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Analysis of Optical Flow Constraints

Alberto Del Bimbo, Member, IEEE, Paolo Nesi, Member, IEEE, and Jorge L. C. Sanz, Senior Member, IEEE

Abstract— Different constraint equations have been proposed
in the literature for the derivation of optical flow. Despite of the
large number of papers dealing with computational techniques
to estimate optical flow, only a few authors have investigated
conditions under which these constraints exactly model the ve-
locity field, that is, the perspective projection on the image plane
of the true 3-D velocity. In this paper, these conditions are
analyzed under different hypotheses, and the departures of the
constraint equations in modeling the velocity field are derived
for different motion conditions. Experiments are also presented
giving measures of these departures and of the induced errors in
the estimation of the velocity field.

I. INTRODUCTION

RADIENT-BASED techniques for the estimation of
the projection of the 3-D motion on the image plane
[1]-[6], as opposed to spatio-temporal filtering [7]-[10] and
correspondence-based approaches [11], [12], are concerned
with the observation of brightness changes in the image plane.
The flow field of these changes is commonly referred to as
“optical flow” or “image flow” [1], [13], [14]. Optical flow
was originally defined as the solution of a constraint equation,
which is commonly referred to as the optical flow constraint
(OFC), and derived under the assumption that image brightness
ts stationary in every point of the image [1]. A modified
constraint equation, which is similar to OFC but includes the
divergence of the optical flow, was later proposed in [15]-[17].
This was defined assuming the conservation of the density of
image features, provided that their size remains constant in
time. However, as argued in [13], the feature density cannot
be substituted to the image brightness for a proper analysis. A
version of this constraint (modeling image brightness changes
instead of feature density changes) was proposed in [6] and
referred to as the extended optical flow constraint (EOFC).
Generally speaking, optical flow field as modeled by OFC
or EOFC and differs from the perspective projection of the 3-D
motion on the image plane, which is commonly referred to as
“velocity field,” “motion field,” or “displacement rate field.”
Since the velocity field is a purely geometric concept and the
optical flow concept is based on the observation of the changes
in the image brightness, in many cases, the optical flow only
represents an approximation of the velocity field [17], [13].
Two sources of approximation exist. The first is connected
to the techniques used for solving the constraint equations.
Since the constraint equations define an ill-posed model,
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additional constraints are needed to estimate the optical flow
field. Therefore, depending on the additional constraints and
computational techniques used, many different optical flows
can be computed that exhibit different behaviors in different
conditions, e.g., [1]-{5], [18). The second source of approxi-
mation depends on the extent to which the constraint equation
actually models the velocity field. Conditions under which the
velocity field is exactly modeled by OFC were analyzed in
[19] and [14] under orthographic and perspective projection,
whereas effects due to the absence of calibration of the
optical system were expounded in [13]. Considerations about
the opportunity of using the modified constraint were briefly
exposed in [16], [17], and [13]. Experimental comparisons
between estimations of the optical flow based on OFC and
EOFC were reported in [20] and [21] by using multipoint
computational techniques. A comparative evaluation between
OFC and EOFC was also reported in [22]. However, the
experiments reported in that paper were not supported by any
analytical demonstration, and results presented contrast with
the definitions of OFC and EOFC due to the coarse errors
produced by the computation of partial derivatives of the
image brightness.

In this paper, analytical expressions of the departures of
OFC and EOFC constraint equations in modeling the velocity
field under different conditions are derived. Effects of these
departures on the estimation of the velocity field are also
evaluated. The analysis is carried out for both cases of isotropic
and uniform illumination, considering effects of calibration
and noncalibration of the optical system. Conclusions derived
analytically are experimentally validated with synthetic test
image sequences.

