessment analysis; (v) supporting metrics validation and tuning. The tool and method have

been de�ned in years of work in identifying tool features and general guidelines to de�ne a modus

operandi with metrics, with a special care to detect analysis and design problems as soon as possible,

and for e�ort estimation and prediction. In this line, a speci�c assessment tool has been built and

used as a research prototype in several projects.

Index terms: product and process assessment, diagram analysis, object-oriented metrics, assess-

ment tool, e�ort prediction, pro�les and histograms, validation, tuning, process improvement, control

process, quality.

1 Introduction

The Object-Oriented paradigm (OOP) is considered one of the most interesting paradigms for its

promises about reusability, maintainability, capability for programming \in the large", etc. These

features are not automatically obtained by using the OOP, even if an object-oriented methodology

supporting all features of the OOP, such as inheritance, polymorphism, aggregation, association, etc.,

�This work was partially supported by MURST Ex60% and 40% govern Ministry of University and Scienti�c Research.

1

is used. To this end, the introduction of the object-oriented technology must be accompanied by a

corresponding e�ort to establish mechanisms for controlling the development process [Nesi 1998].

In order to control the development process, metrics for evaluating system features are fundamental.

Their validation and interpretation are tasks frequently much more complex than their evaluation.

Reference values, views, histograms and graphs are typically used. However, without the support of

a methodology for their adoption and interpretation they are frequently abandoned or misused. In

many cases, the relationships among reference values for attended features and the estimated values of

metrics may depend on the application domain, the development tool, libraries used, the implementation

language, etc. Obviously, each feature must be directly or indirectly measurable and suitable actions

for its achievement must be identi�ed.

During system assessment, di�erent views, pro�les and histograms of the same entity/class can be

required either from di�erent people involved in the project (project and task managers, developers,

etc.) or from the same people in di�erent phases of the development life-cycle or for di�erent purposes.

These views must be focussed on highlighting di�erent aspects. Measured values are typically compared

against minimum, maximum and typical values de�ned for the development phase under observation

on the basis of the product pro�le required. These have to be de�ned by the company on the basis of

their experience and needs.

The growing attention on the process of software development has created the need to get process-

oriented information and to integrate metrics into the software development process. Furthermore, it is

also important to create an integrated environment for software development (editing, navigating among

classes, measuring, etc.) and to perform project-oriented tailored measures, owing to the presence of

many di�erences among projects by the same company. This means that it is important for a company

to tune the assessment methodology for di�erent types of projects and languages. This process of

tuning is usually performed by adjusting weights, thresholds and pro�les [Henderson-Sellers et al. 1994],

[Nesi et al. 1998].

Some studies with metrics and measurement frameworks for object-oriented systems have been pre-

sented in [Laranjeira 1990], [Meyer 1990], [Henderson-Sellers 1993], [Coulange et al. 1993], [Li et al. 1993],

[BritoeAbreu et al. 1995], [Nesi et al. 1996], [Nesi et al. 1998], [Fioravanti et al. 1998b], [Bucci et al. 1998],

[Fioravanti et al. 1998a], [Henderson-Sellers 1991], [Zuse 1994] where general concepts for the estima-

tion of system size, complexity and reuse level have been proposed together with many other metrics.

Unfortunately, the e�ort for de�ning new metrics has not been supported by the implementation of

assessment tools and methodologies.

This paper reports the description of a method and tool named TAC++ (Tool for the Analy-

sis of C++ code and metrics) for the assessment of object-oriented systems. TAC++ is a research

tool by means of which several experiments on metric assessment and de�nition have been performed.

TAC++ has been developed for studying the metric behavior during the development process, and

it is capable of estimating more than 200 metrics. The method and tool have been derived by the

experience in metrics de�nition and validation, assessment results interpretation, for product assess-

ment in several small- and medium-size industrial and Academic object-oriented projects in the last

10 years [Nesi 1998], [Butera et al. 1998], [Bellini et al. 1999]. Details about the de�ned metrics and

2

project Operating System language tools & libs NCL

TOOMS UNIX, LINUX C++ Lex/Yacc, CommonView 204
ICOOMM Windows NT C++ MFC 193
QV UNIX C++ XLIB, Motif 65
LIOO DOS-LINUX C++ Lex/Yacc, XVGAlib 165
ICCOC Windows NT C++/Java MFC, JDK 80
MOODS LINUX, HPUX C++ Lex/Yacc, XVGAlib 253
MUPAAC WinNT, WinCE, DSP C/C++ MFC 180

Table 1: Main �gures of some referred projects: NCL, Number of system Classes. For some of the

above projects several versions have been assessed during their development.

their validation can be found in [Fioravanti et al. 1998a], [Fioravanti et al. 1998b], [Bucci et al. 1998],

[Fioravanti et al. 1999a], [Nesi et al. 1998].

Table 1 shows the pro�les of some real projects in chronological order: TOOMS, a CASE tool

to specify, verify, test and assess real-time systems; ICOOMM, a computerized numerical control for

milling machines; QV, a library providing a uniform object-oriented support for MOTIF and X; LIOO,

a lectern/editor for music scores reused as the basis for project MOODS; ICCOC, ESPRIT HPCN

project, a distributed system for integrating CAD/CAM activities on numerical control machines;

MOODS, ESPRIT HPCN project, a distributed system of music lecterns for orchestras and music

schools; MUPAAC, ESPRIT HPCN project, a distributed system of control based on Ethernet, PCI

and CANBUS.

Most of these projects were carried out by using heterogeneous teams, in the sense that they

included people from (i) some industries, (ii) the University of Florence, and (iii) CESVIT (High-Tech

Agency) research center. Although the project partners were in separate locations, the heterogeneous

task/subtask teams were constrained to work in one place to improve the homogeneity of results - i.e.,

by using the same \quality manual": reference document that contained all the guidelines for project

development according to the de�ned general criteria.

This experience has been also condensed in an assessment methodology that consists of a modus

operandi to work with metrics in order to detect analysis and design problems, and for e�ort estimation

and prediction. The approach suggests modalities for interpreting metrics results and for the validation

and tuning of metrics. Criticisms about the adoption of speci�c diagrams explaining their semantics and

relationships are also reported. These may be used for providing a clearer picture of the system under

assessment. TAC++ tool supports and integrates the assessment methodology including an algorithm

to reduce complexity in managing the typically large amount of numerical results and diagrams that

are produced and have to be analyzed during system assessment.

The main contributions of the paper are: the architecture and the detailed solutions of TAC++

tool; the mechanisms for the identi�cation and the representation of bounds in diagrams, their meaning

and analysis; the adoption of normalized histograms and related reference distributions; the integration

between metric estimation, validation and tuning; and an algorithm for managing the large amount of

diagrams and pro�les and its validation for shortening the assessment time.

TAC++ and the related methodology provide support for (i) customizing the assessment process

to satisfy company needs, project typology, product pro�le, etc.; (ii) de�ning new high level metrics for

3

assessment customization; (iii) visualizing results in an understandable way; (iv) navigating on system

hierarchies and structure; (v) suggesting actions for solving problems; (vi) de�ning and visualizing

pro�les, histograms, and views; (vii) avoiding unuseful interventions and analysis on the basis of simple

bounds; (viii) supporting metrics validation and tuning via statistic analysis techniques; (ix) reasoning

about the evolution of metrics, views, histograms, pro�les, etc. along the life-cycle; (x) supporting

the user in navigating on the whole information produced during the assessment, controlling project

evolution by using reference/threshold values, shortening the assessment process by automating some

of its parts; (xi) collecting real data such as e�ort, faults, etc.

The needs of automatically estimating metrics producing visual representations of results for facili-

tating their interpretation and highlighting their relationships have been the basis for the study and

the implementation of TAC++.

This paper is organized as follows. In Section 2, a short overview of the object-oriented metrics

mentioned in the rest of the paper is reported.

In order to make this paper more readable, in Appendix A, a glossary of cited metrics is reported.

In Section 3, the overview of TAC++ architecture is reported. TAC++ presents two main areas.

The �rst area, discussed in Section 4, includes the estimation, the de�nition, the validation and the

tuning of metrics. The estimation phase includes the evaluation of code metrics and the collection of

data from other sources: documents, time sheets, etc. The second part, discussed in Section 5, includes

the interpretation of results by means of the support of several diagrams and their related reference

values and shapes according to rules, criticisms and guidelines. In this part, the adoption of normalized

histogram distributions for problem detection is presented. The same Section includes an algorithm to

semi-automatically perform the system assessment. The above aspects are discussed on the basis of

results and examples taken from the above mentioned projects. An example of the algorithm proposed

for the semi-automatic assessment is also proposed considering real data. Conclusions are drawn in

Section 6.

2 Overview of Object-Oriented Metrics

Before beginning the description of TAC++ tool and methodology, an overview of some of the most

signi�cant object-oriented metrics categories is given.

In general, metrics can be direct or indirect. Direct metrics should produce a direct measure of

parameters under consideration; for example, the number of the Lines of Code (LOC) for estimating

the program length in terms of lines of code. Indirect metrics are usually related to high-level features;

for example, the number of system classes can be supposed to be related to the system size by means of

a mathematical relationship, while LOC (as indirect metric) is typically related to development e�ort.

Thus, the same measure can be considered as a direct and/or an indirect metric depending on its adop-

tion. Indirect metrics have to be validated for demonstrating their relationships with the corresponding

high-level features (reusability, e�ort, etc.). This process consists in (i) evaluating parameters of metrics

(e.g., weights and coe�cients), (ii) verifying the robustness of the identi�ed model against real cases.

The model can be linear or not, and it must be identi�ed by using both mathematical and statis-

4

tical techniques { e.g., [Zuse 1994], [Rousseeuw et al. 1987], [Nesi et al. 1998], [Schneidewind 1992],

[Schneidewind 1994], [Kemerer et al. 1999], [Briand et al. 1998a], [Briand et al. 1998b], [Zuse 1998],

[Briand et al. 1998c], [Briand et al. 1999a], [Basili et al. 1996].

In the next subsections, some selected metrics for e�ort prediction and estimation, and for quality

and system structure assessment, are reported. This presentation of metrics does not pretend to be an

exhaustive review about object-oriented metrics since it is only oriented to present those metrics which

are useful for discussing assessment methodology and tool in the next Sections.

2.1 E�ort Estimation and Prediction Metrics

The cost of development is one of the main issues that must be kept under control. To this end, a

linear/non-linear relationship between software complexity/size and e�ort is commonly assumed. The

e�ort can be expressed in person-months, -days or -hours needed for system development, from re-

quirements analysis to testing or in some cases only for coding. In this way, the problem of e�ort

evaluation is shifted into the problem of complexity or size evaluation. When software complex-

ity evaluation is performed on code, this can be useful for controlling costs and development pro-

cess e�ciency, as well as for evaluating the cost of maintenance, reuse, etc. When software eval-

uation is performed before system building, metrics are used for predicting costs of development,

testing, etc. As pointed out by many authors, traditional metrics for complexity/size estimation,

often used for procedural languages, can be di�culty applied for evaluating object-oriented systems

[Henderson-Sellers et al. 1994], [Nesi et al. 1996], [Li et al. 1993]. Several interesting studies on pre-

dicting and evaluating maintainability, re-usability, reliability, and e�ort for development and mainte-

nance have been presented. These relationships have been demonstrated by using validation processes

[Nesi et al. 1998], [Kemerer 1987], [Kemerer et al. 1999], [Briand et al. 1998a], [Briand et al. 1998b],

[Basili et al. 1996], [Henderson-Sellers 1996].

Traditional code metrics for complexity/size estimation, often used for procedural languages (Mc-

Cabe [McCabe 1976], [Henderson-Sellers et al. 1990],Mc; Halstead [Halstead 1977], Ha; and the num-

ber of lines of code, LOC) are unsuitable to be directly applied for evaluating object-oriented systems

[Henderson-Sellers et al. 1994], [Nesi et al. 1998]. By using the above procedural metrics, data struc-

ture and data
ow aspects related to method parameters are neglected [Zuse 1998]. More general

metrics have been de�ned in which the external interface of methods is also considered in order to

avoid this problem.

