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Abstract. Formal techniques for the specification of real-time systems must be capable of describing
temporal constraints among events and actions: properties of invariance, precedence, periodicity, repeated
occurrences, liveness and safety conditions, etc. This paper describes an evolution of the Temporal Interval
Logic called TILCO. TILCO is a generalisation of classical temporal logics based on the operators eventually
and henceforth and allows both qualitative and quantitative specification of time relationships. TILCO is
based on time intervals and can concisely express temporal constraints with time bounds. TILCO is strongly
concise and efficient for the specification of real-time systems. In this paper, an extension of TILCO, called
TILCO-X is presented. TILCO-X proposes two new operators that increase conciseness and readability
of specifications allowing to describe (i) ordering of events without distinction between past and future,
and (ii) predicates depending on the number of occurrences of events in intervals. TILCO-X is capable of
describing specifications by using a lower number of quantifications and of nesting levels between temporal
operators. This paper defines the semantics of TILCO-X and related examples that show the power of the
model proposed.

Index terms: formal specification language, first order logic, temporal interval logic, verification and
validation, real-time systems, temporal operators.

1 Introduction

For the specification of real-time system behavior many factors have to be considered. Typi-
cally, their specification includes the definition of a set of relationships expressing the temporal
constraints among events and actions [1], [2]: properties of invariance, precedence among events,
periodicity, liveness and safety conditions, etc. To this end, many logical languages integrating
constructs for temporal reasoning — temporal logics — have been proposed; e.g., [3], [4], [3], [6],
[7]. These languages are a good support as abstract approaches for requirement specification
and real-time system analysis [8], [1].

Several different temporal logics with different degrees of expressiveness have been proposed.
Some of them are based on propositional logic — e.g., PTL [3], TPTL [9], RTTL [10], ITL [11]
— and adopt the & and O operators. Others are based on first or higher order logic — e.g.,
TRIO [12], MTL [13], interval temporal logic [14], TILCO [7]. Propositional logic is decidable,
while FOL has a greater expressive power but it is intrinsically undecidable; however, some
restrictions can be applied to make the theory both decidable and executable [15]. Higher order
logics have an even greater expressive power, but are more difficult to manipulate automatically
than simpler logics. For these reasons, the most diffuse temporal logics are based on FOL.
Consequently, most of the temporal logics can be translated into FOL. Their definition is very
useful since temporal logics constrain the users to write formule whose validity and satisfiability
can be more easily checked, leading to specifications that can be verified or automatically
validated.

Logic-based languages for modelling temporal constraints can be based on time points (e.g.,
[16], [17]), or on time intervals (e.g., IL [5], I'TL [11], [18], interval temporal logic in [14], EIL
[19], RTIL [20] GIL [21]). Interval logic formulee have typically a higher level of abstraction.



These logics usually have specific operators to express the relationships between intervals (meet,
before, after [22]), operators for combining intervals (e.g., the chop operator [17]), or operators
that specify the interval constituting the context of temporal formulae [19]. Interval logics
are typically more concise than point-based temporal logics for the specification of real-time
systems.

The time structure can be linear or branched; however, only a linear structure can be
suitably used for real system specification. A branched future can be unsuitable for specification
languages, since for branched models the system can have more than one possible evolution
and the correct evolution cannot be unequivocally determined in advance.

According to [7], in which TILCO (Temporal Interval Logic with Compositional Operators)
temporal interval logic has been presented by the authors, none of the temporal logics presented
in the past few years is completely satisfactory for real-time system specification. In fact,
most of them have no metric for time, thus allowing only specification of qualitative temporal
requirements — e.g., [3], [23], [5]. In the literature, only a few examples of quantitative temporal
logics exist. In these cases, an operator expressing the distance between time points is usually
defined. Most of the approaches including the metric for time are based on propositional logic
instead of FOL, and are therefore not expressive enough to describe realistic systems - e.g.,
[24], EIL [19], RTIL [20], TPTL [9], [15]. Those first-order temporal logics that provide a
metric for time usually allow quantification over the temporal domain — e.g., RTL [4], MTL
[25], TRIO [12] — whereas a prohibition of this kind of quantification has been shown to be
a necessary condition for the existence of feasible automated verification mechanisms [26]. All
these temporal logics are based on time points rather than on intervals, and provide a sharp
distinction between past and future. TILCO does not allow the quantification over time and
present unique operators for specifying the events and action from past to future.

The authors defined TILCO temporal logic for covering the above-mentioned problems,
with a special emphasis on temporal logic expressiveness and conciseness for the specification
of real-time systems [7]. TILCO extends FOL with a set of temporal operators, and is a gen-
eralisation of the classical temporal logics based on the application of the operators eventually
and henceforth to time intervals. TILCO has a metric for time, the time is discrete, linear and
no explicit temporal quantification is allowed. Thus, TILCO allows specification of both quali-
tative and quantitative relationships about events and facts and provides specific compositional
operators among time intervals. In TILCO, the same formalism used for system specification is
employed for describing high-level properties that should be satisfied by the system itself. These
must be proven on the bases of the specification in the system validation phase. Since TILCO
operators quantify over intervals, instead of using time points, TILCO is more concise in ex-
pressing temporal constraints with time bounds, as is needed in specifying real-time systems. In
fact, TILCO can be effectively used to express invariant, precedence among events, periodicity,
liveness and safety conditions, etc., and these properties can be formally verified by automatic
theorem-proving techniques. To this end, a formalisation of TILCO has been implemented in
the theorem prover Isabelle/HOL [27], [28]. Using this formalisation, a set of fundamental the-
orems has been proven and a set of tactics has been built for supporting the semi-automatic
demonstration of properties of TILCO specifications. Causal TILCO specifications are also
executable by using a modified version of the Tableaux algorithm.

TILCO has been compared in [7] against several other first order temporal logics with metric
of time — e.g., MTL [25], TRIO [12]. TRIO and MTL are both based on points and present a
sharp distinction between past and future. MTL and TRIO have distinct operators for past and
future (e.g., MTL: G, H; TRIO: Past() and Futr()). In contrast, TILCO presents a uniform

model for time from past to future and unique operators for stating facts and events along the



time axis [7]. These features make TILCO specifications more concise than those in TRIO and
MTL.

TILCO, TRIO, MTL and many other temporal logics adopt since and until operators to
specify dependencies between events. These operators make a strong distinction between past
and future and, thus, their adoption frequently makes the specification complex and hard to
read. This has been considered a limitation for specification conciseness.

In the specification of real time systems, the needs of specifying the occurrence of one event
from the repeated occurrence of another is quite frequent. For instance, A has to start after
the arrival of 5 messages on channel B within interval I. Specifications with these constrains
are quite complex to understand and difficult to realise by using classical interval operators.
To this end, some temporal logics present specific operators for this purpose — e.g., in RTL a
special operator is capable of recovering at which instant the particular occurrence of an event
happens [4]. These constraints can be specified in FOL and thus also in first order temporal
logic but the specification results to be complex to read with respect to the complexity of the
concepts described. TRIO, MTL, TILCO, do not present such temporal operators.