The paper is organized as follows. In Section II, a short
review of basic concepts is reported. In Section III, the
conditions for the applicability of OFC and EOFC equations
for modeling the velocity field are analyzed. Analytical expres-
sions of the departures of the OFC and EOFC in modeling the
velocity field in most relevant cases of motion are derived and
discussed in Section IV. Experimental evidence of these results
is finally presented in Section V. Conclusions are drawn in
Section VI

II. BAsiC NOTIONS

A. The Velocity Field

The velocity field is defined as the perspective projection
on the image plane of the real 3-D object velocity [23].
Given a point P in the 3-D space identified by the vector
P = (X,Y, Z), its perspective projection on the image plane
with focal length Z = 1 is p = (x.y,1)", where «,y,1, are
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Fig. |. Reference systems of coordinates and the velocity field vectors
defined as the projection on the image plane of the true 3-D velocity.

taken with reference to the system of coordinates centered in
o’ (see Fig. 1). Therefore, the following relationship holds:
_ 1 P (N
p=Zt
The projection of the 3-D motion on the image plane, which
is commonly referred to as “velocity field,” is obtained by
taking derivatives on (1)

[ P-Z
p= Z(P P—— ) (2

where Z is the Z-axis unit vector. The 3-D motion of the
generic point P can be modeled as comprised of translational
and rotational velocity components

P=W+QxP 3)

where W = (W, Wy, Wy)' and 2 = (01,9,Q3)" are
the components of the instantaneous translation and rotation,
respectively. Substituting (1) and (3) in (2), two scalar equa-
tions are obtained which express relationships between the
components py,pp of velocity field p and the 3-D motion
components of point P

lW’l W Ql — )
= 0y — gy~ @
= v+ M~y ; G
. ”/VQ H/J l/Ql - 1‘92
P2 = 7 -y 7 + .LQg lQl Y 1 . (5)

B. The Image Brightness

The image brightness can be considered as the measure of
the irradiance of the scene on the image plane. According to
the geometric relationships shown in Fig. 2 and the above
notation, its expression under perspective projection is

E(x(t), y(t),t) =
N\ 4
P.Z
N,(P),N.(P ))Z(?)Z——EP.PQZ

where L(p(p,t), Ns(P),N.(P)) is the radiance of the scene;
p(p,t) is the albedo that describes the spatial variations of
the painted surface texture of the scene under observation; t is
the time; N, (P) is the unit vector that identifies the direction
of light source; N (P) is the unit vector normal to the scene
surface; D is the diameter of the lens; and the last term is the
fourth power of the angle « between the vector P and the Z
axis [24].

Lip(p. 1), ©)
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Fig. 2. Geometry of the optical system.

As pointed out by Horn in [25], the radiance can be regarded
as the product

s Ns(P),Ne(P)) = p(p, t) R(N:(P),N.(P))

)

of the albedo p(p.t) and the reflectance R(N (P),N.(P)),
which takes into account the variations of radlance due to
changes in the surface orientation with respect to the direction
of the light source illumination. Both these terms are functions
of the 3-D spatial coordinates of P.

The optical system can be calibrated considering its geom-
etry [25]. In this case, the irradiance can be considered to be
equal to the radiance

E((t), y(t). ) = L(p(p.1), N.(P). ®

From the point of view of dimensionality, the radiance L()
is the power per unit area per unit solid angle emitted by the
scene surface in a given direction, and the image brightness E
is the ratio between the power received by an image element
and the element size. Therefore, the image brightness is not a
point property but an energy density commonly expressed in
watts per meter squared [26].

L(p(p,t)

N.(P).

III. OpTICAL FLOW CONSTRAINT EQUATIONS

In this section, the two different constraints proposed in the
literature to derive the optical flow are analyzed, considering
conditions under which these exactly model the velocity field.

A. The Optical Flow Constraint

Originally, the optical flow has been defined as the solution
of a constraint equation: the optical flow constraint (OFC)
[1]. It has been derived under the assumption that the image
brightness in each image point is stationary with respect to ¢
(ie., dE/dt = 0)

dE.  OFEdr OF dy L 9E oF —0 ©)
At Ox dt | oy dt | ot
This equation can also be rewritten as
E,oi+ EByva+ E: =0 (10)

where the abbreviation for partial derivatives of the image
brightness has been introduced, and vy,v2 correspond to
dz/dt, dy/dt and represent the components of the local
velocity vector v (i.e., the optical flow) along the x and y
directions, respectively. According to the notation introduced,
(9) can be rewritten as

VE(p,t) v+ E(p,1) = 0. (an
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The OFC equation alone does not provide enough con-
straints to determine the optical flow components (it is an
ill-posed problem [1], [27], [18]). In fact, it can be directly
used only to estimate the optical flow component parallel to
the image brightness gradient VE(p,t) [14]

E, VE

V) = e e

(12)
IVE| IIVE]

where £ = E(p,t), and % is the unit vector identifying
the direction of VE if VE # 0, and dE/dt = 0. The
indeterminacy in estimating the optical flow can be considered
an instance of the well-known problem of aperture [1].