Operating with OOP leads to move human resources from the design/code phase to that of analysis

[Henderson-Sellers et al. 1994], where class relationships are identi�ed. Following evolutionary models

for the development life-cycle (e.g., spiral, fountain, whirlpool, pinball), the distinction among phases

is partially lost { e.g., some system parts can be under design when others are still under analysis

[Booch 1996], [Nesi 1998]. These aspects must be captured with speci�c metrics; otherwise, their

related costs are immeasurable (e.g., the costs of specialization, the costs of object reuse, etc.).

In order to cope with the above mentioned drawbacks, speci�c code metrics for evaluating size and/or

complexity of object-oriented systems have been proposed { e.g., [Thomas et al. 1989], [Lorenz et al. 1994],

[Henderson-Sellers 1991], [Chidamber et al. 1994], [Li et al. 1993]. Some of these metrics are based on

5

well-known functional metrics, such as LOC, McCabe, etc. In [Henderson-Sellers 1994] and [Nesi et al. 1996]

issues regarding the external and internal class complexities have been discussed by proposing several

metrics. Early metrics, such as the number of local attributes, the number of local methods or the

number of local attributes and methods have been frequently used for evaluating the conformance

with the \good" application of the OOP. These are unfortunately too coarse for evaluating in details

the development costs [Nesi et al. 1998]. The above metrics have been generalized and compared in

[Nesi et al. 1998], by adding terms and weights opportunely estimated during a validation phase.

At Method-Level classical size and volume metrics can be pro�tably used. In some cases, speci�c

metrics including also the cohesion of methods are considered, for instance by taking into account

the complexity of method parameters [Nesi et al. 1998]. On the other hand, these metrics are only

marginally more precise in estimating development e�ort than pure functional metrics, while they are

quite useful for estimating e�ort for reuse.

Class-Level metrics have also to take into account class specialization (is a, that means code

and structure reuse), and class association and aggregation (is part of and is referred by, that mean

class/system structure de�nition and dynamic managing of objects, respectively), to assess all the

characteristics of system classes. A fully object-oriented metric for evaluating class complexity/size

has to consider also attributes and methods both locally de�ned and inherited [Nesi et al. 1996],

[Nesi et al. 1998], [Fioravanti et al. 1999b]. These factors must be considered for evaluating the cost/gain

of inheritance adoption, and that of the other relationships. Therefore, the Class Complexity, CCm,

is regarded as the weighted sum of local and inherited class complexities (recursively, till the roots

are reached), where m is a basic metric for evaluating functional/size aspects such as, Mc, LOC,

Ha. This is a generalization of the metrics proposed in [Thomas et al. 1989], [Henderson-Sellers 1991],

[Chidamber et al. 1994]):

CCm = wCACLmCACLm+wCMICLmCMICLm+wCLmCLm+wCACImCACIm+wCMICImCMICIm+wCImCIm;

(1)

where CACLm is the Class Attribute Complexity Local, CACIm the Class Attribute Complexity Inher-

ited, CMICLm the Class Method Interface Complexity of Local methods; CMICIm the Class Method

Interface Complexity of Inherited methods; CLm Class Complexity due to Local methods; CIm Class

Complexity due to Inherited methods (e.g., complexity reused). In this way, CCm takes into account

both structural (attributes, relationships of is part of and is referred by) and functional/behavioral

(methods, method \cohesion" by means of CMICLm and CMICIm) aspects of class. In CCm, also

the internal reuse is considered by means of the evaluation of inherited members. Weights in equations

(1) must be evaluated by a regression analysis. In the development e�ort estimation, wCACI is typically

negative, stating that the inheritance leads to save complexity/size and, thus, e�ort. CCm can be re-

garded as the de�nition of several fully object-oriented metrics based on functional metrics, of McCabe,

Halstead and LOC, CCMc, CCHa, CCLOC , respectively [Nesi et al. 1998], [Fioravanti et al. 1999a].

It should be noted that values for CCmmetrics are obtained even if only the class structure (attribute

and method interface) is available. This can be very useful for class evaluation and prediction since the

6

early phase of class life-cycle. The weights and the interpretation scale must be adjusted according to

the phase of the system life-cycle in which they are evaluated as in [Nesi et al. 1996], [Nesi et al. 1998],

[Fioravanti et al. 1999a].

CCm metric can also be used for the complexity/size prediction since the detailed phase of analy-

sis/early phases of design { that is, when the methods are not implemented: CI and CL are zero. In

that case, CCm is called CC 0

m

CC0

m
= wCACL0

m

CACL0

m
+wCMICL0

m

CMICL0

m
+ wCACI0

m

CACI0

m
+ wCMICI0

m

CMICI0

m
: (2)

A simpler approach is based on counting the number of local attributes and methods (see metric

Size2 = NAL+NML de�ned by Li and Henry in [Li et al. 1993], as the sum of the number of attribute

and methods locally de�ned in the class). On the other hand, the simple counting of class members

(attributes and methods) could be in many cases too coarse. For example, when an attribute is an

instance of a very complex class its presence often implies a high cost of method development which is

not simply considered by increasing NAL of one unit. Moreover, Size2 does not take into account the

class members inherited (that is, reuse). For these reasons, in order to improve the metric precision,

a more general metric has been de�ned by considering the sum of the number of class attributes and

methods (NAM), both locally de�ned and inherited [Bucci et al. 1998].

At System Level, several direct metrics can be de�ned in order to analyse the system e�ort { e.g.:

NCL, Number of CLasses in the system; NRC Number of Root Classes (speci�cally C++); System

Complexity, SCm (de�ned as the sum of either CC, WMC or NAM for all system classes), etc. It

should be noted that if SCm is de�ned in terms of CCm, it can be estimated since the early phases of

class life-cycle by using CC0

m.

Other system level metrics, such as the mean value of CC and the mean value of NAM , are much

more oriented to evaluate the general development behavior rather than the actual system e�ort.

2.2 Metrics for Assessing System Structure and Quality

During system development, several factors should be considered in order to detect the growing of

degenerative conditions in the system architecture, or in the code. A system may become too expensive

to be maintained, too complex to be reusable, too complex to be portable, etc. Most of these features are

referred into the typical quality pro�le de�ned by the well-known ISO9126 standard series on software

quality.

It is commonly believed that the object-oriented technology can be a way to produce more reliable,

maintainable, portable, etc., systems. These very important features are not automatically achieved

by the OOP adoption. In fact, only a \good" application of the OOP may produce indirect results

on some of the quality features { [Basili et al. 1996], [Briand et al. 1998a], [Daly et al. 1995]. It is

also very di�cult to quantify what \good application of the OOP" means. This obviously depends

on the context: language, product type (library, embedded system, applications on GUI, etc.), etc.

The context also in
uences the measures obtained on the product and the reference product pro�le.

7

Some quality features are very di�culty estimated by analyzing system code or documentation { e.g.,

e�ciency, maturity, suitability, accuracy and security; thus, measures based on the results of testing

and questionnaires are needed.

To this end, several criteria for controlling class degenerative conditions are typically based on

bounds on the number of local or inherited attributes; on the number of local or inherited methods; on

the number of the total number of attributes (NA = NAL+ NAI , local and inherited attributes) or

methods (NM = NML+NMI , local and inherited methods), etc. (see glossary table in Section A).

Interesting metrics are those related to the inheritance hierarchy analysis. These lead to important

assumptions about the quality of the analysis/design phases of the software development process and

system maintainability, reusability, extensibility, testability, etc. In the literature, the so-called DIT ,

Depth of Inheritance Tree, metric has been proposed [Chidamber et al. 1994]. DIT estimates the

number of direct superclasses until the root is reached. As can be easily understood, it ranges from 0 to

N (where 0 is obtained in the case of root classes). Metric DIT is strongly correlated with maintenance

costs [Li et al. 1993]. This metric is not very suitable for treating the case of multiple inheritance;

in fact, in the implementations reported in the literature, for the case of multiple inheritance, DIT

metric evaluates the maximum value among the possible paths towards the several roots or the mean

value among the possible values. These measures are in most cases an over-simpli�cation of the real

conditions because the complexity of a class obviously depends on all the superclasses. In order to solve

this problem, metric NSUP (Number of SUPerclasses) has been proposed and compared with DIT in

[Bucci et al. 1998].

In order to better analyze the class relevance within the class hierarchy, the number of its direct

subclasses is very important to be evaluated. To this end, the so-called NOC, Number of Children

[Chidamber et al. 1994], metric has been de�ned. Metric NOC counts the number of children con-

sidering only the direct sub-classes. It ranges from 0 to N (where 0 is obtained in the case of a leaf

class). Classes with a high number of children must be carefully designed and veri�ed because their

code is shared by all the classes that are deeper in the hierarchy. NSUB metric (Number of SUBclasses

[Bucci et al. 1998]) counts all the subclasses until leaves are reached and, thus, it can be regarded as

a more precise measure of class relevance in the system. Therefore, these metrics can be useful for

identifying critical classes, and are also strongly correlated with maintenance costs as demonstrated in

[Li et al. 1993]. Other metrics for assessing system structure can be: NRC, Number of Root Classes;

mean value of NM ; mean value of NA; mean value of CC, etc.

In general, complexity metrics (like CC,WMC, etc.) are unsuitable for evaluating comprehensibil-

ity of the system under assessment (for reuse and/or maintenance). For example, a metric that produces

a general view of class understandability is CCGI (Class CoGnitive Index) [Fioravanti et al. 1998a],

which is de�ned as follows:

CCGI =
ECD

CC
=

CACI +CACL+ CMICI + CMICL

CACI +CACL+CMICI +CMICL+ CI + CL
: (3)

where: ECD is the External Class Description and is de�ned as the sum of terms related to class

de�nition of CC metric. With CCGI is possible to identify classes with low understandability and

8

select classes that can be used as a \black box". These considerations arise from the de�nition of the

class itself that measures an index (and not a direct value that cannot be easily compared with reference

values) showing how much the class is understandable by looking only at its external interface. A high

value for CCGI means that ECD (class de�nition) is very detailed with respect to the class complexity.

For example, if a class presents several small methods in its de�nition, then it is more understandable

than a class that, having the same total complexity or size, presents a lower number of members.

In object-oriented systems assessment, it is very important to take into account all the typical

relationships that characterize OOP: is part of, is referred by, is a as previously stated, but also the

coupling among classes/objects. This can be performed by using metrics such as CBO, coupling

between objects [Chidamber et al. 1994]. Several other coupling metrics have been reviewed and com-

pared in [Briand et al. 1998c], [Briand et al. 1999a]. Even metrics CC and CCGI contain some terms

related to the coupling among object { that is, CMICI and CMICL. In that case, the coupling is

partially considered by means of the parameter complexity of method calling.

In order to evaluate an objective quality pro�le of the system under assessment, a speci�c set of

metrics is necessary and, therefore, the number of data that have to be managed by the system man-

ager or reviewer may become very large. Therefore, a procedure for the automatic or semi-automatic

identi�cation of degenerative conditions according to OOP, quality and company reference pro�le is

mandatory.

3 General Architecture of TAC++

The above-mentioned object-oriented metrics and many others have been used for taking under con-

trol several projects. The results produced have been compared with those obtained by other re-

searchers { [Nesi et al. 1998], [Fioravanti et al. 1998a], [Fioravanti et al. 1998b], [Bucci et al. 1998],

[Briand et al. 1998a], [Briand et al. 1998b], [Daly et al. 1995], [Lorenz et al. 1994], [Briand et al. 1999b],

[Chidamber et al. 1998]. In this paper, the detailed description of TAC++ tool is reported. It has been

developed to automatically estimate metrics for controlling project evolution. With TAC++, the behav-

ior of several metrics has been studied. This has given the possibility to de�ne a suitable methodology

for navigating among the large amount of measures that can be produced during the system assessment.

The main technical features of TAC++ can be summarized as follows:

� to navigate on system classes and hierarchy;

� to provide a su�cient number of elementary metrics and the possibility of de�ning new metrics;

� to allow the validation of metrics in several manner, estimation of weights, identi�cation of bounds;

� to allow the comparison of di�erent metrics;

� to allow the managing of weights, bounds and typical pro�les or distributions;

� to allow the di�erentiation of metrics on the basis of the context;

9

� to support the collection of real data values in constrained manner;

� to allow the analysis of the principal components of metrics;

� to allow the metric tuning and revalidation;

� to support the mechanism for the continuos improvement of system under development;

� to allow the de�nition of views, pro�les and histograms in several forms;

� to allow the adoption of histograms for detecting unsuitable classes by normalizing them and

de�ning typical distributions.