In this paper, TILCO-X, TILCO eXtension, is proposed. TILCO-X has been defined extend-
ing TILCO by integrating two new families of operators to cope with the problems generated
by the presence of since, until operators and for making possible the specification including
the counting of events. These operators called Dynamic Intervals and Bounded Happen, respec-
tively can be combined for defining very complex real-time constraints in a concise manner.
For this reason, TILCO-X has to be considered a strong improvement with respect to TILCO.
TILCO-X presents a different semantics with respect to TILCO but it continues to be sound.
TILCO-X has been formalised by using the theorem prover Isabelle/HOL. TILCO-X can be
used to verify the completeness and consistency of specifications, as well as to validate system
behaviour against its requirements and general properties.

This paper is organised as follows. In Section 2, a short overview of TILCO as presented in
[7] is reported. Section 3 presents TILCO-X with some examples. In Section 4 the syntax and
semantics of TILCO-X are reported. Section 6 reports a specification example to highlight the
features of the extensions introduced. Conclusions are drawn in Section 7.

2 Overview of TILCO

TILCO extends FOL in order to create a logic language capable of specifying the relationships
between events and time, as well as the transformations on the data domain [7]. It can be used
to specify temporal constraints among events in either a qualitative or quantitative manner.
Therefore, the boundaries of an interval, which specify the length of intervals and actions, can
be expressed relative to other events (i.e., in a qualitative manner) or with an absolute measure
(i.e., in a quantitative manner). This allows definition of expressions of ordering relationships
among events or delays and time-outs. These features are mandatory for specifying the be-
haviour of real-time systems. In addition, the TILCO deductive approach is sound, and thus
consistent. It forces the user to write formula without using direct quantifications over the tem-
poral domain, thus avoiding the writing overly intricate or difficult to understand specifications
[15].

TILCO includes the concepts of typed variables and constants; it provides a set of basic types
and allows the definition of new types. Predefined types are: nat for natural numbers, int for
integer numbers, bool for Booleans, char for text characters, and string for character strings.
The usual arithmetic operators: +, —, %, / , mod, ~ (change sign), are defined for integers and
natural numbers. String manipulation functions are defined for strings. Comparative operators:



=, <, >, >, <, #, can be used with integers, naturals, characters and strings, and can be
overloaded for user-defined types.
A system specification in TILCO is a tuple

{u7 T? f? ,P7 V? W7C7 j}?

where U is a set of TILCO formulee, T a set of type definitions, F a set of functions, P a set
of predicates, V a set of typed time-dependent variables, W a set of typed time-independent
variables, C a set of typed constants (also called time invariant parameters), and J is a set of
integer intervals. U specifies the rules defining the behavior of the specified system. T defines
the types used in the specification. Functions and predicates have their usual meaning and
are used to manipulate predefined and user-defined data-types. Time-dependent variables are
employed for modelling system inputs (read-only), outputs, and auxiliary variables (read/write)
of the system under specification. Time-dependent variables can assume any value in their
corresponding domain. Time-independent variables are used to build parametric formula that
operate on structured data types (i.e., arrays, lists, etc.) through quantification. Constants are
used for modelling system parameters. Integer intervals, which are connected sets of integers,
are used for specifying quantitative temporal relationships.
A system is specified in TILCO according to the following rules:

— a system presents: input and output ports to communicate with the external environment,
and auxiliary variables for defining the internal state;

— inputs, outputs and auxiliary variables can assume only one value at each time instant. Fach
of them is defined by a unique name;

— an input is a typed variable whose value can change due to external events;

— an output is a typed variable which can be forced to assume a value by some predicates
through an assignment. This leads to a change in the external environment;

— an auxiliary variable can be forced to a value by an assignment and it can be read as an
input variable;

— a system is described to be a set of formulae which define its behaviour and the data trans-
formation.

2.1 TILCO Operators

TILCO’s temporal operators have been added to FOL by leaving the evaluation time implicit.
The meaning of a TILCO formula is given with respect to the current time. Time is discrete and
linear, and the temporal domain is 7Z, the set of integers; the minimum time interval corresponds
to 1 time unit. The current time instant is represented by 0, whereas positive (negative) number
represent future (past) time instants. TILCO formulee can be time dependent or independent;
the latter are those that do not present any TILCO temporal operator, and are comprised only
of time-independent subformulez. A time independent formula can be regarded as a constraint
that must be satisfied in each time instant.

The basic temporal entity in TILCO is the interval. Intervals can be quantitatively expressed
by using the notation with round, “(”, “)”, or squared, “[”, “|”, brackets for excluding and
including interval boundaries, respectively. Time instants are regarded as special cases that are
represented as closed intervals composed of a single point (e.g., [a, a]). Symbols 400 and —oo
can be used as interval boundaries, if the extreme is open, to denote infinite intervals — i.e.,
[a, +00) represents set {x € Z|a < x}. Thus, TILCO allows both the specification of facts in
intervals and events in time instants. Classical operators of temporal logic (i.e., eventually, &,



and henceforth, 00) can be easily obtained by using TILCO operators with infinite intervals.
TILCO can be regarded as a generalisation of most of the interval logics presented in the
literature in the past [7] — with the addition of a metric to measure time.

The basic TILCO temporal operators are:

— “@7, bounded universal temporal quantification over an interval;

— “?7 bounded existential temporal quantification over an interval;

— until, to express that either a predicate will always be true in the future, or it will be true
until another predicate will become true;

— since, to express that either a predicate has always been true in the past, or it has been
true since another predicate has become true.

Operators “@7” and “?” are called temporal quantifiers. A@¢ is true if formula A is true in
every instant in the interval 7, with respect to the current time instant. Therefore, if ¢ is the

current time instant, (A @) = Vo € i. A+ holds. In particular, A@/[t;,1,) evaluated in ¢
means:

Vo € [tl, tg).A(x-H).

Obviously ¢; and t5 can be either positive or negative, and, thus the interval can be in the
past or in the future. If the lower bound of an interval is greater than the upper bound, then
the interval is null (i.e., it is equal to the empty set). Operators “@” and “?7” correspond,
in the temporal domain, to FOL quantifiers V and 3, respectively; hence, they are related by
a duality relationship analogous to that between V and 4. “@7” and “?7” are used to express
delays, time-outs and any other temporal constraint that requires a specific quantitative bound.
Concerning the other temporal operators, until A B (evaluated in t) is true if B will always be
true in the future with respect to ¢, or if B will be true in the interval (¢, + ¢) with > 0
and A will be true in « +¢. This definition of until does not require the occurrence of A in the
future, so the until operator corresponds to the weak until operator defined in PTL [23]. The
operators until and since express the same concept for future and past, respectively; they are
related by a relationship of temporal duality. until and since can be effectively used to express
ordering relationships among events without the need of specifying any numeric constraint.

2.2 Some TILCO Examples

Tab. 1 provides few examples of TILCO formula, where ¢ stands for a positive integer num-
ber. To provide a clearer view of TILCO’s expressiveness the formula are accompanied by an
explanation of their meaning.