1) Considerations About the OFC: The relationships be-
tween the optical flow as modeled by the OFC and the velocity
field were analyzed and discussed by several authors.

Schunck pointed out simplifications about scene surfaces
and illumination that justify the OFC equation from the physics
point of view but without giving any analytical evidence.
Specifically, under orthographic projection, in [1], [15], [28],
he required that i) the perceived change in image irradiance at
each point in the image plane is entirely due to translational
motton, and ii) the image must be smooth except at a finite
number of boundary discontinuities.

It was later clarified that the applicability of the OFC is
ensured if the changes in image irradiance in each point of the
image are only due to the motion of image pattern and not to
the changes in pattern due to reflectance effects (i.e., deforma-
tions due to changes in direction of the illumination source and
changes in direction of the normal of the surface) [19], [17].
Such a condition is satisfied by “the image of a translating,
diffuse object with distant light sources” [29], where “diffuse”
should be synonymous with Lambertian surfaces (e.g., the
surfaces irradiate the received radiation in outward directions),
and “distant light sources” should be an approximation of
uniform illumination (the direction of illumination is the same
in all points, which can be approximated by having a point-
source of light very far from the scene).

A more formal analysis was developed by Verri and Poggio
in [14]. They found that under perspective projection, if the
object motion is translational (with a calibrated optical sys-
tem, uniform illumination, and scene objects with Lambertian
surfaces), then the component of velocity field parallel to the
VE is equal to the optical flow as derived from the OFC.
They also analyzed the case of nonuniform illumination with
translational and rotational motion, observing that in these
cases, the velocity field is not equal to optical flow.

In [13], Nagel demonstrated that under perspective projec-
tion with isotropic constant illumination, Lambertian surfaces,
and a noncalibrated optical system, if the displacement field
(i.e., the velocity field) is substituted in the OFC equation,
then dE/dt # 0. This shows that the OFC does not exactly
model the velocity field. The term that makes dE /dt # 0 takes
into account geometric and radiometric effects mainly due to
noncalibration of the optical system.

A common assumption for ensuring the applicability of
the OFC is that the moving object must be covered by a
significative pattern. Otherwise, since, in that case, F, and E,,
are equal to zero, the optical flow cannot be estimated [1], [19],
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TABLE 1
SUMMARY OF THE MOTION CONDITIONS THAT GUARANTEE THE EQUALITY
BETWEEN THE OpTICAL FLOW (AS DEFINED BY THE OFC) AND THE
VeLociTy FIELD (i.e., v = p_ ) UNDER CONDITIONS OF LAMBERTIAN
SURFACES, LocALLY RIGID PATTERN, AND CONSTANT ILLUMINATION

Type of projection Isotropic illumination Uniform illumination
orthographic all
perspective without calibration || only rotational around Z~a.xj_s1

perspective with calibration all

only translational

none
only translational

[25]. E; and E, could be different from zero in the presence
of perspective projection and/or nonisotropic light sources. In
fact, in these situations, changes in image brightness can be
due only to reflectance effects instead of object motion.

These results are resumed and completed in the rest of this
section for isotropic and uniform illuminations and calibrated
and noncalibrated optical systems. It is assumed that the radi-
ance is independent of surface orientation—i.e., that objects
have Lambertian surfaces. Conclusions are summarized in
Table I.

2) Isotropic Light Source: a) In the case of perspective
projection, if the optical system is calibrated, then the image
brightness takes the form

E(p,t) = L(p(p. 1)) = p(p,t)

and the total derivative of the image brightness £ = E(p,t)
with respect to ¢ is expressed by

dE

— =Vp(p,t) - p+ pe(p. t).

dt a3

If the patterns on the moving objects in the scene are supposed
to be locally rigid (i.e., dp(p.t)/dt = 0), (13) modeling the
velocity field assumes the form

Vp(p.t) - P+ p:(p,t) =0 (14)

which is structurally equal to the OFC.
Therefore, in the case of isotropic light source, the OFC is
an appropriate model for the velocity field without imposing
any restrictions on object motion.