� to allow the analysis in times of weights, pro�les, and histograms;

� to assist the assessment personnel partially automating the assessment process.

TAC++ is a research prototype that has been developed for studying the metric behavior during

the development process and for controlling project evolution. It can be used by both developers and

sub-system managers. The Measuring Context is considered in the de�nition of graphs and in allowing

the manipulation of di�erent versions of the assessment results. This is de�ned in terms of:

� Development Context { system/subsystem structure (GUI, non GUI; embedded; Real-Time, etc.),

application �eld (toy, safety critical, etc.); tools and languages for system development (C, C++,

Visual C++, GNU, VisualAge, etc.); development team (expert, young, mixture, small, large, to

be trained, etc.); adoption of libraries; development methodology; assessment tools; etc.;

� Life-Cycle Context { requirements collection, requirements analysis, general structure analysis,

detailed analysis, system design, subsystem design, coding, testing, maintenance (e.g., adaptation,

porting), documentation, demonstration, testing, regression testing, number of cycle in the spiral

life-cycle, etc.

Typically, in a company only a limited number of Development Contexts are used since consolidated

procedures and tools are employed; these aspects have di�erent in
uences on di�erent metrics. A

certain generalization can be performed by considering even non-strongly similar projects as belonging

to the same measuring context. On the other hand, this implies to obtain a wider variance and a wider

uncertainty interval. In general, the Development Context may be di�erent for each subsystem. The

Life-Cycle Context has a strong in
uence on each measure and changes along the product development.

Di�erent subsystems may present di�erent life-cycle contexts at the same time instant. An assessment

tool has to be capable of de�ning di�erent metrics set with di�erent weights and reference values on

the basis of the measuring context.

Usually, a metric may present a high number of components, but not all the terms may have the same

relevance in each Life-Cycle Context. By using statistic tools, it is possible to verify the correlation of

the whole metric with respect to the real data, but also the in
uence of each metric term with respect to

the collected e�ort, maintenance or other real data. Thus, the validation process may prove or disprove

10

that the terms selected for de�ning the metrics are related or not to the feature to be estimated by

the metric itself. In this way, a process of re�nement can be operated in order to identify the metric

terms which are more signi�cant than the others for obtaining the indirect measure [Dunteman 1989],

[Fioravanti et al. 1999a].

The main features of TAC++ can be divided in two areas (see Fig.1).

Figure 1: TAC++ general architecture and components.

The �rst includes the estimation, the de�nition, the validation and the tuning of metrics. During

the validation and tuning, reference values and weights are identi�ed. The estimation phase includes

the evaluation of code metrics and the collection of data from other sources: documents, time sheets,

etc., by means of the Collector.

The second part includes the interpretation of results by means of the support of several diagrams

and their related reference values and shapes according to rules and guidelines. In addition, in order to

reduce the complexity and the e�ort for general system assessment an algorithm to semi-automatically

perform the system assessment is discussed. These features are implemented in the so-called Assessment

Assistant.

The next Sections report details about the part of the tool TAC++ related to metric estimation,

tuning and validation. During the presentation of TAC++ components several guidelines to work

with metrics are reported: (i) for metric estimation, validation and tuning; (ii) for the adoption of

thresholds, reference values, diagram selection, application, interpretation for detecting problems from

11

the assessment results.

These guidelines help the users to work with TAC++ and to navigate on the huge amount of

information produced during the assessment. These guidelines can be regarded as a sort of assessment

methodology derived by the authors on the basis of their experience in assessing and managing several

projects, in which the methodology has been used with a management methodology [Nesi 1998], and

validated against several real projects. It can be used as a basis for taking decisions during the system

development. The aspects and components related to the �rst area are discussed in the next Section,

while aspects related to visualization and interpretation of results are reported in Section 5.

4 TAC++: Metric Estimation, Tuning and Validation

In Fig.1, the relationships among the main entities of TAC++ tool for metric de�nition, estimation,

validation and tuning are reported. This part of the TAC++ tool is comprised of several tools for: (i)

evaluating Low Level Metrics, LLMs, LLM Evaluator; (ii) de�ning and evaluating High Level Metrics,

HLMs, HLM Evaluator, HLM Editor; (iii) statistically analyzing data for validating and tuning metrics,

Validator; (iv) collecting real data by programmers and subsystem managers, Collector.

4.1 Low Level Metrics and Data Collector

The estimation of Low Level Metrics, LLMs, is performed on the basis of the system sources considering

relationships of is a, is part of, is referred by. LLMs are simple metrics that can be estimated by

counting requirements (e.g., functionalities, input/output links) or code features (e.g., tokens, lines of

code). To this purpose, in the literature several metrics have been proposed as discussed in the previous

section { e.g., NA, NM , NAL, NML, NCL, NRC, Method LOC, number of protected attributes,

etc. In addition to these simple metrics, an abstract description of each class is extracted from the

code. The abstract description includes all aspects of class de�nition and code metrics related to the

implementation of methods. In this way, more complex measures can be performed by considering such

information.

In this phase, the main interface of the tool is a class browser by means of which the users can

navigate on class hierarchies to edit classes and to inspect them (see Fig.2). The browser shows

the list of classes with a concise description of their relationships: the class hierarchy, the list of

methods, etc. By selecting a class and an its method, the corresponding method code is directly

available in separate editing windows. The hierarchy tree window uses the following notation: <

ClassName > x; y; z[(OtherParents)], where ClassName is the name of the class under analysis, x is

level number in the hierarchy tree, y is the Number of SUPer classes (in the case of multiple inheritance

the OtherParents, which indicate other father classes names, are reported; in that case y and x can

be di�erent), and z shows the Number Of Children. The Methods window gives information about

the method structure according to the following terms: [X < listoffeatures >]MethodName, where

MethodName is the name of the method, X (if present) indicates if the method is a constructor (with

c), destructor with d, or virtual de�nition from parents (methods) with v, and �rst virtual method

de�nition with V . The list of features includes: a number n for stating the inheritance level number of

12

the method, d for locally declared methods, i for implemented methods, and ? for not-yet Implemented

methods.

Figure 2: TAC++ Browser.

In order to control the development process, several other measures that cannot be produced from

the source codes have to be collected. The typical information collected relates to the e�ort in terms

of hours of work for each class of each project, the storing of defects and the e�ort for their solution

(corrective maintenance), e�ort for porting, e�ort for analysis, e�ort for design, log of testing, e�ort

for documenting, the number of pages produced, etc. This information is stored in a database for its

further analysis and for metric validation of tuning. The validation process may lead to unreliable

results if the real data are badly collected. For instance, they may be a�ected by systematic errors {

e.g., considering time for class design and coding and not for the system analysis; considering in certain

cases the time spent for documenting, and/or in other cases for testing, etc. In order to reduce these

problems a formally guided data Collector has been implemented. It constrains the team members to

�ll a questionnaire each working day for collecting real data. To �ll the questionnaire via WWW is

faster and light. In our case, a Java application has been implemented, Collector.

13

4.2 High Level Metrics

Working with metrics for controlling systems' evolution is very important to support the de�nition

of new metrics for automating their estimation. The de�nition of new metrics is typically based on

reasoning of good sense, or on the analysis of questionnaires targeted to highlight dependencies among

system features and metrics that can be estimated by processing code, data de�nitions or documentation

{ e.g., e�ort of development with complexity, e�ort for coding with size, e�ort of maintenance with

volume, quality with complexity, quality with cohesion, reusability with interface complexity. (see for

example GQM [Basili et al. 1994]).

In TAC++, High-Level Metrics, HLMs, can be de�ned and evaluated. For this purpose, a visual

HLM Editor has been created for de�ning HLMs. Simple HLMs can be de�ned according to the

following structure comprised of one or more additive terms:

< NewMetricName >= WR1R1
WU1

P
x U1

WD1

P
xD1

+ :::+WRnRn
WUn

P
x Un

WDn

P
xDn

; (4)

where:

� < NewMetricName > is the name given to the new metric;

� Wmi are weights that can be imposed on the basis of the company experience or estimated via

a validation/tuning process (see in the following section). Di�erent values of weights have to be

estimated and collected according to the measuring context on the basis of previous projects;

� x is the context in which the sum is performed { for instance (i) on all class attributes, (ii) on

all class methods, (iii) on all system classes. Each sum can be set to operate by using the value

of a single metric or imposed to be equal to 1. These metrics can be at class, system or method

levels.

� Ri, Ui, Di are LLMs or already de�ned HLMs;

For example, the following metrics can be de�ned with the above structure:

MCC =

PNCL
i CCi
NCL

;

MPAC = 100

PTNM
i NumberOfReferredPrivateAttributesiPTNM

j NumberOfReferredAttributesj
;

where: MCC is the mean value of CC on the system; NCL the number of system classes; MPAC

method private attribute cohesion; TNM total number of methods in the system.

Once both LLMs and HLMs are evaluated, the results can be used for assessing the system under

control. Please note that, most of the above mentioned direct metrics can produce draft results even

when only the class de�nition is available, such as in the early analysis (e.g., NAM , Size2 and CC).

This can be very useful for predicting �nal values of these metrics and, thus, for predicting the �nal

product characteristics.

14

Both LLMs and HLMs are collected in the same data �les. Moreover, the tool is capable of exporting

the data in: (i) tabular form for their import on spreadsheets, (ii) HTML format for making them public

towards the development group and for browsing the results according to the hierarchical structure of

the system.

4.3 Metric Validation and Measuring Context

Metrics must be validated before their use to get results. The goal of the validation process is to

demonstrate that the metrics can be suitably used as measures for estimating certain system/process

features. The techniques adopted are typically based on statistical methods. The validation process

has to produce con�dence values (e.g., correlation, variance, uncertainty interval) for the metric in a

given measuring context (see in the following for its de�nition).

The validation module is used for validation and tuning of both LLMs and HLMs. On the basis of

the de�nition of metrics, these activities are performed by using mathematical and statistical techniques.

The processes of validation and tuning must be supported by the knowledge of real-data collected from

developers, subsystems managers and project manager accumulated by means of the Collector or other

mechanisms, such as forms.

The main component of Validator is the Statistical Analyzer. This is based on the well-known

Progress tool and is capable of estimating metric weights by means of a multilinear robust regression and

residual analysis [Rousseeuw et al. 1987], logistic regression and other statistic analyses are performed

by using SPSS (Principal Component Analysis, several tests on data, etc.). The statistical analysis

is quite far from the programmers' mindset. This is due to the fact that it is the less user-friendly

tool of the system, since the results are expressed in a numerical form and a deep knowledge of their

meanings is needed. This knowledge is not usually required for a developer, but system managers

or system controllers must be capable of interpreting and taking decisions on the basis of statistical

analysis. Since the original version of Progress tool presented only a textual interface, a graphic user

interface has been developed in TAC++ to make it user-friendly. In this way, the results can be easily

interpreted since they are graphically visualized.

TAC++ framework with its most important metrics have been used and validated during the devel-

opment of several C++ projects (both in Academic and industrial contexts) [Fioravanti et al. 1998b],

[Bucci et al. 1998], [Fioravanti et al. 1999a], [Fioravanti et al. 1998a]. Metric validation process has

been performed in order to determine which metrics must be evaluated and which components are

relevant [Nesi et al. 1998], and when metrics give good results for controlling the system main charac-

teristics.

On the basis of the validation process, metrics can be compared and, thus, chosen in order to

adopt the best metrics for the assumed measuring context. Typically, more than one metric is used for

estimating the same feature in order to get more robust results. For instance, Class de�nition LOC,

Size2, for predicting development and test e�ort since the analysis phase; and CC0, WMC for better

predicting test costs during the design and coding phases.

As was shown in the technical literature, many powerful metrics include in their de�nition weights

in order to compensate the di�erent scale factors of the terms involved and for adjusting dimensional

15

issues. These metrics are typically called hybrid metrics [Zuse 1998]. In some cases, the weights

are imposed to be unitary, while in other cases they can be �xed on the basis of tables. McCabe

cyclomatic complexity is a hybrid metric since is de�ned as the combination of edges and nodes with

unitary weight; Information
ow metric in [Henry et al. 1981], CC in this paper, metrics proposed in

[Thomas et al. 1989], [Henderson-Sellers 1991], are others hybrid measure. Even Function Points and

COCOMO metrics presents numbers that can be considered weights. Suitable values for the weights

have been evaluated before their adoption, during a validation phase (see Fig.1) in order to make

e�ective the metric estimation. Once the weights are estimated, they can be also given in speci�c

tabular forms.