AQ@ [ty t1], (=2, t3] A is true in ¢, and in (—¢2, ts]

A?[ti, t1], (t2,¢3] A ls true in ¢, and is true at least once in (¢2, ts]
A?[0,4]@J0,400) A will become true within ¢; for each time instant in the future (response)
(A= B)?7]0,¢] if A is true within ¢, then also B will be true at the same time

(A= B?i)@j A leads to an assertion of B in 1 for each time instant of j

(A= BQ@i)@j A leads to the assertion of B in the whole interval  for each time instant
of 3

(A= B@i) 7y A leads to the assertion of B in the whole interval : in at least a time
instant of j

Table 1. Examples of TILCO formulae.



2.3 Comments

— Each TILCO formula used in a system specification must be closed, thus each time indepen-
dent variable in a formula must be quantified. If a TILCO formula is open, it is replaced by
its universal closure (i.e., an external universal quantifier is introduced for each of the time
independent variables which are not quantified). According to the syntax definition, each
quantified variable must be time independent, otherwise (i) it would be possible to write
higher order formula and (ii) time could not be left implicit because the meaning of the
formula would change during system evolution.

— In a TILCO specification, predicates and functions with typed parameters can also be de-
fined. Predicates are functions that return a value of type bool. Functions and predicates are
used to define operations and relationships over predefined and user-defined types. Functions
and predicates are incrementally defined by using predefined functions and predicates over
the basic data types and type constructors. The body of each predicate must be specified
by means of a TILCO formula, in which the only non-quantified variables are the predicate
parameters. Predicates are only instruments used to simplify the writing of formulee; hence,
more complex temporal expressions and formulae can be hidden in predicates.

— The classical henceforth operator, O, can be expressed in terms of TILCO operator “@ ”:
A@J0,400), which means that A will be true forever from the current time instant. Anal-
ogously, the eventually operator, O, can be expressed by A7 [0, +00).

— TILCO is also characterized by its compositional operators that work with intervals: comma
“.7, which corresponds to A, and semicolon “;”, which corresponds to V., between intervals.
Compositional operators “” and “;” assume different meanings if they are associated with
operators “@7” or “?77. Other operators among intervals, such as intersection, “N”, and
union, “U”, could be defined by considering time intervals as sets. However, the introduction
of U is problematic because the set of intervals is not closed over this operation.

— Once system behaviour is specified by means of a set of TILCO formule, the specification can
be validated to verify whether it corresponds to the system requirements. In TILCO, system
validation is performed by proving that high-level properties (e.g., safety, liveness, etc.) are
satisfied by the TILCO specification of the system. These properties can be expressed by
means of other TILCO formulae, thus TILCO is used to specify both the system and its high-
level properties. Therefore, the classical safety conditions, such as A @i (where A is a positive
property), and =B @i where B is a negative condition) must be satisfied by the system
specification, where the interval 7 can be extended to the specification temporal domain, as
well as to only a part of it. Moreover, liveness conditions, such as A?¢ (A will be satisfied
within ) or deadlock-free conditions, such as (A ?¢)@ j, can also be specified. If during
the validation of a TILCO specification it is found that a desired property (constituting
a system requirement) cannot be deduced from the system specification given in terms of
TILCO formule, then the specification is incomplete. If that property must be satisfied by
the system, a new TILCO formula should be added to the system specification, provided
that this formula does not contradict any other formula contained in the specification.
This formula may itself be the desired property or a formula that completes the system
specification in order to prove the desired property, thus allowing the incremental system
specification.

3 TILCO-X, TILCO eXtension

TILCO, MTL and TRIO are first order temporal logics for real-time system specifications.
They have a metric of time and thus can be profitably used for specifying qualitative and



quantitative temporal constraints. Many other logics produce specifications structurally similar
to TRIO and MTL or have similar operators; while, other logics can be difficult to use in
comparison to TRIO, MTL and TILCO, since they are based on elementary operators that
lead to the production of overly complex specifications.

For the specification of real-time systems, it is strongly relevant the conciseness, readability
and understandability of the temporal logic used. This depends on the expressiveness of the
logic, on the number of operators, on the structure of the formulas (nesting levels, number of
calls to special functions/parameterised predicates, presence of quantifiers), the needs of user
defined special operators, and the need of adopting temporal quantifications.

A formal proof of TILCO’s conciseness with respect to other temporal logics would be
difficult, mainly due to the lack of a formal definition of conciseness or readability. Moreover,
an examination of the elementary specifications for TILCO, TRIO and MTL, has demonstrated
that the typical specifications produced in TILCO use fewer distinct operators than in TRIO
and MTL [7]. In addition, some specifications can be written in TRIO and/or MTL only by
using nested operators, while simple direct operators are used in TILCO.

TILCO specifications are based upon four fundamental operators. A greater number of op-
erators are present in TRIO/MTL-like formulas. Thus, complexity increases and conciseness
decreases for both TRIO and MTL; and leads to a higher cognitive complexity (or compre-
hensibility complexity) as in programming language (demonstrated by the validation of several
cognitive metrics [29], [30], [31], [32], [33]).

TRIO and MTL are both based on points and present a sharp distinction between past and
future. MTL and TRIO have distinct operators for past and future (e.g., MTL: G, H; TRIO:
Past() and Futr()). In contrast, TILCO is an interval temporal logic with a uniform model
for time from past to future. TILCO specifications can describe facts and events without to use
different operators for past and future [7].

In the analysis of TILCO and several other temporal logics performed by the authors [34],
two specific fields of improvement have been identified for the specification of real time systems:

— TRIO, MTL and many other temporal logics adopt since and until operators to specify
dependencies between events. Also TILCO [7] adopts since and until operators for the same
purpose. These operators make a strong distinction between past and future and, thus, their
adoption frequently makes the specification complex and hard to read. The adoption of a
unique operator for defining ordering relationships between events reduces in several cases
the needs of the adoption of nested since and until operators. This removes the gap between
TILCO temporal operators for dealing with events and facts and the needs of since and
until operators for specifying relationships between events.

— The needs of specifying the occurrence of one event from the repeated occurrence of another
is quite frequent (operators for events counting are needed). For instance, A has to start after
the arrival of 5 messages on channel B within interval I. Specifications with these constrains
are quite complex to understand and difficult to realise by using classical temporal operators
such as those proposed in TILCO, 1L, TRIO, MTL, RTL, etc. This is the reason for which
some temporal logics present specific operators for this purpose. In RTL, a special operator
capable of recovering at which instant the particular occurrence of an event happens has been
proposed [4]. These constraints can be specified in FOL and thus also in first order temporal
logic but the specification results to be strongly complex with respect to the complexity of
the concept under specification and involves several quantifications.

These facts have been considered a limitation for specification conciseness and readability
and thus for the adoption of logical languages for the specification of real-time systems. There-



fore, TILCO-X temporal logic has been defined by extending TILCO to enhance its readability
and conciseness, especially for the expression of order relations. To this end, the operators called
Dynamic Intervals and Bounded Happen have been defined. They can be combined allowing
the definition of very powerful real-time constraints in a strongly concise manner.

3.1 Dynamic Intervals

Dynamic Intervals have been introduced to: (i) avoid the needs of distinguishing between past
and future for ordering relationships, (ii) avoid in several cases the nesting of since and until
operators, (iii) reduce the number of quantifications, (iv) allow the combination of order and
quantitative relationships.

