The complexity of Cloud infrastructures is
increasing every year, requiring new concepts
and tools to face off topics such as:

e process configuration and reconfiguration,

e automatic scaling,
 elastic computing and healthiness control.

This paper presents a Smart Cloud solution
based on a Knowledge Base, with the aim of
modeling cloud resources, Service Level
Agreements and their evolution, using our
Cloud Ontology, while enabling the reasoning
on cloud structures and implementing

Cloud Services and
Administrators

strategies of efficient smart cloud
management and intelligence.
The solution proposed is composed of

e Smart Cloud Engine, SCE

* Knowledge Base, KB

e Supervisor and Monitor module for data
acquisition.

It can be easily integrated with any cloud

configuration manager, cloud orchestrator,

and monitoring tool, since the connections

with these tools are performed by using REST

calls and XML files.

Smart Cloud
Administration

"

Cloud
Services Cloud Configuration
Final Users Manager
Orchestrator

m |
1

Interface and
Tools

30

saas () OQQQQ
paas /\ L2 7 =

DISIT Smart Cloud Architecture

=
o\ Y

DG )
‘\ = AV B 7
p g ‘

T 1

base Sérvices

Graph Se.rvir;e

F’M*miage—”‘gﬂ Base
___ onROFStoreandloD

mn

E.I.I."--'

A Knowledge Base Driven Solution for

Smart Cloud Management
P. Bellini, D. Cenni, P. Nesi

Smart Cloud Engine ¢
DU -Osenbutes Systoms ans et Tocnmoiogy Lab

New York City, USA
June 27 - July 2, 20815

11th IEEE World Congress on Services

- \‘;,“ . o % emoed) | 7
= 4
wgim ¢ * 8 o 5
A 1 7
- . &)
m) Wy
g G R ,
5 & BT & 5 =

Cloud Knowledge Graph & Cloud Ontology

http://log.disit.org

Validation & Verification
Specific SPARQL queries over the KB are

used to validate the configurations submitted,

checking the formal structure and also the
feasibility of the new configuration.

Smart Cloud Engine

periodically checks the status of the
resources in the cloud infrastructure (e.g.,
virtual machines and application services),
connects to the Knowledge Base through the
use of SPARQL queries, and invokes
appropriate REST calls toward the
Configuration Manager (CM), as defined in
the Service Level Agreement related to the
specific cloud service of interest (e.g.,
scaling, balancing, reconfiguration).

Paolo Nesi, University of Florence, Italy

paolo.nesi@unifi.it

http://www.disit.dinfo.unifi.it

http://www.disit.org/cloud_ontology/core

Experiments & Validation

The most complex SLA has 75 conditions for
an application (www.eclap.eu, a social
network with scalable frontend and backend)
using 13 VMs and running 12 services (1
HTTP balancer, 3 Web Servers, 1 Apache
Tomcat, 1 MySQL, 1 AXCP Scheduler, 5
AXCP Grid Nodes). With an history of service
metric values of about 3 months (with about
3800 measures per metric), the time needed
to evaluate a SPARQL query to evaluate the
SLA and to get the current values for the
metrics involved is of about 30s, while for a
SLA on a single VM with four conditions (with
bounds on CPU usage percentage, memory,
disk storage and network metrics) it takes
about 2.0 s.