b) In the case of perspective projection, if the optical system

is noncalibrated, then (6) is rewritten as
2 714
E(p,t) :p(P-t)I(D> ®-2

\T) e

T) o (15)

In these conditions, the OFC does not model the velocity
field. In fact, the total derivative of the irradiance with respect
to t (see Appendix A) assumes the form

dE . r(D\* (P Z)*
— = (Vp(p,t)- W)= =) ===
== o) b+ no) (7))
P-Z P.P
w(PE_ PPy
+ Z PP
The first term on the right side vanishes if the pattern on the
moving objects in the scene is supposed to be locally rigid.
In this case, (16) becomes

dE P.Z P.P
dt”4E( Z _P-P>

(16)

(17)
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which is the same expression as the one obtained by Nagel in
[13] following a different derivation. It should be noted that
typically, P, Z, and P are not available, and thus, (17) cannot
be used for estimating the velocity field. The right side of (17)
is only due to the noncalibration of the optical system and
takes into account the perspective projection geometry as well
as radiometric aspects.
By using (3), (17) can be rewritten as

i _
dt

(W2 QxPZ2 P-W PQxP
z Z PP PP )

(18)

The third term on the right side is due to the cosine of the
angle between the vector P and the vector of the instantaneous
translational motion W (see Fig. 1). If these two vectors form
a right angle, this term will be zero, and (18) will reduce to
a simpler expression.

Simplifying and expanding the motion components (3), the
following expression for dE/dt is obtained

@ — 4E Wy 4 YO, B X9 _ Wi X +WoY + W, 2
dt Z Z Z X24+Y24+ 22
(19)

From this expression, it can be seen that in the absence of
calibration, the OFC can be used properly to model the velocity
field due to rotational motions around the Z-axis (23 # 0).
In fact, in this case being W) = 0, Wy = 0,W3 =0, Q; =0,
and Q; = 0, the result is dE/dt = 0.

Equation (19) can also be approximated by the OFC equa-
tion when the following occur:

1) The optical system has a very small aperture, and the
moving objects in the scene are very far from the center
of the reference coordinate system. In this case, the effect
due to the lack of calibration can be neglected, and the
right side of (19) reduces to zero.

i) X and Y are close to zero (the points of the moving objects
are close to the Z-axis). In this case, the fourth term in
(19) reduces to —W3/Z, and thus, the right side of (19)
equals zero.

¢) If the system is under orthographic projection and the
moving object has a superimposed locally rigid pattern, then
(14) also holds. Therefore, under these conditions , the velocity
field is equal to the optical flow as derived from the OFC.

3) Uniform Light Source: a) In the case of perspective pro-
Jection, if the optical system is calibrated, then the image
brightness assumes the form (8) with the radiance expressed
by (7) and the reflectance equal to N¢(P) - N,, and hence

E(p.t) = L(p(p, ). No(P),Nc) = p(p, t)No(P)-Ne. (20)

Taking the total derivative of the above expression, we have

% - (N~(P) . N[.)(Vp(p’ t) . P + Pt(p, f))

+ p(p,t)(N. - @ x N,(P)). 2n

If the motion is only translational, and the patterns on the
moving objects in the scene are supposed to be locally rigid
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(i.e., %”—) = 0), the terms on the right side of (21) are both
equal to zero, and thus, dE/dt = 0. Since (21) is structurally
equal to the OFC, this demonstrates that the OFC can be used
properly for modeling the velocity field also under perspective
projection, provided that the optical system is calibrated. In
addition to what is stated in [14], it is also requested that the
patterns in the scene are locally rigid.

b) In the case of perspective projection, if the optical system
is noncalibrated, then the image brightness assumes the form

7 (D\?(P.2Z)*

E(p,t) = p(p, )(N(P) ~N€)~<—) T4

7)oz @

and its total derivative is (see Appendix B)

E (P-Z P.P 7 (D\? (P - Z)*
m—‘*E(‘z——ﬁ)”(“”z(ﬂ PPy

(Ne - 2 x N (P)). (23)

The structure of (23) differs from (17) only by the presence
of the last term. The term N, - & x N (P) of (23) vanishes
when the following hold:
i) The motion is translational (i.e., £2 = 0).
ii) The unit vector normal to the scene surface N (P) is
parallel to € or N..
iii) €2 is parallel to the direction of light source N...