Typically, the validation process is performed by means of statistic analysis techniques: multi-

linear regression, logistic regressions, etc., [Rousseeuw et al. 1987], [HosmerJr et al. 1989]. Examples

and theories about the validation process can be recovered in the following papers [Nesi et al. 1996],

[Basili et al. 1983b], [Basili et al. 1983a], [Basili et al. 1984], [Nesi et al. 1998], [Albrecht et al. 1983],

[Basili et al. 1996], [Behrens 1983], [Fioravanti et al. 1998b], [Nesi et al. 1996], [Schneidewind 1992],

[Kemerer 1987], [Li et al. 1987], [Fagan 1986], [Li et al. 1993], [Lorenz et al. 1994], [Low et al. 1990],

[Schneidewind 1994], [Shepperd et al. 1993], [Stetter 1984], [Zuse 1994], [Zuse 1998] depending on the

type of information managed.

In some cases, the validation process produces the values of the metric weights. The evaluation of

weights is a quite complex and critical task since it is based on the knowledge of real data { e.g., real

e�ort, number of defects detected. For instance, the estimation of weights for the above-mentioned

metric CC0 (see equation (2)) for e�ort prediction implies the knowledge of the e�ort. This seems to

be a contradiction; in e�ect, the weights may be estimated on the basis of the data collected during a

set of similar past projects. The estimated weights can be used for e�ort prediction in future projects,

providing that the measuring context is equivalent. The validation process may lead to unsuitable or

unprecise results if the data collected are referred to a di�erent Measuring Context.

For example, metric CCm is comprised of 6 terms (see equation (1) and Tab.2). Intuitively, t-value

is an index that establishes the importance of a coe�cient for the general model. A coe�cient can

be considered signi�cant if the absolute value of t-value is greater than 1:96 (since a high number of

measures have been used for the regression and, therefore, the statistic curve of Student t-test can be

approximated by a Gaussian curve). On the basis of t-value, the con�dence intervals can be evaluated.

p-value can be considered a probability; when its absolute value is lower than 0:05 the corresponding

coe�cient is signi�cant with a con�dence of 95 percent, [Rousseeuw et al. 1987]. Therefore, components

CIm and CMICIm are the least signi�cant in CCm metric and could be removed. The reduction of

metric components can be used for reducing the estimation e�ort and, in some cases, for increasing

correlation and reliability.

The F � test has been adopted in order to check the validity of the full regression model. In this

example the F � test con�rms that the regression results are con�dent. This claim is also con�rmed

by the high values obtained for R� squared and R� squaredadjusted that are both higher than 80%.

The R � squared is not the only measure for validating a good model, also because it is not

always available (e.g., in analog model), or does not have the same meaning (e.g., see the meanings

16

CC m = Loc

w std. error t-value p-value

CACL 0.003 0.001 2.933 0.004
CACI -0.039 0.013 -2.911 0.004
CL 0.026 0.002 11.326 0.000
CI 0.001 0.003 0.269 0.789

CMICL 0.185 0.052 3.547 .000
CMICI -0.013 0.041 -0.319 0.750
R-squared 0.851

R-squared adj. 0.832
F - stat (p-value) 91.137 (0.000)

E�-Corr. 0.924

Table 2: Results of the multilinear regression analysis for e�ort evaluation of classes by using metrics

CCLOC: values of weights and their corresponding con�dence values are reported for project LIOO.

MMRE MdMRE SDMRE MAXMRE MINMRE

91.462 42.041 136.089 673.742 1.117

Table 3: Results of the MRE analysis for the data reported in Tab.2.

in logistic regression), for other validation techniques. Another approach for assessing the predictive

power of an e�ort estimation model is the Mean Magnitude of Relative Error (MMRE), whereMRE =

100 j(Real Effort�Estimated Effort)=Real Effortj.

In Tab.3, the MMRE for data of Tab.2 are reported together with the Median Magnitude of Relative

Error (MdMRE), the Standard Deviation of MRE SDMRE, minimum and maximum MRE:MAXMRE

and MINMRE respectively.

The regression model adopted is tied to the residual analysis, and in particular to the assumption

about the distribution of residuals. The residuals should be distributed as an independent normal

random variable with zero mean and identical variance. In Fig.3 the residual distribution compared

against a Normal(0,1) is reported. The shape shows how the two distributions are close each other.

The distribution of residuals can be considered normal also because it has a mean value equal to 0; the

skewness is 0.255 (a commonly used thumb-rule asserts that the distribution is normal if the skewness

is in interval (-0.5, 0.5)); and kurtosis is close to 11 (with respect to 3 of a perfect normal) that

shows a short-tail distribution. From this analysis, a normal distribution for residual can be assumed.

Con�rming the validity of the multilinear regression performed.

4.4 Metric Tuning

Once the metrics are validated, they can be used for assessing projects for the speci�c measuring context

in which the weights have been evaluated. The same metric can be used in di�erent Measuring Contexts

with di�erent weights for similar or di�erent purposes.

Moreover, as usually occurs, the measuring context usually changes with time { for example, until

1996, ELEXA factory produced controllers for low-price machines, now they are moving to produce

high performance machines (project ICOOMM). Thus, metrics have been continuously revalidated

in order to adjust the weights for tracking the evolution of a set of products. For instance, once a

project maintained under control with CC0 metrics has reached its completion, predicted values can

be compared with collected data. Causes of di�erences have to be carefully analyzed. In general, if

17

-0,05

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

-1
7

-1
5

-1
3

-1
1 -9 -7 -5 -3 -1 1 3 5 7 9 11 13 15

5HVLGXDOV

)
UH
T
X
HQ

F\
��
�
�

Residuals

Normal(0,1)

Figure 3: Residuals distribution compared with a Normal(0,1).

project results are satisfactory, the collected data can be included into the values used for evaluating

the general weights for the given measuring context. Otherwise, corresponding corrective actions have

to be introduced.

The set of values used for evaluating the weights must be carefully analyzed in order to correctly

tune the model. For instance, the analysis of outliers and the analysis of dependencies of the metric

terms can be used.

In Fig.4, the dot diagram showing the scattering between e�ort and class complexity is reported.

In this graph, the outliers are points located out of the bound lines marking the con�dent limits

[Rousseeuw et al. 1987]. The study of the outliers (values marked with letters) has to be associated

with a deep analysis of the reasons for which those classes are far from the ideal correlation line

[Rousseeuw et al. 1987], [Barnett et al. 1985]. This could be discussed together with the metric his-

tograms. Outliers detection in single univariate sample can be easily identi�ed, in a �rst approximation,

because they are very di�erent from the others values of the sample. For more structured data, and

especially for regression models the concept of outlier should be modi�ed because it is not simply an

extreme value, but it has a more general pattern-disrupting form. The outlier in multilinear regression

models can impact largely on the model chosen for explaining data. This fact leads to take into account

outliers and robust techniques for their estimation and accommodation [Barnett et al. 1985].

4.5 Thresholds and Reference Values

In order to detect the presence of system dysfunctions, the adoption of reference values is quite fre-

quent for discriminating when a metric value describes a problem on system/component. Frequently,

systems/components are considered correct if the estimated metric value belongs to the range de�ned

within the maximum and minimum values. In some case the typical value is also given. For example,

a too high NM may mean that the class is too large and, thus, very expensive to be maintained; a

too high DIT means that the system presents a deep specialization hierarchy and, thus, it is becoming

too complex to be reused. The relationship between the metric and feature has to be proven via a

18

0

50

100

150

200

250

0 50 100 150 200 250

es
tim

at
ed

 E
ffo

rt

observed Effort

[] D

[] E

() B

() C

[] F

[] G

() A

[] H

x

Figure 4: Scattering diagram for CC (estimated e�ort) against observed e�ort (project LIOO).

validation phase.

The reference values used for detecting problems are typically set on the basis of the experience in

several validation processes. In TAC++, their estimation can be performed on the basis of a statistical

analysis of the reference projects and by considering the experience on past products. Thus, maximum

and minimum values are evaluated for each speci�c measuring context.

The adoption of reference values is surely very useful for a fast detection of degenerative conditions.

This approach is too simple when it is used on system level metrics. For example, assertions like \if

the mean value of NM for the whole system is lower than a prede�ned threshold, the costs of system

maintenance will be acceptable" have to be carefully accepted. Thus, getting an out-of-bounds for a

speci�c metric for a certain class does not mean that the class has to be surely revised. Before correcting

a problem, we have to be sure to have it. To this end, the results of a set of independent metrics have

to be compared before deciding the intervention on a class. For example, a class can be very complex,

but if it is reusable, veri�able, testable, well-documented, etc., it is better to solve other problems �rst,

if any.

5 TAC++: Results Visualization and Interpretation

In order to provide a fast and understandable view of the project status, the values obtained for LLMs

and HLMs at system, class and method levels have to be visualized in a set of speci�c views, pro�les

and histograms.

Fig.5 depicts the relationships among the main components of TAC++ tool to manage these as-

pects: View Manager, Pro�le Manager, Histogram Manager and Assessment Assistant. In the following

subsections, the features of these components are described in detail. The views, pro�les and histograms

19

are de�ned and saved according to the measuring contexts for which they have been de�ned. These

graphs can be based on the LLMs, HLMs and data collected by the Collector. For this purpose, spe-

ci�c graphic managers have been built. During the presentation of TAC++ components, guidelines

to work with interpretation tools about the adoption of thresholds, reference values, diagram selec-

tion, application and interpretation for detecting problems from the assessment results are reported.

These guidelines help the users to navigate on the large amount of information managed during the

assessment.

Figure 5: TAC++: visualization of results and the Assessment Assistant.

Di�erent members of the development team may use TAC++ for di�erent purposes. During the

development life-cycle the system manager (project manager or control manager) has also the due to

analyze the results produced by evaluating selected metrics and by comparing them with the corre-

sponding company suggested bounds (by means of pro�les). The results produced and their related

actions for correcting any di�erences with respect to the milestones planned (described in terms of the

same indicators) are normally included in the project documentation. Typical actions for correcting

20

the values of the most important indicators should also be de�ned in advance.

For each measuring context and for each view, pro�le and histogram, speci�c textual comments

should be added and shown to the user when reference values, pro�les and distribution are exceeded.

These have also to be collected in a development and management manual of the company. Even

these comments need to be maintained and tuned according to the company evolution. The Histogram

Manager can also draw normalized graphs (see Fig.5) with superimposed statistic curves in order to

easily check if the system under assessment is suitable with respect to the Quality Manual speci�cations

of the company. Typical distributions of histograms can be assumed as reference patterns by the

company. A collection of histograms among the various phases of the development life-cycle could aid

the system manager to take into account the modi�cations, from the point of view of quality pro�le, of

each class in the system.

The Assessment Assistant provides support for system assessment by means of algorithms that

reduce the complexity for inspecting the results and, thus, for detecting dysfunctions, and/or performing

in automatic manner some processes.

5.1 Views and Pro�les

Graphic diagrams, typically called views and pro�les, are needed for showing the assessment results

with respect to typical and/or limit values. Two distinct de�nitions are given for views and pro�les.

A collection of di�erent metrics representing the same or related system/class features can be used

and visualized in a single view with respect to bounds and typical values. Views are used to have an

immediate and robust �gure of system features { e.g., quality, e�ort for maintenance, e�ort for reuse,

e�ort per subsystem, e�ort per work-package. The views can be employed for monitoring aspects of

the system during its evolution, at methods, classes, and/or system levels. This is performed on the

basis of the Life-Cycle Context for which they are de�ned.

In the views, the bounds (minimum and maximum acceptable values) can be considered as the limits

out of which a further analysis (and may be a correction) should be needed. In a di�erent visualization,

minimum and maximum values can be those obtained from the whole system under analysis. In this

way, it is quite clear how the class/subsystem under assessment is referred to the whole system. In any

case, normalized graphs are used: Kiviat, star, pie, etc. In Fig.6, four Kiviat diagrams corresponding

to four classes of LIOO project are reported. In this case, the maximum values (external circles) are

evaluated on the whole system, while the dashed lines report the acceptable values estimated during

the validation and imposed on the basis of the experience.