These capabilities have introduced in TILCO-X by making possible to write temporal in-
tervals not only as constant integer sets, but also by using a formula as an interval bound.

For example the following TILCO-X formula
AQI10,4+B)
states that A is true from 10 time units in the future until B is true for the first time, where
+ B identifies the first future instant in which B is true (from the evaluation time instant), if

such an instant does not exist A is true forever in interval [10, +00). These two conditions are
represented in Fig. 1.
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Fig. 1. Example of Dynamic Interval: A@[10,+B)

In a similar way, an interval bound can be located in the past; for example, formula
AQ(—B,0]

states that A ¢s true since the last time instant in which B s true until the current instant.
Where — B identifies the last instant where B is true.

It should be noted that, until and since operators can be defined by means of the following
formulas:

until A B=B@(0,+A)
since A B=B@(—A,0).

In the following, the above mentioned applications of the Dynamic Interval solution are
presented and discussed.



Distinction between past and future

The following specification is a typical case in which a strong distinction between past and
future has to be performed for adopting of since and until operators: since the last occurrence
of C" and until the first occurrence of D, for every occurrence of A there will be an occurrence of
B at the same time. In TILCO, 1t can be formalized as follow, in MTL and TRIO structurally
similar formulas can be obtained:

(since C' (A= B))A (A= B)A(untilD (A= B))

With TILCO-X, it is possible to write intervals starting from the past and ending in the
future; thus, the above specification results to be strongly simplified:

(A= B)@(~C,+D)

This TILCO-X formula can be read as: A = B is true from the last occurrence of C' in the
past and the first occurrence of D in the future, with respect to the evaluation time instant.
Another example in TILCO-X is the following formula specifying that A or B happened in the
last ten instants or will happen until C' and D are true:

(AV B)?[=10,+(C A D))]

This example shows, how it is possible to write specifications in which the interval has a fixed
lower bound in the past and a dynamic upper bound in the future. This last example can be
written in TILCO in the following way:

(AvV B)?[—10,0] V muntil(C A D)(=(AV B))
Nesting levels

The definition of intervals with dynamic bounds (identified by the validity of a generic formula)
avoids in many cases the adoption of nesting temporal quantifiers. Thus, TILCO-X produces
more concise formulas that result to be much more readable.

An example could be the following TILCO-X formula
AQ[+B,+0)

stating that after the next occurrence of B, A is always true. The same behaviour can be
specified in TILCO by using nested until and @ operators such as in:

until (B A[A@[0, +00)]) (=B)

The box around formulas highlights the nesting levels of the temporal operators.
A more complex example can be the following TILCO-X formula

A?[+B,+0]

This formula states that A happens between the next occurrence of B and the next occurrence
of C'. The interval boundaries are included; therefore, A may happen even at the same time
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instant as B or C'. Without the new construct the same formula has to be written by using two
nested until operators.

B?(0,400) A (until B ~C') A |until (B A (AV —(until (C A —A) =A))) (—-B)

...... TBR........ B must happen in the future because otherwise the interval [+ B, 4+C] is empty
and A cannot happen on an empty interval.

Reduction of the number of quantifications Temporal quantifications are not allowed by
TILCO language since their prohibition has been shown to be a necessary condition for the
existence of feasible automated verification mechanisms [26], [7]. Therefore, in TILCO is very
complex to specify certain constraints without the adoption of a direct temporal quantification.
For example:

After every occurrence of event S, a signal A has to be true after the first occurrence of
event F (if it happens) and A remains true until a certain deadline d (value relative to
event S)

Fig. 2 reports a representation of the constraint proposed which is complex to be specified
without temporal quantification.

E 10 o |
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/1 d
Fig. 2.

The specification complexity is due to the fact that, the above constraint is comprised of
two parts: one relating S to next occurrence of F; and the second, relating S to the end of the
temporal interval d (that is constant). In order, to specify the second part an @ operator could
be used. The identified time instant in which £ will occurs has to be considered as the starting
bounds for its interval. This dependency, between the two parts, can be only defined by using
a quantification.

A way to specify this requirement in TILCO is to introduce a clock variable “Ck” with the
following property:

(Ck=0A-5)@(—00,0]A (FJv.Ck=v = (Ck=v+1)@Q[1,1])@ (0, +00))?(—00, +0)

stating that an instant (the initial) exists before Ck is zero and S does not happen, and that
Ck is incremented by one at every time instant, after the initial time instant.
Using Ck, the above reported constraint can be written as follows in TILCO:

(1) SAE?(0,d) = (Fv. Ck = v A until (F A until (Ck > v + d) A) (—E)
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A little bit more complex formulas, but structurally similar, can be obtained by using MTL
and TRIO. This writing modality for constraint specification should be avoided since it produces
less readable specifications. This factor is much more relevant for the specification of complex
systems.

In temporal logics supporting time quantification, such as TRIO, the above reported con-
straint can be rewritten as follows:

Vit SAFute(E, ) A (0 <t <d)A(t <t <d)— Futr(A,t)

A structurally similar formula can be obtained in MTL.
In TILCO-X, the above constraint is simply stated by the following formula:

S = A@(+E,d)

that is much more simple than both TRIO and TILCO versions.

Therefore, it has been shown that the adoption of new TILCO-X operators reduces the
number of quantifications and operators, thus, increasing the readability and coinciseness of
formulas.

Combination of order and quantitative relationships Using TILCO-X is easy to write
ordering relations between events, especially those that combine order and quantitative rela-
tionships. For example, the following TILCO-X formula states that A happens after B within
100 time units:

A?(+B,100]

In Fig. 3, the visual representation of this condition is reported.

B ] i o |
ARARRRREES R R IEEEE

i) —

LA L LY L L Y =B

A |

1
\
0 100

Fig. 3. Example of Dynamic Interval: A?(+B,100]

The above formula is in some measure similar to TILCO formula
A7?(0,100] A ~until A (- B)

These two formulas are not equivalent (the second implies the first); because according to
TILCO-X formula, A may be true or not before B is true. This is not possible for the TILCO
formula, as it has been depicted in Fig. 4.

In order to have the equivalence, A has to be false until B is true, thus the correct TILCO
formula is:

A?(0,100] A ~until A (=B) <= (—A) @ (0,4 B] A A? (+B,100]

This is a further example of the conciseness of TILCO-X with respect to TILCO. As demon-
strated in [7], quite structurally similar formulas can be written for TRIO and MTL, but they
result even less concise than TILCO formulas.
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B [l 10 o |
[TTTTp Ty T

A D | | |
‘\\\\\\\\‘\\\\‘\A/\\\"”’\\\\‘

0 100

Fig.4. A model for formula A7 (0,100] A —~until A (-B)

3.2 Bounded Happen

Bounded Happen has been defined to increase the readability of constraints which includes the
dependence from the counting of occurrences. Sometimes constraint implies the counting the
number of occurrences of an event or in general the number of times that a formula is true in
a given time interval. In TILCO, as well as in TRIO, MTL and other temporal logics, such a
requirement can be specified by using a variable to count the number of times that a formula is
true from an instant to another. This can be performed by using formula (C (A, n4)) stating
that n4 1s a variable that counts the occurrences of A from the evaluation time instant.