Under any of these conditions, (17) and (23) are structurally
equal. Therefore, there do not exist any motion conditions in
which dE/dt (in the form of (23)) is equal to zero. In this case,
the optical flow is always different from the velocity field.

c) If the system is under orthographic projection and the
moving object has a superimposed locally rigid pattern, then
the OFC properly models the velocity field, as pointed out in
[1] and [15].

B. The Extended Optical Flow Constraint

As noted by Schunck, the OFC is very similar to the
continuity equation of fluid dynamics that derives from the
law of conservation of the mass for incompressible fluids
[30]. Based on this fact and observing that the premises on
which OFC holds are very restrictive to be met in practice,
in [15], Schunck proposed a modified optical flow constraint
equation. From the structural point of view, this constraint
equation was similar to the OFC except that it was derived
for image feature densiry N and included an additional term
containing the divergence of the optical flow

ON
V-(Nd)+Wf(l 24
where
V- (Nd)=d-VN + NV .d. 25)

Equation (24) defines an alternative “optical flow,” d, which in
general is different from the one obtained by the OFC equation.

Equation (24) can be rewritten as
Npdi + Nydy + Ndy, + Ndyyy + Ne =0 (26)

where (dy,d») are the optical flow components of d on the
image plane.
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Schunck, in [15]-[17], affirmed that this modified constraint
equation would be a better model than the OFC in the presence
of perspective projection especially for rotational motions
if the light source is isotropic and the scene surfaces are
Lambertian. A formal derivation for the modified constraint
equation was presented by Schunck in [16] and [17]. This

derivation was based on the conservation of the density of

the image brightness features N, assuming that the size of the
features remains constant with respect to time (no deformation
due to motion and/or reflectance exists). He noticed that the
modified constraint equation can be applied to the image
brightness £ instead of N only when the illumination is
isotropic. In fact, in this condition, the image brightness
behaves like a density, and the OFC cannot be used.
Arguments supporting this theory were developed by Nagel
in [13], who argued that features are themselves entities
derived from spatial variations of image brightness and cannot
be substituted for a proper analysis of image brightness. The
image brightness is the limit for the vanishing of the ratio
between the power received by an image plane element and
the size of this element [24], [25] (i.e., it is an energy density
usually expressed in Watts per meter squared). Based on these
considerations, in [6], a new constraint equation, called the
extended optical flow constraint (EOFC), was introduced

Eydi + Eydo + Edy, + Eday + B, =0 27

where d, and d, are the components of the optical flow vector
d. From the point of view of the constraint structure, the EOFC
(27) differs from the OFC (10) only by the term involving the
divergence of the optical flow field vector (F'V -d) and differs
from (26) because the EOFC models the changes in image
brightness F, instead of image feature density N.

OFC and EOFC have been compared by using the same
computational techniques in [20] and [21]. Performances with
respect to other selected OFC-based computational techniques
were also reported. EOFC has proved to be superior to the OFC
in certain motion conditions in the absence of calibration.

IV. MODELING VELOCITY FIELD BY OFC AND EOFC

The optical flow fields derived from (11) and (27) do not
model exactly the velocity field except in special conditions
as discussed in the previous sections. Generally speaking,
substituting p for v in (11) and (27), we have

VE -p+ E; = Eote.
VE p+EV - p+E = Eeote

28)
29
where &, and E.of- are the departures of the OFC and EOFC
equations in modeling the velocity field, respectively, and
depend on p, P and E. By taking the difference between (28)
and (10) and between (29) and (27), the following expressions
are obtained:
VE - (P - V) = gof(‘-,
VE-(p—d)+EV- (b d) = Eute

(30)
31N
from which errors in estimating the velocity field can be

derived for the cases of OFC and EOFC as a function of
the departures.
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For the OFC, developing the scalar product of (30), the error
in estimating the velocity field is given

gu fc

TV E] con(d) G2

Tote = [|(p = V)I| =
where f is the angle between V E and the difference between
the correct velocity field and the estimated optical flow. From
the above equation, it can be noted that 7),¢. vanishes with &,
orif VE is very large. Since 7).t depends on the angle f, only
the component of 7),¢., which is parallel to the V£, can be
directly estimated (for cos(f) = 1, if ||VE|| # 0)