In Fig.6, the views reported are related to classes marked as outliers in the scattering diagram of

Fig.4. From these �gures, it can be noted that most of the class features are out of the typical bounds

and that the picture in lower-right corner has, for CI , NMI , CMICI , and NAI , values close to the

maximum of the whole system. These metrics assert that the class inherits too much.

In order to unify the actions to be performed for solving problems and for accelering their un-

derstanding, brief comments describing what should be done in the case of out-of-bounds, have to be

de�ned. In order to monitor class quality in project LIOO we de�ned a view reporting values of metrics:

NA, NM , CCm, CCGI and NSUP . Other typical examples of views are: (i) a view on class e�ort

21

Figure 6: Views (Kiviat's Diagrams) of some of the outliers identi�ed in the previous scatter diagram

(project LIOO).

prediction: Size2, NAM and CC 0; (ii) a view on class e�ort estimation: CC0

m, CCm, WMC, CL,

CI , NAM and NAML; (iii) a view on e�ort prediction or estimation at system level: SC, TLOC,

NCL, NRC and mean DIT ; (iv) a view on conformity to OOP at system level: NRC, NRC=NCL,

SCm=NCL, Max(CC) and Max(NAM); (v) a view on class metrics related to re-usability and main-

tainability: NOC, NSUP , NSUB, DIT and NAI ; (vi) a view on class reusability: cognitive complex-

ity, NAM , V I (Veri�ability index) and CCGI . Typical actions to be performed when these metrics

are out of the prede�ned bounds are discussed in [Fioravanti et al. 1998b], [Fioravanti et al. 1998a],

[Bucci et al. 1998].

The number of these diagrams for the whole system may become huge and, thus, their analysis

fairly complex up to infeasible. For this reason, algorithms for navigating in the results produced by

the assessment are needed (see Subsection 5.3).

A pro�le is a diagram in which the estimations of the several direct and indirect metrics are compared

against expected values (reference value). For example, the quality pro�le de�ned on the basis of the

22

six features of the ISO 9126. In Fig.7, the expected pro�les are compared with the estimated pro�les

in a normalized scale. Pro�les are typically shown by using bars or Kiviat diagrams. Pro�les can be

used in any instant in which planned/reference measures can be compared against the actual values

(see Fig.7 on the right, in which the e�ort planned for each system task is compared with respect to

the actual e�ort). Another very important pro�le is the Product Pro�le. It includes: material costs for

each piece, general costs, market level, potential reusability, etc. The structure of pro�les (the number

and selection of aspects to be controlled) is typically �xed for all products of the factory/unit, while

the speci�c reference values may change for each product, e.g. to get a customized pro�le.

0
2
4
6
8

10
12
14

Ar
ch

ite
ct

ur
e

D
riv

er

U
se

r I
te

rf.
 S

up
.

U
se

r I
te

rf.
 C

on
f.

M
T

C
on

fig
Si

m
ul

at
or

Er
ro

r+
Al

ar
m

s
H

el
p

D
oc

um
en

ta
tio

n

Prediction

Estimation

Figure 7: On the left: project pro�le according to the ISO 9126 quality standard. On the right: project

pro�le regarding predicted and estimated e�ort for tasks in men/month; evaluation performed close to

the end of the development phase (project ICOOMM).

In TAC++, both views and pro�les can be de�ned at method, class and system levels. The structure

of views and pro�les with their reference values can be organized according to the measuring context.

Thus, actions and suggestions for solving problems in the case of detection of critical conditions can be

customized for each speci�c case. Di�erent views can be de�ned according to the needs of developers,

subsystem managers and project manager [Nesi 1998].

5.2 Histograms

At system/subsystem level, metrics can be used to analyze general system features (e.g., number of

classes NCL, number of subsystems, number of root classes NRC, system complexity SC) or as generic

system component behavior (e.g., mean CC, mean NA, mean NM and mean NCL for subsystem). In

this second case, the views are unsuitable for detecting troubles since the mean values can be within

the correct bounds, but the system may present several out-of-bounds at class level.

For this reason, it is important to analyze the distribution of each metric for the system under

assessment. For example, by using histograms: (i) the number of classes for the complexity of classes,

(ii) the number of methods for the complexity of methods, (iii) the number of classes for their CCGI ,

(iv) the number of classes for their NSUP , (v) the number of classes for their NSUB, etc.

In Fig.8, the histogram of CCGI for project LIOO is reported. It is typically recommended, for

reuse and understandability, to have classes with a CCGI close to 0.6. This allows the developers

to use the class as a \black-box". For instance, in the example, by observing CCGI histogram, it is

23

evident that the peak is close to the suggested value. Some classes with a too low metric value are

present; these classes are not observable enough and, thus, are expensive to be maintained and reused.

It is suggested to check these classes in order to verify if the high internal complexity can be justi�ed

by their role in the system. In any case, the splitting of these large classes in more classes by using the

well-known mechanism of delegation should be a good solution. It is also possible to identify classes for

which the functional complexity is too high with respect to the interface complexity (CCGI close to

0). Owing to the tool used for collecting data, classes having CC = 0 have also been collected in this

group and, thus, all classes de�ned, but not yet implemented. Classes with CCGI = 1 are structures

(according to C++) or have attributes and the external interface de�ned, but the methods are not yet

implemented.

0

5

10

15

20

25

30

35

-1 -0.5 0 0.5 1 1.5 2

N
um

be
r

O
f C

la
ss

es

Metric CCGI (early phase of development)

’CCGI1’

Figure 8: Histogram for CCGI , obtained at the �rst checkpoint (project LIOO, version 0).

Histograms are strongly useful since the adoption of bounds for detecting problems may lead to

make large errors. In fact, according to the life-cycle context some out-of-bounds for some metrics and

non well-behaved histograms (sensibly out of the reference distribution) may be accepted. For example,

during the early development phase, the presence of de�ned but not yet implemented classes has to be

accepted without considering them as wrongly implemented classes. In fact, in the early phases the

number of special cases can be too high to be manually managed. This problem frequently leads the

assessment personnel to wait for a quite complete version before starting with the system assessment.

Speci�c metrics and tools may guide the assessment personnel in these phases.

The result obtained by the scatter diagrams can be better analyzed if compared with the histogram

of the corresponding metric. In Fig.9, the histogram of metric CC (estimated e�ort), related to the

diagram of Fig.4 is shown. If the reference distribution is a Log Normal curve (as will be shown in

Section 5.3), only some of the classes that are outliers in the scatter diagram are also out of the typical

distribution histogram. In particular, classes: H, D and E should be more carefully inspected in order

to verify the reasons of the dysfunction and to de�ne action (if needed) to correct their behavior. Please

note that the other classes have not been considered as a�ected by problems since they are within the

reference histogram distribution. This means that in a system may exist few very complex classes.

24

These are typically called key and/or engine classes { [Lorenz et al. 1994], [Nesi 1998].

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250

N
um

be
r

of
 C

la
ss

es

Metric CC

Figure 9: Histogram of metric CC as the estimated e�ort, related to the scatter diagram of Fig.4,

(project LIOO).

Histograms are a powerful tool for system assessment. In order to make histograms comparable with

other systems and with reference distributions they have to be normalized. The typical distributions

of the histograms for each metric have been extracted on the basis of the projects reported in the

Introduction. Some typical distributions can be modeled as Gaussian, Log Normal curves. Normalized

histogram distributions are quite independent of the development context, while are depending on

the life-cycle context. In most cases, normalized histogram distributions are also independent of the

languages { [Fioravanti et al. 1998a], [Lorenz et al. 1994].

Please note that the above-mentioned views, pro�les and histograms are capable of analyzing the

system aspects in a given time instant, in a given life-cycle context.

In several cases, the single snapshot of the system status may produce insigni�cant �gures. This is

more critical for metrics that are very sensitive to the development life-cycle phase. The trend analysis

can be performed on metrics involved in views, pro�les and histograms, and is speci�cally needed to

verify if the evolution of metrics is reaching the expected results.

In some cases, the trend analysis can be performed for predicting future values by using some

extrapolation algorithm, e.g., for predicting the cost of designing and coding in the phase of analysis

[Fioravanti et al. 1999a].

5.3 Analysis of Assessment results

The process of system assessment may produce a huge amount of data, typically analyzed by inspecting

pro�les, views, and histograms. A manual exhaustive analysis of graphs and diagrams is a very heavy,

tedious and time consuming process. Moreover, the number of detected interventions per analyzed

graph is really low. This is due to the fact that typically the largest part of the problems is relegated

in a small system/subsystem part. For these reasons, and for the repetitive operations that have to be

performed, the probability of producing errors in identifying real problems and thus on taking decisions

25

is quite high.

In TAC++, according to the discussions performed in the previous sections, the elements manipu-

lated during the assessment can be de�ned as:

� Class 2 SubSystem, SubSystem 2 System, Class 2 System

The system can be regarded as a set of subsystems and these in turn are sets of classes. Thus,

generally, classes belong to the system, without loss of generality.

� Metrics

These are used into views, pro�les, and histograms with the associated reference bounds/distributions

and weights (if any) on the basis of the measuring context and considering the feature that is

intended to be estimated. Metrics formally hold only their de�nition since the same metric can

be used for di�erent purposes with di�erent weights.

� Profile � fmetric$ (feature; reference value; weights)g

A Pro�le is a collection of metrics related to features of class, subsystems or systems depending on

its goals and on the measuring context (with reference value and weights). A pro�le reports the

speci�c detailed features that have to be measured and their expected values along the software

life-cycle. Pro�les are more concise than views (pro�les have only a reference value), thus they

are more used at system or subsystem level.

� V iew � fmetric$ (feature; reference bounds; weights)g; fview suggestionsg

A View is a collection of metrics related to features of classes, subsystems or systems depending

on the view goals and on the measuring context. Reference bounds and weights depend on the

measuring context and include minimum, maximum and typical values. A view identi�es the

speci�c detailed features that have to be measured and their expected values along the software

life-cycle. The views are a more general and powerful working tool than pro�les and thus can be

used in their place without restriction, but not the vice versa. For each view, a set of suggestions

can be associated with the presence of out-of-bounds on a set of its metrics. These suggestions

can be modi�ed by the end-users. The suggestions cannot be associated with metrics since their

meaning is context dependent and may depend on more than one metric.

� Histogram � metric$ (reference distribution; weights); fhistogram suggestionsg

A Histogram reports the distribution of the metric behavior on the whole system/subsystem. For

each histogram, a set of suggestions can be associated with the presence of out-of-distribution.

These suggestions can be changed by the end-users. The suggestions cannot be associated with

metrics since their meaning is context dependent.

For system level assessment, speci�c pro�les are typically de�ned for annualizing e�ort, quality,

etc. The collection of features analyzed via metrics depends on these pro�le goals. These are typically

mean values of class metrics (mean CC, mean NAM , mean NAML, mean CCGI , etc.) or structural

26

consumptive metrics (NRC, NCL, SC, etc.). In the assessment phase, the estimated values are

compared with the reference values (the reference pro�le).

The detection of a problem (a relevant di�erence between expected and estimated value) by means of

a system level metric may be considered as an alarm for the system life-cycle process. Once detected

at system level, the same or a corresponding problem may be found into one or more subsystems. On

the other hand, the lack of detectable problems in the system (subsystem) pro�le/view may make the

general manager satis�ed but does not guarantee the lack of problems in the subsystems (classes). This

fact constraints subsystem managers and quality control personnel to analyze all system classes with

speci�c views in systematic manner to look for problems.

At system level, the presence of out-of-bounds can be identi�ed by de�ning speci�c consumptive

metrics for reporting problems at systems (subsystem). These can be based on the results produced

at lower level, subsystem (class). This can be obtained by de�ning metrics such as: maximum value of

CC among the system (subsystem) classes, maximum value of NAML among the system (subsystem)

classes, etc. This kind of consumptive metrics are useful for the fast automatic detection of out-of-

bounds; on the other hand, they are too simple since the presence of out-of-bounds does not always

imply the needs of intervention; thus a further inspection at class level is consequently needed. On the

other hand, metrics based on the mean value of class level metrics are totally unuseful since a correct

mean value may hide a lot of undesirable instances of unsatisfactory values.