For example, to state that an event £ occurs at most five times in [2,10), the following
formula can be used:

CL(E,np)@[2,2] A (np < 5)@|[2,10)

where:

CL(Ang) E (A —=ns=0)A
(A—=na=1)A
(Vk.AN(na=k)@[-1,-1] 5 na=k+1) A
(Vk.=AA(na=k)@[—1,—1] = ns = k) @ (0, +o0)

While, when FE occurs at least three times in interval [2,10), the formula is:
CL(E,ng)@[2,2] A (ng > 3)7][2,10)

Therefore, a formula stating that the above formula is true in every time instant has to manage
the variability of distinct counters that should be activated in each time instant:

(CL(Enp)@[2,2] A (np > 3)?[2,10)) @0, +o0)

A different solution can be based on the adoption of a unique counter for the whole constraint
and an existential quantification.

C_(E,ng) A (Gk.(np = k) @[2,2] A (ng > k +3)7[2,10)) @ [0, +00)

Bounded Happen operator has been introduced to specify the family of the above presented
constraints in a concise manner. It can be used to state that a formula is true in an interval
from a minimum to a maximum number of times. For example, TILCO-X formula:

A7,[1,15)



states that A is true two or more times in interval [1,15). While TILCO-X formula
A??[1,15)
states that A is true up to three times in interval [1, 15).

With the combination of these operators, it can be stated that a formula has to be true in
the interval from a minimum to a maximum number of times; as it is shown with the following

TILCO-X example:
A?5[1,15)

Bounded happen can be used with Dynamic Interval operator. The following formula states
that A happens two or three times until B happens:

A?5[0,+B)

The bounded happen may be used to state that a formula becomes true a limited number
of times in an interval, this can be achieved with the derived operator up (1) defined as

TAZ AN (mA)Q[-1, 1]
Therefore, formula
(T A)?73[1,15)

states that A becomes true exactly two times in [1,15). A possible model for this formula is
reported in Fig. 5.

ALl

‘\\\W‘\\\\‘W\\\‘\\Y\‘
1 15

Fig.5. Example of Bounded Happen: (1 A) 73 [1,15)

Additional interesting examples are:
(AN B?2(—-100,0)) = —-A@(0,10)

which states that if A is true and in the last 100 time units there were two occurrences of B,
then A will be false for 10 time units; and

A?L0,+(B A O)

stating that A will happen from one to three times until B and C' are true.
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4 TILCO-X Syntax & Semantics

Given F, P, V., W. C as defined for old TILCO, the syntax of TILCO-X formule is defined by
the following BNF-like definitions:

interval ::= open limit , limit close
| [limit ]
| open limit , +00)
| (—oco, limit close
| (=00, +20)
limit ::=¢ for each i € 7
|

+formula | — formula

open = ( ||
close :=1]1)
interval list ::= interval

interval interval_op interval

interval_op ::

variable ::=w for each w € W

term ::=v for each v € V
| variable
| ¢ foreach ceC
| f(termdist) for eachf € F
term_list ::= term

| term,term list

atomic_formula ::= p(termlist) for each p € P
formula ::= T|L]atomic_formula

| —formula

| formula op formula

| v:=term for eachv €V

| quantifier variable. formula

| formula temporal_quantifier interval list

| (formula)

opu=VIA|= | & |=p|=x

quantifier ::= V|3|3!

temporal_quantifier := @ | ? | ?,, [?M | M for each m, M € N

Before defining the semantics of TILCO-X, it is important to introduce the concept of in-
terpretation of a TILCO-X formula. This concept is also used to define the validity and the

satisfiability of TILCO-X formulee and has been derived from the corresponding concept of
TILCO [7].



Given a syntactically correct TILCO-X formula A, with {¢1,...,¢,} set of types used
in A, {p1,...,pr} predicates, {fi,..., fi} functions, {vy,...,v,} time-dependent variables,
{e1,...,¢,} constants then an interpretation T is a tuple

{D1,..., D} {Ry, ..., R}, {F1, .. F L AVA(), . Vi (D)} {Chy ... Oy })
where:

~ {Dy,..., Dy} assigns a domain D; to each type ¢;;

~ {Ryq,..., R} assigns an n-ary relation R; over D, x ... x D; to each n-ary predicate p;
with arguments of type ¢;,,...,%;;
~ {Fi,..., F;} assigns an n-ary function F; over D;, x...x D, to each n-ary function f; with

arguments of type t;,..., ¢ ;

— {Vi(t),..., V(1) } assigns a function of time V;(¢) : Z — D,, to each time-dependent variable
v; of type t,, specifying the history of that variable in every time instant (where ¢ is the
absolute time);

- {C1,...,C,} assigns a value C; € D, to each constant ¢; of type ¢,;

Given a TILCO-X formula A and an interpretation Z for A, notation
I, tEA

expresses that 7 is a model for A evaluated in the time instant ¢.
To properly define the TILCO-X temporal operators (@ and ?) a function, to interpret
an interval I, is needed:

[]z: CZ

This represents the set of time instants corresponding to instant ¢ where a formula defined over
I has to be evaluated. The definition of this function, which makes TILCO-X strongly different
with respect to TILCO, is reported later.

Moreover to formally define the Bounded Happen operator, a function (Nz+(1, A)) to count
the number of time instants where formula A is true in an interval I is needed. Its definition is

NI,t([v A) d:ef

{iel|T,i+t}= A}

where | - | gives the number of elements in a set if the set is finite, or 400 if it is infinite.
The evaluation of Z, ¢ |= A, stating the semantics of TILCO-X, is inductively defined on the
structure of A by the following rules:

- TtET;

- Tt L

-~ Tt =AM Tt £ A;

- I,t |: Al A A2 IHI,t |: Al and I,t |: AQ,

~ Tt = AV Ay iff either Z,t E Ay or Z,t | As;

~ Z.t E x := eaxp iff there exists a constant k € D, such that Z,t o =k and Z,t — 1 E
exp = k, where D, is the domain assigned to the type of x by Z;

- I,t E Vo . A(z) iff, for each y € D, it is true that Z,¢ = A(y), where D, is the domain
assigned to the type of = by Z;

- I,t = Jx. A(x) iff, there exists a y € D, such that Z,¢t = A(y), where D, is the domain
assigned to the type of = by Z;
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— Z,t | Jla. A(x) iff, there exists one and only one y € D, such that Z,¢ = A(y), where D,
is the domain assigned to the type of = by Z;

- I,t = AQ iff, for each s € [[]74, Z,s+ 1 | A is true;

— I,t = A? I iff, there exists an s € [[]z; such that Z,s +t = A

- I,t |: A?m[ llcf7 m S Nzﬂg([[[]]zﬂg, A),

~ It = A Nz ({7, A) < M;

~ T EAMIGE Tt = (A1) A (AT,

— I, t = piler, ... en), iff (F1,...,E,) € R;, where R; is the relation assigned by Z to p; and
E;, for each j = 1,...,n, are the results of the expressions e; when the values assigned by
7 are substituted for the constants and variables, and the variables are evaluated in ¢.