50 fe VE

Note | = = i (33)
LT VENVE]

Therefore, if the value of the departure from the model .
is known, then the error 7j,¢ | can be estimated. It should be
noted that 7),¢., equal to zero (with VE # 0 and cos(f) # 0)
does not guarantee that the velocity field p and the optical
flow v are equal but only that their components parallel to
VE are (e.g., pi = V1)

For the EOFC, (31) is a partial differential equation de-
scribing an ill-posed problem that cannot be solved directly
in order to obtain the field (p — d). An approximation of the
error in the estimation of the optical flow along the direction
of VE can be obtained by following the same derivation as
above. Thus

Ceote VE

Heofe R R TY =gy rr——y 4
tleote L = IV E] IVE] G

where the term % has been neglected with respect to
Eoolc
IVEL"

For the sake of simplicity, in the following, we will refer to
the conditions 7jore | = 0 OF 7Jear. ;. = O when the optical flow
is said to be equal to the velocity field.

In the rest of this section, analytical expressions for the
departures of the OFC and EOFC in modeling the velocity
field (Eofe and Eeupe) in the presence of different motion
conditions are derived and discussed for the two cases of
isotropic and uniform light sources. The derivations are based
on the assumptions of Lambertian surfaces and noncalibrated
optical system.

A. Isotropic Light Source

If the scene patterns are locally rigid, then expression (19)
is the exact analytical formulation of dE/dt. Let p = (p1,p2)
be a velocity field vector for the image sequence; then, the
following two expressions

Soﬁ' = Er[)l + Eyp? + EY

— AR & n Y B XQ, B Wi X + WoY + W52
- A A A X2+VY24 22
(35)
and
Eeote = Eepr + Eypa + Epr. + Epoy + E, (36)
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define a measure of the departure of the OFC and the EOFC
equations, respectively, when these are used to estimate the
velocity field (p1, p2).

By using (4) and (5), the following relationship holds:

. . . W
v- P =P + P2y = -2 :

Y2 82
P AL e

Z { ! (37

and the analytical expression of the departure Eeor. can be
directly derived from (36). (37), and (35)

[’V; Y, )(Q-z
Eeote = I\ 2 + —— —
‘ < zZ 'z Z
7/ ‘W’l X+ WoY + Ws2
X21y2iz?

(38)

Therefore, the following conclusions can be derived regarding
the departures of OFC and EOFC in modeling the velocity
field.

1) Rotation Around the Z-Axis: In the case of pure rotation
around the Z-axis (ie., Wy = 0, Wo = 0, Wy =0, 1 =
0.y = 0) the term on the right side of (19) is null. Therefore,
the departures of the OFC and EOFC in modeling the velocity
field are both equal to zero

Eote = Evate = 0.

2) Translation Parallel to the Image Plane: In the case of
translational motion parallel to the image plane (i.e., W3 = 0,
Q; = 0, Qy = 0), the departures of the OFC (35) and EOFC
(38) in modeling the velocity field are both equal to

Wi X + WY
X2+Y2i422)

Eote = Eeote = 4E (— (39)
In the case in which W X and W,Y are equal in module but
different in sign, both £,¢- and E.op. vanish.

3) Expansion or Contraction: In the case of pure expansion
or contraction (i.e., W; = 0, Wy = 0, 1 = 0, (2o = 0), the
departures of the OFC (35) and EOFC (38) in modeling the
velocity field are. respectively

AWsZ )

Wy
g() fe — E — - 0 xro . ro
! ( 7z XIT4YZyZ?

20y AWsZ
gé’() .(' = E - —“7——‘_
‘ ( 2D G Z?>

due to the optical system geometry since Z is always greater
than zero. The above expressions can be rewritten as

7.
gnf(‘ = 1EM7J(1 - /j)
Ws/1
Ceote = 4E 7 (E - ,»3>

where 3 = Z2/(X? 4+ Y? + Z?), and hence, the following
relationships hold:

[Eote] > 1Ecote] If 0 < 3 <3/4.
‘gnfrl = Igo()frl if 1} = 3/41
l&m-. < \EM,[’(~| if 3/4 < <1,
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Considering the perspective projection law (1), the expression
8= Z%(X?+Y?+ Z?) defines the surface of a sphere in
the 3-D space, which projects on the image plane the circle

lZ(l _ 'H)
g

For 3 = 3/4, we have the circle x? + y? = I—; Hence, to
estimate the velocity field, the OFC is a better model than the
EOFC for the points that are close to the center of the image,
whereas for the points that are farther than {/\/3 from the
center, the EOFC is a more accurate model

; ; {
it a2 +y2 > 7
l
if o4y = —
Y \/3

if Va?Z +y? < ——l— then |Eoee] < |€eote].
73

It should be noted that the limit on the image plane depends
only on the optical system geometry.