In the following, an algorithm for partially automating the assessment process is proposed. It has

been de�ned for automatically combining results coming from views and histograms. This reduces the

number of views that have to be analyzed during the assessment. The algorithm has been implemented

into the so-called Assessment Assistant inside the TAC++ tool.

5.3.1 Assessment Assistant Algorithm

Once de�ned the views with their metrics on the basis of the experience and by using the results of

validation phases, the set of views and related histograms can be used for system assessment in a

systematic manner.

For example, if the assessment of a (sub)system is based on 4 views with 6 metrics each, and

it has 1000 classes, then the tool for system assessment has to estimate 24000 metric values. Their

estimation is not a problem with the support of suitable automatic tools, but a real-time estimation is

frequently needed for small projects or subsystems. The main problem is that system classes have to

be analyzed by specialized personnel via 4000 Views, 4 views per class. The computational complexity

of an exhaustive analysis by means of views is an O(C V M) (considering the comparison with the

reference value as the dominant operation); where: C is the number of classes per (sub)system, V the

number of views per class, M the mean number of metrics involved in each view. Please note that

a metric can be used in di�erent views for di�erent purposes, with di�erent bounds. Thus, in these

conditions, the complexity of the assessment process is too heavy to be performed in short time and

without errors. A partial screening of the 4000 views can be performed by considering as classes that

need of a further analysis only those having more than � metrics out of the suggested bounds (for

instance, with the number of out-of-bounds bigger than a value, �). The value of � can be tuned

27

according to the goals used.

In order to make easier and faster the assessment process, an algorithm has been de�ned and

implemented. The main idea behind the algorithm is the adoption of the histogram as the main

vehicle for detecting problematic classes. According to the above numerical example, the histograms

to be analyzed are only 24. In order to make histograms of a (sub)system comparable with those of

other (sub)systems and with the reference distributions they have to be normalized (see Fig.10). The

normalization has to be performed on both axes on the basis of the total number of classes. To this end,

in the histogram: (i) X-axis is divided in a number of categories for collecting classes having similar

metric value and ranges from 0 to the maximum of the metric in the (sub)system or to the maximum

number of categories; (ii) Y-axis ranges from 0 to 1, from 0 classes per category to 1 when all classes

belong to the same category. It is possible to pass from the category to the metric value by using

the scale factor, F . In Fig.10, each graph presents the histograms of the same system in two di�erent

phases. The project LIOO has been totally reused into project MOODS and thus has changed name.

Observing the graphs, the evolution of the histogram distributions is clear.

The typical distributions of the histograms for each metric have to be extracted on the basis of

reference projects and can be modeled as Gaussian, Log Normal curves, etc. depending on the metric.

The reference distribution de�nes the percentage (and thus the number) of classes that may belong to

a certain category. This may present the metric value in a certain range. Normalized histograms may

present several classes out of the histogram distribution in the correspondence of their mean value or

close to the zero. These classes may be considered correct depending on the metrics used.

In order to verify if the sample data for each distribution can be generated from a standard distribu-

tion like a Normal or LogNormal, the Kolmogorov-Smirnov One Sample Statistic has been adopted. For

this test the null hypothesis, H0, consists in assessing that the samples can be drawn from a prede�ned

distribution, while the alternative hypothesis, H1, asserts that it is not possible to draw the samples

from the chosen distribution. In particular, the signi�cance level for rejecting the null hypothesis has

been imposed to 0.05. Under this condition for a number of samples equal to 116 (LIOO, version 3)

the critical Distance for rejecting H0 is D=0.124, while for a number of samples equal to 186 (MOODS,

version 1) is D=0.098. Values lower or equal than those reported con�rm that data can be considered

as belonging to the supposed distribution. In Tab.4, the values related to the validation of the typical

histogram distributions are reported. With the same technique, it has been demonstrated that his-

togram distributions depend on the development and life-cycle context as shown in Tab.4 where the

results of the Kolmogorov-Smirnov test on the distributions of LIOO (version 3) and MOODS (version

1) have been reported. For the test, the H0 hypothesis states that the two samples are drawn from the

same distribution; then, H1 states that the distributions are di�erent. H0 has been rejected, and then

the distribution are di�erent (D = 0:37 and p-val=0.0000). This is mainly due to the di�erent mean

values that distributions provide.

According to the histogram distribution, some classes are considered correct even if they present

values typically out of the imposed bounds for the metric. This is due to the fact that histograms

evaluate the distribution of the metric value in the system and, thus, classes under the �rst part

of distribution tails are considered as belonging to the general system behavior and not a�ected by

28

&&*,

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.999999 1

LIOO3

MOODS1

Normale

&&

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

LIOO3

MOODS1

LogNormal

1683

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5 6 7 8 9 10

LIOO3
MOODS1
LogNorm 1$0

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

LIOO3

MOODS1

LogNorm

&/

0

0.1

0.2

0.3

0.4

0.5

0.6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

LIOO3

MOODS1

LogNorm

&,

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

LIOO3

MOODS1

LogNorm

Figure 10: Each histogram contains the distribution estimated for project MOODS (version 1) and LIOO

(version 3) and the reference distribution for the context of LIOO, version 3. Please consider scale factors F

reported on Tab.6 for estimating the metric values.

problems. On the other hand, the adoption of simple bounds on the metric value marks these classes as

a�ected by problems. According to our experience, both the approaches can be used. The combination

of both the techniques is a more robust approach to identify classes that surely need an intervention.

The algorithm reported in Fig.11 has been de�ned and implemented in TAC++ for processing

the results of the assessment in order to identify in automatic manner the classes that have relevant

problems. As already stated, we consider as relevant problems those which lead classes to be out-of-

bound in the view and out-of-distribution in the corresponding histogram. This means that the class

metric presents unacceptable value and that in the distribution the class belongs to a category out of

typical histogram distribution.

The system is analyzed on the basis of the measuring context (context plus phase plus level in the

algorithm). On this basis, a set of Views are identi�ed (as above de�ned) with their corresponding

29

Metric Distribution Type project version Mean-Value Std. Dev. distance D p-value
CCGI Normal LIOO 3 0.59 0.15 0.1030 0.161
CCGI Normal MOODS 1 0.63 0.21 0.0936 0.072
NAM LogNormal LIOO 3 1.59 0.45 0.1218 0.059

Table 4: Data of metric distributions validated with Kolmogorov-Smirnov statistic test. The values of

mean and standard deviation are those that allow obtaining a p-value for the corresponding project for

demonstrating that the distribution can model the data.

metrics and reference values. From these Views all the related Metrics are extracted.

In a �rst phase, the histograms of these metrics are automatically inspected in order to exact the

classes which are out of the reference distribution, ClassesOutOfDistrib[m], for each metric, m, in at

least a histogram. To work only with out-of-distribution classes is a relevant reduction with respect to

the analysis of all classes. The extraction of out-of-distribution classes, with ExtractClasses(), has to

be based on the knowledge of a reference distribution for the histogram, and is performed by extracting

classes that belong to categories in which the number of classes is too high with respect to the planned

value of the reference histogram distribution.

In the second phase, each class of the union of all ClassesOutOfDistrib[i] is analyzed to verify if

it provides out-of-bounds in the views and if these are also out-of-distribution. To this end, for each

view the metrics out-of-bounds, MetricsOutOfBounds, are extracted. Then, for each class metric it is

veri�ed if the class is also out-of-distribution. With this process, for each class and view the set of

CriticalMetrics which are both out-of-bounds and out-of-distribution are extracted. Finally, if the

number of critical metrics in the view is bigger than � the algorithm considers the class as a�ected by

a problem and thus suggested actions are searched in both the related view and histogram repositories.

The user can customize the corrective actions. Suggested by the Assessment Assistant and the related

rules for their presentation.

The second phase of the algorithm has a computational complexity which is an O(KOD V M);

where KOD is the number of classes which have at least an out of histogram distribution. The global

complexity of the algorithm is lower than the complexity obtained for the systematic analysis based

on classes. It is an O(C V M); since typically, KOD � C. The algorithm takes advantage from the

reduction of the number of classes to be analyzed and avoids the inspection of all views for each class.

The methodology and algorithm have been used in several assessment phases in the projects men-

tioned in the introduction. After a validation phase, the algorithm has been also implemented in the

Assistant Assessment of TAC++ tool. In the next subsection, an example of the adoption of the

Assistant Assessment for a real project is reported.

5.3.2 Working with the Assistant Assessment

The following example is mainly referred to project LIOO version 3. In this case, 4 views have been

used. The �rst view includes metrics related to: development e�ort (CC, CL, CI andNAM), hierarchy

(NSUP) and comprehensibility (CCGI); e�ort prediction or estimation at system level: SC, TLOC,

30

8 SubSystem 2 System
begin
level = SubSystem:AnalysingLevel(Who);
context = SubSystem:DevelopmentContext(level);
phase = SubSystem:LifeCyclePhase(level; context);
V iews = V iewRepositor:Select(level; context; phase);
Metrics =Metrics:Extract(V iews);

8 i 2Metrics ClassesOutOfDistrib[i] = ;;
8 m 2Metrics
begin
histogram = SubSystem:Histogram(m);
ClassesOutOfDistrib[m] = ClassesOutOfDistrib[m] [histogram:ExtractClasses(level; context; phase);
endbegin

8 class 2
SMetrics

i
ClassesOutOfDistrib[i]

begin
8 view 2 V iews
begin
CriticalMetrics = ;;
MetricsOutOfBound = view:Check(class);
8 metric 2MetricsOutOfBound
begin
if class 2 ClassesOutOfDistrib[metric] then
CriticalMetrics = CriticalMetrics [metric;
endif

endbegin
if NumberOf(CriticalMetrics) > � then
ActionSuggested = view:CorrectiveAction(CriticalMetrics);
8 metric 2 CriticalMetrics
begin
histogram = metric:getHistogram(level; context; phase);
ActionSuggested = ActionSuggested [histogram:CorrectiveAction(metric);
endbegin

InteractiveV isualization(class; ActionSuggested);
endif

endbegin
endbegin

endbegin

Figure 11: Assistant Assessment algorithm for automating the result screening and understanding.

NCL, NRC and mean DIT ; conformity to OOP at system level: NRC, NRC=NCL, SCm=NCL,

Max(CC) andMax(NAM); re-usability and maintainability: NOC, NSUP , NSUB, DIT and NAI ;

for a total of 21 di�erent metrics in the 4 views.

The following data has been obtained by using the above-presented algorithm for system assessment.

The example has a relevance only for showing the evolution of the number of classes identi�ed as needing

intervention and not for the speci�c values used for the metrics. These may have a relevance only for

the speci�c measuring context used.

In Tab.5, the number of classes that have been detected out-of-bounds for each metric in project

LIOO (version 3), KOB, are reported. The reference bounds used in the above-mentioned �rst view for

identifying classes that may need a further inspection are reported: minimum and maximum values.

The bounds depend on the measuring context. In this case, the project was assessed in the �rst part

31

of its development life-cycle. The bounds are typically very strict (close to the typical mean values)

with respect to the bound values which are used for the same metrics in the case of the class selection

only via out-of-bounds (see the second part of the table). Please note that when large bound values

(distant from the typical mean value) are used, a lower number of classes are selected. Large bounds

are typically used for reducing the number of classes to be inspected. Moreover, the bounds have to be

substituted with strict bounds when the algorithm is used to identify classes with problems by using

both bounds and distributions.

strict bounds, project LIOO ver.3
Metric minimum maximum KOB

CCGI 0.5 0.70 49
CC 0.0 600.0 32
NSUP 0.0 4 1
NAM 0.0 50 31
CL 0.0 400.0 8
CI 0.0 600.0 9

large bounds, project LIOO ver.3
Metric minimum maximum KOB

CCGI 0.5 1 31
CC 0.0 1500.0 16
NSUP 0.0 5 0
NAM 0.0 90 21
CL 0.0 700.0 5
CI 0.0 1200.0 1

Table 5: Number of identi�ed out-of-bounds classes per metric (�rst view) for project LIOO (ver. 3)

and related bounds: above the bounds corresponding to correct measuring context; below the large

bound values which are typically used in simple approaches based only on out-of-bounds.