The semantics of predicates also includes that of functions, variables and constants.

In TILCO-X, the definition of [/]z; depends on two functions: If(A,t) and (7 (A,t). They
are used to locate the next/previous time instant, corresponding to time instant ¢, where a
formula A is true. These functions return 4o00/—o0, if such an instant does not exist. Their
formal definition is reported in the following:

(A1) = r if0<zandZ,z+tEAandZ,t | (-A)Q@(0,x)
| 4o ifZt E (mA)@ (0, 400)

W A if0<zandZ,—z+tE=Aand Z,t E (~A)@Q(—z,0)
A = _ocif 7, | (—A) @ (=00, 0)

All the possible typologies of intervals that can be written in TILCO-X are reported in Figure 6,
with their corresponding semantics. For example, to interval [+A,b] is associated the set of
integer values lower or equal to b and greater or equal to [F(A,¢) that represent the next time
where formula A is true. If b is negative the set is empty.

Other TILCO-X operators are treated with the following definitions:

A= AT AV A A?[ JE(A?T)V (A?))

Al AT A = AgN A = A [Jdef(A" I)A(A?,J)
A=A, E A = A, Q1 1] wl JE (A2, D)V (A?,,])
Aj=wA, A = A,Q[—1,—1] A"M[ T E (A A (AT
AQI,JE(A@QI)A(AQ)) AMEL T (A v (A?M )
A?LJE(A?I)A(A?)) AMp =AMy A (A )
AQL;JE(A@I) v (AQ)) ?MJ JEAMy v (A )

Where the TILCO interval composition operators “,” and “;” are extended to bounded

happen in a way similar to regular happen.
In the case where the interval is null, it holds:

AQD=T;
A0 = 1.

5 Deductive system

In this section, the deductive system used to prove properties in TILCO-X is introduced.
The FOL’s deductive system in natural deduction style has been enhanced by adding rules
for introduction and elimination of TILCO/TILCO-X temporal operators.
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[+4 81z, = {z €Z | 1F (4,
[[-40]z = (s €7 |17 (A
[le,+Bllz = {zr €Z|a<a
[le,-Bllz, = {z€Z]a<s
[+A +Bl1z,: = {z ez |1F
[-A+Bllz,: = {o €%
[-A-Bllz: = {z €77
[+4,-Bllz,: = {z €z | 1F
[(a,8]lz,y ={z€Z|ax
(+Ab]]]zt—{$€Z|l+(
[(—4,8]z,: = {z €7 |1 (A
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[[+4,0) 1z, = {z €z |1F (A1) <z <b}
[[-A,8)]z:={z€Z 17 (A1) <z <b}

[le,+B)1z,: = {zs €Z |a <2 <1 (B, 1)}

[[a,—

Iz ={z€Z|a<z<iZ (B, 1)}

[+4,+4B) 1z, = {z €z | 1F(4, 1) <o <1F (B, 1)}
[I—A+B5) Iz, = {2 €% [1Z (A, 1) <= <13 (B, 0}

)
)
)
B)
)
)

26)  [I-4,-B)Iz,: = {z €Z 17 (4, 1) <z <IZ(B, 1)}
(27)  [[+A4, -B)lz = {s €2 |1F(4,1) <z <17 (B, 1)}
(28) [(a,0)Iz,: = {o €% |a<s<b}

(29) [(+4,8)Iz,: = {z €% | 1F(A, 1) <z <b}

(30) [(-A4 01z ={z €2 |IZ(A 1) <z <b}

(21) [(a,+B) Izt = {z €% | a <2 <IF(B, 1)}

(32) [(a,-B) Iz ={r €% a<a<IZ (B, 1)}

(33) [(+A+B) 17, = {zez|1F(a,y <m<l+(3,t)}
(34 [(-4+B) 17 ={z €z [17(4 1 <=z <1F(B,1}
(35 [(-4,-B) Iz, = {z €Z [17(4t) <z <IZ(B,§)}
(36) [(+4,-B) 7. = {z €2 [ 1F(4,1) <z <17(B, 1)}
(37) [la,+00) Iz,: = {o €% | a < 2}

(28)  [l+A,+00) 17,0 = {2 € B | 1F(4, 1) <2}

(39)  [[=A+c0) Iz,s = {2 €Z |17 (A1) <}

(40) [(a,+00) Iz,: = {o €% |a <z}

(41)  [(+A, +00) Iz, = {2 €Z | I (A, 1) <=}

(42)  [(=A,+00) Iz,e = {2 €Z | I7(A,1) <z}

(43) [(—co,bllz: = {» €% |z <0}

(44)  [(=co,+Bllz,: = {2 €% |2 <1F(B, 0}

(45)  [(=oco,=Bllz: = {z €% |2 <I7(B, 1)}

(48) [(—co,8) Izt = {z €% |z < b}

(47 [(=co,+B) Iz,e = {2 €% | 2 <1F (B, 1)}

(48)  [(~co,=B)lz,s = {z €% |2 <I7(B, 1)}

(49) [ (=co,+00) Iz,¢ = %

Fig. 6. Definition of [ - ]z,

The deduction rules for basic logical operators are the following:
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The introduction and elimination rules for @ and ? are:
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These rules are similar to the ones provided for TILCO except that operator in replaces the
standard € set operator. The in operator establishes if an integer value is in a Dynamic Interval
and its evaluation depends on the evaluation time ¢.

The in operator applied to a Dynamic Interval can be defined in the following form:

> bl Ax=<0b2 if [ =[bl,b2]
(x—=1)= bl A(x+1)=<b2 if I =(bl,02)
rin =< blA(x+1)<b2 if]—[ble)
(x—=1)= bl A=< b2 if [ = (bl,b2]
r>=bANx=b if [ =1b]

This definition uses two new operators, > and <, to check if an integer value is after or before
an interval bound, where a bound can be an integer value, plus or minus infinity or a dynamic
bound as +A or —A. Since a dynamic bound depends on the evaluation instant also > and <
operators depend on the evalutation instant.

These operators (>, < and in ) have been introduced to avoid the specification of two rules
(introduction and elimination) for each of the 49 possible combinations of intervals, and to
permit to prove generic properties about intervals.

For example:

12> +B

is true in the evalutation time instant if there exists an instant in the future where B is true,
B is false upto that instant, and this instant is distant less or equal to 12 time units from the
evaluation time instant.

Formula

8= +B

is true in the evaluation time instant in two cases: if B will not be true in the future, and if the
first time when B will be true is after 8 time units from the current time.
These examples are reported in Figure 7

Bﬁ‘mm | B[ 1

- X after +B
X before +B

12 after
8 before +B
10 after +B
10 before +B

Fig.7. Examples of > (after) and < (before)

> and =< operators are defined in the following way:

b<zx if b is an integer
1 ifb=+o00
T if b= —o0
) 3t0<tAt<aANDA L,
zr b= V0 <t <t —-N(t) ifh=+N
(Ftt <OAt <z A PHA
Vit<t' <0—-P))V ifb=-P
Vit <0 — —P(t')



r<b if b is an integer
T ifb=+o00
1 if b= —o0

(Ft0<tAz <tANEH)A
Vo<t <t—-N({))Vv ifb=4N

V0 <t — =N(t)

Jtt<0Az <tAPA

Vit<t' <0 -p) 0= 7F

where P(t) (or N(t)) is true if expression P (or N) is true ¢ time instants from the evaluation
instant (in the future or in the past, it depends on the sign of ).

It should be noted that > and < operators are not strict, since the bound value is also
considered to satisfy the relation (so they are an extension of > and <).

The introduction and elimination rules for > operator are:

vl Fvswe =vFE Feozo

- Fearwv - Fov<az
Fe 2> 400

el g T Bt R

Fiyo N FeoN@(0,2') FO<2' Fa' <z

= tl
= nex Er—
N . oo s +N Frigpe IV l—t—-N@'(_o;’) Fo<az! ta'<a
= nex R

Fiye P FemP@Q(2',0) Fa2'<0 Fa' <2
> 11 ’ =
cprev Feoe —P
o 19 Fe 2P @ (—00,0)

revl2 ———'—~

=P Feoe —P

boow P Fopel P l—t—-P@'(_m];o) Fa'<0 ko' <o
= prevE =

FR

Introduction and/or elimination rules are reported for each kind of bound: integer value, plus
and minus infinity, next (+/N) and prev (—P).

Rules for < operator are similar to the previous:

<wvl Fesv <vFE Feodv

- Fea<w - Fe<uw
Fe o< —c0

e e
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<nextll

Fiyor N Fe=N@(0,2') FO<2' Fxz <2

<nextl2

Foao< 4N Tt

l_tl‘j +N

Fe =N @ (0, 400)
l_t xr j +N

/N F~N @ (0,2") FO<a’' Fa<a’

ER

<nexth

FR

Fiye P FemP@(2',0) Fa'<0 Fao<a'

<prevl

l_t x j -P
Loy _p Feer® Fi=P @ (2'0) Faz'<0 tz<a’
7~ —
<prevE o= FR

Introduction and elimination rules for in operator have been provided for each combination

of interval parenthesis (open/close):

FR

. Fea>1 Frz=<u . Fe zin[l, u] W
I = = 1D
Hee F oz inl, ) Hee FR
_ [ . l Fi(z—1) =1 Fiz<u
inocl Flp—D=l Folu inockE — vin (i, ] PR

Fe zin (1, u]

FR

- . 1 Fiz =1 Fi(z41) < u
incol Feozl '_,t (@+1)=u incoF coinflu) PR
Fe zin(l, u) FR
_ = . l Fe(z—1) =1 Fi(z41) < u
inool Pl l)tl. Felot D2y inook toin(lu) bR
Fe zin (I, u) FR

Bounded Happen

For bounded happen, a more complex formalization has been provided. Happen-min, ?,,, has
been defined using a list datatype, in the following way:

P20 =13 flength(f) = mA(Vii<m — P(fli])Aflilin YAV < j <m — flj—1] < f[j])

stating that exists a list f that enumerates m instants in [ where P is true, and these instants
are strictly monotone'. Note that the [ | operator is used to access to the elements of the list
starting from 0. Happen-max, 2™, has been defined, using happen-min, as:

PM™M[ = ~(P?yl)

stating that P happens at most M times in [ if P does not happen more than M + 1 times in
I.

The introduction/elimination rules of bounded happen are based on inductive properties of
happen-min and happen-max:

m#0= P?,[a,b < Jz € [a,b]. PQ[z, 2] AN (P ?p_1[z+ 1,0V P2 _1[a,x — 1))

meaning that P happens at least m > 0 times in interval [a,b] iff exists a time instant « in the
interval where P is true and P happens at least m — 1 times before or after time instant z.
Moreover property P ?ql = T is used to terminate the recursion.

! The strict monotone condition is not strictly necessary. Instants have only to be different, but in that case there exists
a monotone list of instants where P is true. Therefore this definition has been used to have simpler proofs.
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Similar properties hold for happen-max:
M #0= P?M[a, b & 3z € [a,b].PQ[z, zN(=PQ[a,z — 1] A P2z 4+ 1,b]) v
(P2 a,z — 1] A =PQ[z + 1,b]))

In this case, the additional constraint that P must not happen before or after time instant x
has been added and property P ?°I = =P@] is used to terminate recursion.

The previous properties have been presented for a constant interval while similar ones hold
for any type of interval. To avoid providing specific introduction/elimination rules for each
kind of interval, functions sublft() and subrgt() have been introduced. sublft() and subrgt()
are functions that from an interval and a value in it give the left or right subinterval excluding
the given value - e.g., sublft([+ B, 10),2) = [+ B, ) and subrgt([+B,10),2) = (x,10) so [ =
sublft(I,z) U {x} Usubrgt(/, x) holds.

Using the definition of happen-min and these functions the following inductive introduc-

tion/elimination rules have been proved:

20! —
0 F P20l
o > Five PP Fm#0 bFyaxinl by P?,_;subrgt(/, x)
cmin’d
H P21
LP Fiye P Fm#0 Foxinl b P?,,_ysubrgt(/,x)
? inTgt B - i
man |_ R
7 Lft Fiye P Fm#0 Fyaxinl b P71 sublft(/, x)
e e P21
LP Fiye P Fm#0 Foainl +, P?,_qsublft(/,z)

Note that, there are different introduction/elimination rules for considering the interval split
on the right or on the left.
Similarly for happen-max, the following rules have been derived:

?maxll l_t _‘P 5\@4, [
F, P2M]
gmaz, g bite P EM A0 Hyzinl HoP@ sublft(/,z) F, P?M L subrgt(1, z)
. T
g o P
P i Fye P FM#0 F,ozinl =P @ subrgt(l,z) F, P2 sublft(1, )
' F, P?M]
My FmP@7 FepoP FM#£0 =P @ sublft(l,e) Ferin I FP 7" subrgt(le
?mal’rgtE |_tP? [ FR + (I—]% g( )
FR

M—
L, PV FaP @ FiyoP FM#0 =P @ subrgt(Z,2) Ferin I FP 77 sublfi(1,2)

?maxl tE FR FR
/ FR
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Properties

Using these deduction rules and the induction principle some properties have been proved:
Intervals

rrb=(x+1)=0b

—(e=b)=(x+1)<b

zin [bl,b3] = xin [b1,b2] V xin (b2, b3]

yin sublft(l,z)Azin [ =y <«

yin subrgt(/,z) A zin [ = zin sublft(/,y)

zin [ A yin sublft(/, 2) = sublft(sublft(/, z),y) = sublft({, y)

TILCO-X
The following properties hold for happen-min:

AWl & A7
A?. 1 = A?, 1 Hm>0
A?,a,b] & L ifm>b—a+1
ANA?,[0,0] = A, 1 [0,b—1] ifm >0
“ANA?,[0,0] = A?,,[0,0—1]
A m @, 00 NA@Q[L, 1] = A?, 4 [a—1,0]
[a,O]/\—'A@[l,l = A?,, [a—1,0]
Ym.A?,[0,+00) & (A7(0 +00))@[0, +00)
AQ[0,m) = A?,[0,m)