In Tab.6, the data of the reference histogram distributions for the metrics related to a view used

in the example are reported. Each reference histogram distribution is de�ned on the basis of its basic

curve (Hist.Distribution in the table), mean value, standard deviation, and the scale factor, F . In

this context, F can be used for interpreting the graphs reported in Fig.10. The correlations have been

estimated by considering the distribution of metric values in the system and the reference distributions

reported in Tab.6. The table reports also the number of classes that have been detected to be out of

the reference distribution for each histogram (metric in the view) in project LIOO version 3, KOD.

histogram distributions parameters, Project LIOO ver.3
Metric Hist.Distribution mean value Std. Dev. F KOD Correlation With Distribution
CCGI Norm 0.6 0.1 1 64 0.86
CC LogNorm 1.0 0.3 100 32 0.84
NSUP LogNorm 1.0 0.45 1 0 0.86
NAM LogNorm 1.4 0.4 10 28 0.79
CL LogNorm 0.6 0.8 20 18 0.81
CI LogNorm 1.0 0.5 50 28 0.85

Table 6: Number of identi�ed out-of-distribution classes for the metrics related to the �rst view for

project LIOO (version 3); and related mean values and standard deviations.

Typically, classes presenting 1 or more out-of-bounds or out-of-distributions in the selected view

metrics are considered as problematic and thus they need a further inspection. This approach, in most

cases, produces a too high number of classes that have to be inspected. In order to reduce this high num-

ber of classes (thus, the e�ort for their analysis) the metric bounds are typically enlarged (see Tab.5).

On the other hand, in this manner, classes with problems (that need to be furtherly inspected) risk to

32

pass the selection without any problem, leaving the system to grow towards degenerative conditions.

By using the above-presented algorithm, this problem is strongly reduced. This has been veri�ed

by observing the e�ects of di�erent criteria for selecting critical classes, as reported below against the

results produced by an exhaustive analysis. The Number of Selected Classes, NSC, to be inspected

and revised can be estimated on the basis of di�erent criteria, that are the Detection Metrics:

NSC(DMi) =
NCLX
c

gc(DMi; �);

where: gc(DMi; �) is a function of the generic detection metric, DMi, and threshold �, on a view of

class c:

gc(DMi; �) =

�
1 if DMi > �
0 else

:

DMi can be a detection metric considering the Out-of-Bounds, OB, or the Out-of-Distributions, OD.

Di�erent Detection Metrics have been de�ned as reported in Tab.7, where: OBm states if metric m is

out-of-bound or not, ODm states if metric m is out-of-distribution or not, and function istrue() return

a value equal to 1 if its parameter is out. In Tab.7, the following detection metrics have been de�ned:

DMOB for counting the number of metrics of out-of-bounds in a class view; DMOD for counting the

number of metrics of out-of-distribution in a class view; DM^ for counting the number of metrics which

are out-of-bounds and out-of-distribution for the same class view; DM_ for counting the number of

metrics which are out-of-bounds or out-of-distribution for a class view; DM+ for counting the number

of metrics which are out-of-bounds plus those which are out-of-distribution for a class view. Therefore,

with NSC() is possible to count critical conditions according to di�erent detection criteria.

View with 6 metrics

DM metric de�nition CC CL CI NAM NSUP CCGI value
DMOB =

P
m2V iew

istrue(OBm) out in out out in out 4
DMOD =

P
m2view

istrue(ODm) out out in out in in 3
DM^ =

P
m2V iew

istrue(OBm ^ ODm) out in in out in in 2
DM_ =

P
m2V iew

istrue(OBm _ ODm) out out out out in out 5
DM+ = DMOB +DMOD 2 out out out 2 out in out 7

Table 7: De�nition of Detection Metrics and a counting example for a View with 6 metrics, form = 1::6:

CC, CL, CI , NAM , NSUP , CCGI .

In Tab.8, the data related to the application of detection metrics in the counting of NSC have

been combined as a function of � for the �rst view of LIOO project, version 3; where the percentage of

saving for the generic Detection Metric, DMi, is estimated by using:

percentage of saving(DMi) =
NSC(DM+)�NSC(DMi)

NSC(DM+)
100:

When NSC(DM+) is used as the main criterion for detecting classes that need a further analysis,

a larger number of classes are identi�ed. If this approach for identifying classes with problems is

performed on all views a very large percentage of classes are selected, in the above case we reached the

93%. This very high number of classes is obviously impossible to be managed and has no sense. This

33

� NSC(DMOB) NSC(DMOD) NSC(DM^) NSC(DM_) NSC(DM+) % of saving (DM^)
0 53 79 45 87 87 48
1 34 50 29 54 59 51
2 26 25 15 28 40 62
3 14 11 11 23 31 64
4 2 5 1 6 26 96
5 1 0 0 1 24 100
6 0 0 0 0 14 100
7 0 0 0 0 11 100
8 0 0 0 0 6 100
9 0 0 0 0 1 100
10 0 0 0 0 1 100

Table 8: Number of selected classes, NSC(DMi), as a function of � for the �rst view: project LIOO

version 3 with 116 classes.

e�ect is also present (even if in lower manner) when large bound values are used. The percentage of

saving for the DM^-based solution has been estimated with respect to DM+-based solution since this

is the typically used approach for selecting classes that need a further inspection.

From the table, it is clear that it is possible to obtain a number of selected classes, NSC(DM+),

comparable with that obtainable by using a di�erent value of � or by using di�erent values for bounds

by NSC(DMOB) or NSC(DMOD). On the other hand, these last detection metrics for identifying the

critical classes are not equivalent, they share great part of the same classes but not all as it can be seen

comparing NSC(DMOD) and NSC(DMOB).

A di�erent approach is to consider the operation of conjunction and disjunction for identifying

the number of selected classes. For higher values of �, a higher percentage of saving (in terms of

classes to be analyzed) is obtained by using DM^ instead of DM+. This distribution is also present

when the percentage of saving is estimated with respect to either NSC(DMOB) or NSC(DMOD) or

NSC(DMO).

Therefore, the more restrictive detection metric is DM^. In this case, an � = 3 was considered

and thus 11 classes were analyzed. Among these, we discovered that only 3 classes were a�ected by

real design problems. These classes were the same classes identi�ed by quality control personnel by

performing a manual exhaustive analysis of views. Only two of these classes were included in those

identi�ed by NSC(DMOB) or by NSC(DMOD) for � = 4. Similar results have been obtained for other

projects mentioned in the introduction. For this reason, it is convenient to adopt an � equal 2 or 3,

obtaining a time saving of about 40 % with respect to working only with bounds or distributions and

about a 90 % with respect to the exhaustive analysis.

6 Conclusions

The tool described in this paper has been developed during the last years during the assessment and

control of several industrial and Academic projects. Some of these have been multipartner ESPRIT

projects { e.g., ICCOC ESPRIT HPCN, MOODS ESPRIT HPCN, MUPAAC ESPRIT HPCN. During

the last few year, a tool has been pro�tably used for both metrics and system assessment. Together with

34

the tool we identi�ed a collection of guidelines and suggestion that can be considered a sort of modus

operandi to work with metrics in order to detect analysis and design problems, and for e�ort estimation

and prediction. Operatively, the methodology provides a set of diagrams: views, pro�les and histograms

and the strategies for their adoption and the corresponding guidelines for their interpretation. The

methodology and related visualization facilities are fully supported by TAC++ tool. In the paper,

some suggestions to avoid confusion and time consuming in processing results and choosing metrics for

views and pro�les have been also given. The authors' experience in interpreting assessment results and

de�ning a methodology for product assessment along its life-cycle has been reported. By interpreting

the suggested diagrams in the proposed manner a clear picture of the system under assessment can be

obtained, and the detection of system dysfunction during the development life-cycle is possible and fast.

The assistant assessment algorithm has been pro�tably adopted reducing the detection and intervention

time.

Acknowledgements

The authors would like to thank all the members of TAC++ team and the many other people

involved in its development. Deep thanks also to the many people involved in the several projects

managed by one of the authors. A special thank to B. Pages for an early version of the class browser.

A particular thank to Prof. G. Bucci for his suggestions and encouragement.

References

[Albrecht et al. 1983] A. J. Albrecht and J. E. Ga�neyJr. Software function, source lines of code, and

development e�ort prediction: A software science validation. IEEE Transactions

on Software Engineering, 9(6):639{648, Nov. 1983.

[Barnett et al. 1985] V. Barnett and T. Price. Outliers in Statistical Data. John Wiley & Sons, USA,

1985.

[Basili et al. 1983a] V. R. Basili and D. H. Hutchens. An empirical study of a syntactic complexity

family. IEEE Transactions on Software Engineering, 9(6):664{672, Nov. 1983.

[Basili et al. 1983b] V. R. Basili, R. W. SelbyJr, and T.-Y. Phillips. Metric analysis and data val-

idation across fortran projects. IEEE Transactions on Software Engineering,

9(6):652{663, Nov. 1983.

[Basili et al. 1984] V. Basili and D. M.Weiss. A methodology for collecting valid software engineering

data. IEEE Transactions on Software Engineering, 10(6):728{738, 1984.

[Basili et al. 1994] V. Basili, C. Caldiera, and H. D. Rombach. Goal question metric paradigm.

Encyclopedia of Software Engineering (Marciniak, J.J., ed.), John Wiley & Sons,

1:528{532, 1994.

[Basili et al. 1996] V. R. Basili, L. Briand, and W. L. Melo. A validation of object oriented design

metrics as quality indicators. IEEE Transactions on Software Engineering, pages

751{761, Oct 1996.

35

[Behrens 1983] C. A. Behrens. Measuring the productivity of computer systems development

activities with function points. IEEE Transactions on Software Engineering,

9(6):648{652, Nov. 1983.

[Bellini et al. 1999] P. Bellini, F. Fioravanti, and P. Nesi. Managing music in orchestras. IEEE

Computer, pages 26{34, September 1999.

[Booch 1996] G. Booch. Object Solutions, Managing the Object-Oriented Project. Addison-

Wesley, Menlo Park, California, USA, 1996.

[Briand et al. 1998a] L. Briand, J. W. Daly, V. Porter, and J. Wurst. A comprehensive empirical

validation of product measures for object oriented systems. Technical report,

Technical Report ISERN-98-07, ISERN, Germany, 1998.

[Briand et al. 1998b] L. Briand, J. Wurst, S. Ikonomovski, and H. Lounis. A comprehensive inves-

tigation of quality factors in object oriented designs: an industrial case study.

Technical report, Technical Report ISERN-98-29, IESE-47988e, IESE, Germany,

1998.

[Briand et al. 1998c] L. C. Briand, J. Wust, J. W. Daly, and D. V. Porter. Exploring the relationships

between design measures and software quality in object oriented systems. Journal

of Systems and Software, 1998.

[Briand et al. 1999a] L. C. Briand, J. W. Daly, and J. K. Wust. A uni�ed framework for coupling

measurement in object oriented systems. IEEE Transactions on Software Engi-

neering, 25(1):91{120, January/February 1999.

[Briand et al. 1999b] L. C. Briand, J. Wust, and H. Lounis. Using coupling measurements for impact

analysis in object oriented systems. In Proc. of the IEEE International Conference

on Software Maintenance. IEEE Press, Sept. 1999.

[BritoeAbreu et al. 1995] F. BritoeAbreu, M. Goulao, and R. Esteves. Toward the design quality evaluation

of object oriented software systems. In Proc. of 5th International Conference on

Software Quality, Austin, USA, Oct. 1995. McLean.

[Bucci et al. 1998] G. Bucci, F. Fioravanti, P. Nesi, and S. Perlini. Metrics and tool for system

assessment. In Proc. of the IEEE International Conference on Complex Computer

Systems, pages 36{46, California, USA, August 1998.

[Butera et al. 1998] F. Butera, B. Fontanella, P. Nesi, and M. Perfetti. Reengineering a computerized

numerical control towards object-oriented. In Proc. of the 2nd Euromicro Con-

ference on Software Maintenance and Reengineering, Florence, Italy, 8-11 March

1998. IEEE Press.

[Chidamber et al. 1994] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design.

IEEE Transactions on Software Engineering, 20(6):476{493, June 1994.

[Chidamber et al. 1998] S. R. Chidamber, D. P. Darcy, and C. F. Kemerer. Managerial use of metrics

for object oriented software: An exploration analysis. IEEE Transactions on

Software Engineering, 24(8):629{639, August 1998.