]
]
]
]

and the following properties hold for happen-max:

AT & —AQ@]
AT = A?M“]

AM™a,b] ifM>b—a+1
A/\A?M[O,b]—»A?M1[06—1]1fM>0
—ANATM0,0] = A?M(0,6 - 1]

A [a, 00 A AQ[1,1] =0 A?YH [0 — 1,0]
A?M[a,O]/\ﬁA@[l,l]—»A”M[a—l0]
M] <

A M,

and
A T & | i min > max

man

6 Specification example

In this section, a specification example to highlight the use of TILCO-X is presented. It is
considered a system where a process has to respond to an external stimulus within 100ms. If
the process does not respond within the given time, a controller has to retry up to 3 more
times. If after all the temptatives the process does not respond the operation is aborted. After
an abort the process cannot be started again for 500ms and an eventual request has to be
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Fig. 8. An example of a process control system

ignored. If three consecutive operations are aborted the system is blocked until system reset by
the user.

In Figure 8 the system structure is reported. Process is the process under control that has
to respond to the Begin signal with a Ready signal being true within 100ms. The Controller
is specified by using TILCO-X with the formula reported in the following. An internal signal
FEnabled is used to state that the Controller is enabled to consider the Start signal externally
issued.

The response of the Controller to the Start signal is specified with the formulae:

Start A = Blocked N\ Enabled = Begin
Start AN = Enabled = (- Begin A\ ~Aborted AN =Ok) @ [0, +Start)
Start \ Blocked = (= Begin A = Aborted AN =Ok) @ [0, + Reset)

The first condition states that if the Start signal is true, the system is not Blocked and is
Enabled the signal Begin is asserted. The second formula specifies the behavior of the system
if it is not Enabled. In this case signals Begin, Aborted and Ok are false until the next Start.
The last formula specifies the response to the Start signal if the system is Blocked. In this case
signals Begin, Aborted and Ok are false until the next Reset.

When signal Begin is true, then the system has to wait for Ready within 100ms. If it
happens signal Ok is true. This behavior can be specified with:

Begin A Ready?(0,100] = (- Begin A = Aborted AN = Enabled A (Ready < Ok)) @ (0, + Ready]
Begin A = Ready@(0,100] = (= Begin A ~Aborted A =Ok N = Enabled) @ (0, 100)
Begin = —~Aborted N -0k

The condition on the repetition of the Begin signal is specified using Bounded Happen:

Begin @[—100] A = Ready @ (—100,0] A Begin 7°[—(Start A Enabled),0) = Begin A = Enabled
Begin @[—100] A ~Ready@(—100,0] A Begin ?4]—(Start A Enabled),0) = Aborted N Ok

The first formula specifies that, if the last Begin has failed and the Begin has been issued up
to 3 times, since the last enabled Start, then the Begin has to be retried. The second formula
specifies the case in which Begin has been retried more than 3 times, and in this case, the
signal Aborted is asserted.

The behavior of the EFnabled signal is specified with formulae:

Aborted = —Begin N ~Enabled @[0,500) A (Enabled @ [0, +Start])@[500]
Ok V (Reset A Enabled) = Enabled @ (0,4 Start]
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The first formula specifies that, when Aborted is true the system is not enabled to satisfy a
Start request for 500ms and after this period the system is enabled until a Start is received.
Similarly, when Ok or Reset is true the system is enabled until the next Start.

The system is Blocked if and only if Aborted is true more than 3 times since last Ok or last
Reset, in formula:

Blocked < Aborted 75(—(Ok V Reset),0)
After Ok or Aborted are true or after a Reset signals Begin, Aborted and Ok are false:

Ok V Aborted = (~Begin A ~Aborted N =Ok) @ (0, 4+(Start A Enabled))
Reset A Enabled = (= Begin A = Aborted N ~Ok) @ [0, +Start)

Validation

This specification has been firstly validated by using the TILCO-X executor (presented in the
next chapter). In Figure 9 temporal traces of the system execution are reported. A Reset at
time 0 has been issued for the proper initialization, after that, signal Start is asserted and since
the Ready signal is false the signal Begin is issued four times and then the signal Aborted is
trued. The signal Start is asserted other two times and since the Process does not response
the operations are aborted. The failure of three operations brings up the Blocked signal. The
Reset is issued and enables the system to the receipt for the Start signal. The Start is issued
again and at the second temptative the Ready signal is received and OFk asserted.

=] [

| File  Signals  Option

i
Time 0 5 10 15 20 25 30 35 40 45 50 55 G0 B3 70 73 80 85 390 95 100

Mame L e e e e e B

Startio ] I I I

i:Ready.io ﬂ

I:Resetio -| ﬂ

o:Begin.io H_H

0:0kdg ﬂ

o:Aborted o I I I

o:Blocked.io X

0:Enabled.io _| |_| |_| | I_I B
/1

~l. -

Fig. 9. Execution of the TILCO-X specification

Moreover, some properties has been proved using the TILCO-X theory within Isabelle:

Start A Enabled = —Enabled @ (0, +(Ok V Aborted)
Start A\ Enabled = Enabled? (0,400

Start A\ Enabled = (Ok Vv Aborted)? (0,400

Start A Enabled = Ok ? (0,4500) V Aborted @[500

o e



The first property states that the controller is not enabled until the termination (with success
or failure); the second property states that, if the process is started there will be a future instant
in which it will be enabled to be started again; the third property states that, if the process is
started it will terminate with success or failure; the last property gives more details on when

signals Ok and Aborted will be true.

7 Conclusions

This paper has described an extension of TILCO, named TILCO-X, a temporal logic for the
specification, validation and verification of real-time systems. The introduction of the Bounded
Happen and Dynamic Interval operators enhanced the expressive power of TILCO. TILCO-X
enhanced the readability and conciseness of formulas with respect to TILCO, especially for the
order requirements removing the differences between past and future but maintaining at the
same time the implicit time specifications.

In summary, TILCO-X differs from other temporal logics proposed in the literature. TILCO-
X is a first order interval logic that (i) provides a metric for time (thus allowing specification
of qualitative and quantitative timing constraints); (ii) presents a linear implicit time model;
(iii) adopts a uniform manipulation of intervals from past to future for actions, events, event
ordering; (iv) present specific operators for defining temporal constraints including the counting
the occurrence of events; and (iv) provides decidability for a wide set of formula (non-temporal
quantifications must bind only variables with types over finite domains). In TILCO-X no explicit
quantification over the temporal domain is allowed and with the new operators this limitation
Is strongly less relevant since the demand of quantification has been reduced with respect to
the old TILCO version.

Since TILCO-X is particularly suitable for requirements analysis and the incremental spec-
ification of real-time systems. TILCO-X supports validation during all phases of the system
life-cycle by means of its formalisation in the automatic theorem prover Isabelle/HOL. This
allows validation for refinement and the proof of properties. Moreover, the final operational
validation is also supported by a TILCO-X Ezecutor, which allows execution and the model-
checking of systems specifications.
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