[Coulange et al. 1993] B. Coulange and A. Roan. Object-oriented techniques at work: Facts and statis-

tics. In Proc. of the International Conference on Technology of Object-Oriented

36

Languages and Systems, TOOLS Europe 93, pages 89{94, Versailles, France, 8-11

March 1993.

[Daly et al. 1995] J. Daly, J. Miller, A. Brooks, M. Roper, and M. Wood. Issues on the object-

oriented paradigm: A questionnaire. Technical report, Dept. of Computer Sci-

ence, Univ. of Strahclyde, UK, RR-95-183, June 1995.

[Dunteman 1989] G. Dunteman. Principal Component Analysis. Sage University Paper, 07-69,

Thousand Oaks, CA, USA, 1989.

[Fagan 1986] M. E. Fagan. Advances in software inspections. IEEE Transactions on Software

Engineering, 12(7):744{751, July 1986.

[Fioravanti et al. 1998a] F. Fioravanti, P. Nesi, and S. Perlini. Assessment of system evolution through

characterization. In Proc. of the IEEE International Conference on Software

Engineering, pages 456{459, Kyoto, Japan, April 1998.

[Fioravanti et al. 1998b] F. Fioravanti, P. Nesi, and S. Perlini. A tool for process and product assessment

of c++ applications. In Proc. of the 2nd Euromicro Conference on Software

Maintenance and Reengineering, pages 89{95, Florence, Italy, 8-11 March 1998.

IEEE Press.

[Fioravanti et al. 1999a] F. Fioravanti, P. Nesi, and F. Stortoni. Metrics for controlling e�ort during adap-

tive maintenance of object oriented systems. In Proc. of the IEEE International

Conference on Software Maintenance, pages 483{492, Oxford, England, Sept.

1999. IEEE Press.

[Fioravanti et al. 1999b] F. Fioravanti, P. Nesi, and M. Polo Usaola. Complexity/size metrics for object-

oriented systems. Technical report, University of Florence, TR 17/99, Florence,

Italy, 1999.

[Halstead 1977] H. M. Halstead. Elements of Software Science. Elsevier North Holland, 1977.

[Henderson-Sellers 1991] B. Henderson-Sellers. Some metrics for object-oriented software engineering. In

Proc. of the International Conference on Technology of Object-Oriented Lan-

guages and Systems, TOOLS 6 Paci�c 1991, pages 131{139. TOOLS USA, 1991.

[Henderson-Sellers 1993] B. Henderson-Sellers. The economics of reusing library classes. Journal of Object

Oriented Programming, pages 43{50, July-August 1993.

[Henderson-Sellers 1994] B. Henderson-Sellers. Identifying internal and external characteristics of classes

likely to be useful as structural complexity metrics. In D. Patel, Y. Sun, and

S. Patel, editors, Proc. of International Conference on Object Oriented Infor-

mation Systems, OOIS'94, pages 227{230, London, Dec. 19-21 1994. Springer

Verlag.

[Henderson-Sellers 1996] B. Henderson-Sellers. Object Oriented Metrics. Prentice Hall, New Jersey, 1996.

[Henderson-Sellers et al. 1990] B. Henderson-Sellers and J. M. Edwards. The object oriented systems life cycle.

Communications of the ACM, 33(9):143{159, Sept. 1990.

[Henderson-Sellers et al. 1994] B. Henderson-Sellers, D. Tegarden, and D. Monarchi. Metrics and project man-

agement support for an object-oriented software development. In Tutorial Notes

TM2, TOOLS Europe'94, International Conference on Technology of Object-

Oriented Languages and Systems, Versailles, France, 7-10 March 1994.

37

[Henry et al. 1981] S. Henry and D. Kafura. Software structure metrics based on information
ow.

IEEE Transactions on Software Engineering, 7(5):510{518, 1981.

[HosmerJr et al. 1989] D. W. HosmerJr and S. Lemeshow. Applied Logistic Regression. Jhon Wiley &

Sons, New York, USA, 1989.

[Kemerer 1987] C. F. Kemerer. An empirical validation of software cost estimation models. Com-

munications of the ACM, 30(5):416{429, May 1987.

[Kemerer et al. 1999] C. F. Kemerer and S. Slaughter. An empirical approach to studying software

evolution. IEEE Transactions on Software Engineering, 25(4):493{509, July/Aug.

1999.

[Laranjeira 1990] L. A. Laranjeira. Software size estimation of object-oriented systems. IEEE

Transactions on Software Engineering, 16(5):510{522, 1990.

[Li et al. 1987] H. F. Li and W. K. Cheung. An empirical study of software metrics. IEEE

Transactions on Software Engineering, 13(6):697{708, June 1987.

[Li et al. 1993] W. Li and S. Henry. Object-oriented metrics that predict maintainability. The

Journal of Systems Software, 23:111{122, 1993.

[Lorenz et al. 1994] M. Lorenz and J. Kidd. Object-Oriented Software Metrics, A Practical Guide.

PTR Prentice Hall, New Jersey, 1994.

[Low et al. 1990] G. C. Low and D. R. Je�ery. Function points in the estimation and evaluation of

software process. IEEE Transactions on Software Engineering, 16(1):64{71, Jan.

1990.

[McCabe 1976] T. J. McCabe. A complexity measure. IEEE Transactions on Software Engineer-

ing, 2(4):308{320, 1976.

[Meyer 1990] B. Meyer. Tools for the new culture: Lessons learned from the design of the ei�el

libraries. Communications of the ACM, 33(9):68{88, 1990.

[Nesi 1998] P. Nesi. Managing oo projects better. IEEE Software, pages 12{24, July-Aug

1998.

[Nesi et al. 1996] P. Nesi and M. Campanai. Metric framework for object-oriented real-time systems

speci�cation languages. The Journal of Systems and Software, 34:43{65, 1996.

[Nesi et al. 1998] P. Nesi and T. Querci. E�ort estimation and prediction of object-oriented sys-

tems. The Journal of Systems and Software, Vol 42:89{102, 1998.

[Rousseeuw et al. 1987] P. J. Rousseeuw and A. M. Leroy. Robust Regression and Outlier Detection. Jhon

Wiley & Sons, New York, USA, 1987.

[Schneidewind 1992] N. F. Schneidewind. Methodology for validating software metrics. IEEE Trans-

actions on Software Engineering, 18(5):410{421, May 1992.

[Schneidewind 1994] N. F. Schneidewind. Validating metrics for ensuring space shuttle
ight software

quality. Computer, pages 50{57, August 1994.

[Shepperd et al. 1993] M. Shepperd and D. Ince. Derivation and Validation of Software Metrics. Claren-

don Press, Oxford, 1993.

38

[Stetter 1984] F. Stetter. A measure of program complexity. Computer Language, 9(3):203{210,

1984.

[Thomas et al. 1989] D. Thomas and I. Jacobson. Managing object-oriented software engineering. In

Tutorial Note, TOOLS'89, International Conference on Technology of Object-

Oriented Languages and Systems, page 52, Paris, France, 13-15 Nov. 1989.

[Zuse 1994] H. Zuse. Quality measurement { validation of software metrics. In Proc. of the

7th International Software Quality Week in San Francisco, QW'94, pages 4{T{2.

Software Research, 17-20 May 1994.

[Zuse 1998] H. Zuse. A Framework of Software Measurement. Walter de Cruyter, Berlin,

New-York, 1998.

Paolo Nesi received the Laurea degree in Electronic Engineering from the University of Florence,

Italy, in 1987. He is currently Associate Professor at the University of Florence, Department of Systems

and Informatics. Previously he was assistant professor at University of Florence and visiting researcher

at the IBM Almaden Research Center, USA. He received his Ph.D. in computer engineering from

University of Padoa. He has been Chair of several international conferences in the area of software

engineering. He serves in the Program and organization committees of several international conferences,

journals and book series. He holds the scienti�c responsibility at CESVIT for HPCN (High Performance

Computer and Networking). He has been responsible for several national and international multipartner

research projects, in the area of software engineering. He has published more than 110 research papers

on journals and conference proceedings. His research interests include: software assessments, metrics,

formal languages, object-oriented, reengineering and maintenance.

Fabrizio Fioravanti took his Ph.D. in Software and Telecommunication Engineering at the Uni-

versity of Florence. He obtained the Laurea degree in Electronic Engineering from the same University

in 1996. He is currently Assigned Professor on Computer Architecture at the University of Florence.

He has been actively involved in the organization of international conferences.

39

Contents

1 Introduction 1

2 Overview of Object-Oriented Metrics 4

2.1 E�ort Estimation and Prediction Metrics . 5

2.2 Metrics for Assessing System Structure and Quality . 7

3 General Architecture of TAC++ 9

4 TAC++: Metric Estimation, Tuning and Validation 12

4.1 Low Level Metrics and Data Collector . 12

4.2 High Level Metrics . 14

4.3 Metric Validation and Measuring Context . 15

4.4 Metric Tuning . 17

4.5 Thresholds and Reference Values . 18

5 TAC++: Results Visualization and Interpretation 19

5.1 Views and Pro�les . 21

5.2 Histograms . 23

5.3 Analysis of Assessment results . 25

5.3.1 Assessment Assistant Algorithm . 27

5.3.2 Working with the Assistant Assessment . 30

6 Conclusions 34

A Metric Glossary 41

40

A Metric Glossary

metric comment
C number of classes per subsystem/system
CACIm Class Attribute Complexity/size Inherited
CACLm Class Attribute Complexity/size Local
CBO[Chidamber et al. 1994] Class CoGnitive Index Local
CCm[Nesi et al. 1998] Class Complexity/size
CC0m[Nesi et al. 1998] Class Complexity/size, predictive form
CCGI[Fioravanti et al. 1998a] Class CoGnitive Index
CIm Class Method complexity/size Inherited
CLm Class Method complexity/size Local, equivalent to CMm

CMICIm Class Method Interface Complexity/size Inherited
CMICLm Class Method Interface Complexity/size Local
Di generic LLM and/or HML
DIT [Chidamber et al. 1994] Deep Inheritance Tree
DM_ number of metrics which are out-of-bounds or out-of-distribution for a class view
DM^ number of metrics which are out-of-bounds and out-of-distribution for a class view
DMOB number of metrics of out-of-bounds
DMOD number of metrics of out-of-distribution
DM+ number of metrics which are out-of-bounds plus those which are out-of-distribution
Mi generic LLM and/or HML
ECD [Fioravanti et al. 1998a] External Class Description
F Scale factor for the histogram distributions
Ha [Halstead 1977] Halstead metric
KOB Number of System Classes with at least a metrics out-of-bound
KOD Number of System Classes with at least a metrics out-of-distribution
LOC number of Lines Of Code
M Mean number of metrics for each view
Max(i) maximum value of metric i among those of the system classes
Mc[McCabe 1976] McCabe ciclomatic Complexity
MCC Mean value of CC metric estimated on the system
MPAC Method private attribute cohesion
NA Number of Attributes of a class (local and inherited)
NAI Number of Attributes Inherited of a class
NAL Number of Attributes Locally de�ned of a class
NAM Number of Attributes and Methods of a class
NAML Number of Attributes and Methods Locally de�ned of a class
NCL Number of CLasses
NM Number of Methods of a class (local and inherited)
NMI Number of Methods Inherited of a class
NML Number of Methods Local of a class
NOC [Chidamber et al. 1994] Number Of Child
NRC Number of Root Classes in the system class tree
NSC() Number of Selected Classes for a further inspection based on a DM metric
NSUB [Fioravanti et al. 1998a] Number of SUBclasses of a class
NSUP [Fioravanti et al. 1998a] Number of SUPerclasses of a class
Ri generic LLM and/or HML
SCm System Complexity/size
Size2 [Li et al. 1993] Number of class attributes and methods
TLOC Total number of lines of code in the system
TNM total number of methods in the system
Ui generic LLM and/or HML
V Number of views per class
V I [Nesi et al. 1996] Veri�ability Index
WMC [Chidamber et al. 1994] Weighted Methods for Class, CLMc in our notation

Table 9: Glossary of metrics and related acronyms mentioned in this paper. Metrics with m parameter are

evaluated on the basis of a functional metric selected from: Mc, Ha or LOC; for example: CCMc Class Com-

plexity/size based on McCabe ciclomatic Complexity

41