4) Rotation Around X - and Y -Axes: In the case of com-
posite rotation around .X- and Y -axes (i.e.. Wy = 0, Wy = 0,
W3 = 0), the following expressions for the departures of the
OFC and EOFC in modeling the velocity field are obtained:

2?4y’ =

then ‘£< e I > |£«=0f(‘ [

then  |Eope| = |Ecote]

YQ,  XQ, YO, X9,
g(] c = 4F T T eofc = | — -
! ( Z 7 ) Eeat E( 7 Z

which lead to the following relationship showing that the
EOFC provides a better estimation than the OFC according
to a multiplicative factor equal to 4

|€nh | = 4‘£(>0f(‘|-

Remarks: According to the above discussion, it can be
observed that the departure of the EOFC in modeling the
velocity field is in most cases less or equal to the departure
of the OFC. In particular, the EOFC is verified to be a more
appropriate model in the presence of motion along the Z-
axis (where /a2 4+ y? > %) and rotations around the X-
and Y -axes. Moreover, to some extent, the above relationships
demonstrate that the EOFC model compensates the eftects that
are due to the noncalibration of the optical system.

B. Uniform Light Source

If the condition of “isotropic light source” is substituted with
the condition of “uniform light source,” the total derivative of
the image brightness assumes the form expressed by (23). The
structure of (23) differs from (17) only by the presence of the
last term. Since this term is present in both &t and Eeofe, the
relationships between the departures of the OFC and EOFC
models are equal to those presented for the case of isotropic
light source.

V. EXPERIMENTAL RESULTS

Relationships between the departures of the OFC and EOFC
in modeling the velocity field have been tested by using image
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(a) (b)

Fig. 3. Synthetic sphere under (a) isotropic and (b) uniform illumination
(50.0 x 50.0 units).

sequences generated in a controlled environment. The syn-
thetic sequences have been created considering the perspective
projection, the camera geometry, the reflectance characteris-
tics, and the conditions of illumination. A high resolution on
pixel gray values (32 bits) has been used to approximate a
continuous image brightness model and thus reduce the errors
introduced in the computing of partial derivatives. It was
experimentally found that computational errors by using 8 bits
of resolution are larger than those originated by the departures
of the OFC and EOFC in modeling the velocity field.

The test sequences consist in the projection of a continu-
ously patterned sphere on a discrete image plane of 128 x
128 pixels corresponding to 50.0 x 50.0 spatial units (see
Fig. 3). The sphere is moved in the 3-D space according to
different motion conditions. In the reported experiments, the
focal length [ is equal to 50 units, the dimension of the lens D
is equal to 75 units, the radius I? of the sphere is equal to 40
units, and the sphere is placed at the first time instant (4 = 0),
in P = (0, 0, 100). According to the perspective projection,
the sphere appears on the image plane as a circle with a radius
of 20 wnits (IX/Z = 50 - 40/100). The albedo of the sphere
consists in a plaid pattern with a period equal to 25/(27 RR)
and an amplitude equal to 22 gray level units around the basic
value of 90 unit. The surface of the sphere is Lambertian.

The estimates of the departures of the OFC and EOFC
models are presented for the cases of isotropic and uniform
light sources. For the cases of uniform light source, N, is
taken equal to (0, 0, 1). Types of motions analyzed are as
follows:

« translational motion parallel to the image plane: W =

(0.4.-0.4,0) and Q@ = 0
« rotational motion around the Z-axis—i.e., parallel to the
image plane—W = 0 and Q = (0, 0, 0.03)
« rototranslational motion parallel to the image plane: W =
(0.2, -0.2, 0) and 2 = (0, 0, 0.015)
« expansion motion (translational along the Z-axis): W =
0,0, I.L1)and & =0
« rotational motion in the 3-D space: W = (0, 0, 0) and
Q = (0.005, —0.005, 0).
The departures of the OFC and EOFC models have been
estimated by using the following discrete equations: f
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TABLE 11
DePARTURES OF OFC anp EOFC IN MODELING THE
VELOCITY FIELD (MEAN VALUES AND VARIANCES)
(ISOTROPIC ILLUMINATION, NONCALIBRATED OPTICAL SYSTEM)

isolrupic illurmination - non-calibrated optical system
Motion Lofe | Ceope [ Var(Eope) [ Var(Eeuse)
Translational (W3 = 0) 0.401 | 0.401 0.062 0.062
Rotational around Z-axis 0.035 | 0.035 0.002 0.002
Parallel to the image plane 0.202 | 6.202 0.014 0.014 |
Expansion 0.336 | 2.288 0.026 0.266 |
Rotational around X- and V-axes [ 0.354 J 0.096 0.050 0.007

Eote(w,y, t) = Ep(w oy )pr(e.y. t)

+ E,(w.oy, Opae,y ) + Ey(ay, t),
ooty y.8) = Eplw oy )pr (2, y. 1)

+ By (g E)pa (e, y. 1)

+ E(e.y, )pre(e. y. b)

+ E(n oy, )Py, (e, 9. 8) + Ee(a,y, t)

where partial derivatives of the image brightness are computed
by using central differences (e.g.. F.(x,y.t) = (FE(x +
1,y,t) — E(x — 1.y.4))/2). The components of velocity field
and their derivatives are estimated by means of (4) and (5)
on the basis of the 3-D motion components, which are known
from the generation of the test sequences.

A. Isotropic Light Source

In Table 1I, the mean values of the departures of the OFC
and EOFC in modeling the velocity field are reported in the
case of Lambertian surfaces with a noncalibrated optical sys-
tem. Mean values of the departures are estimated disregarding
the boundaries of the sphere where wide errors are present due
to discontinuities (i.e., £ = 1/M Z;.M |€|, where M defines
the area of projection of the sphere without boundaries).
Results obtained in the first three motion conditions agree with
the conclusions derived in Section IV.

In the case of pure expansion, results also agree with
the considerations derived in Section IV. In this case, the
departures of the OFC and EOFC models depend on the
distance from the focus of expansion. In this test sequence,
the focus of expansion was set in the center of the coordinate
system (the center of the image plane) and /3 = 28.8
units was used (the sphere appears on the image as a circle
with a radius of 20 units). Tests have been carried out for
different values of focal length {. Results for [ = 10 (i.e.,
1/v/3 = 5.78) are reported in Fig. 4 as a function of the
distance from the center of the image. In this case, the
EOFC produces better results then the OFC only in those
points farther than //+/3. The dotted area marks regions where
discontinuities are present, and therefore, traces in this area do
not represent the phenomena under discussion. In Fig. 5, gray-
level maps of OFC and EOFC departures for expansion motion
are presented, where darker points represent higher values of
departures.

By observing Table 1, it can be noted that in the case of pure
rotation around the X- and Y -axes (i.e., 21 # 0 and €25 # 0),
the EOFC is better than OFC for modeling the velocity field
(the ratio of 1/4 can be observed). In addition, in this case, the
OFC and EOFC departures are presented as gray-level maps
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Fig. 4. Behavior of the departures of the OFC and EOFC in modeling the
velocity field as a function of the distance from the image center (pure
expansion motion with 7 = 10 units, isotropic illumination, noncalibrated
optical system),

(a) (b)

Fig. 5. Maps of the departures of (a) OFC and (b) EOFC in modeling the
velocity field (pure expansion motion with / = 50 units, isotropic illumination,
noncalibrated optical system).

(a) (b)

Fig. 6. Maps of the departures of (a) OFC and (b} EOFC in modeling
the velocity field (pure rotational motion around .- and Y -axes, isotropic
illumination, noncalibrated optical system).

(see Fig. 6). By observing these maps, it can be noted that the
distribution of the departures in the 2-D plane is in accordance
with the expressions of the departures as derived in Section IV.

Table Il shows the departures of the OFC and EOFC in
modeling the velocity field in the case of a calibrated optical
system estimated in the same conditions of Table II. It can
be noted that the OFC model performs better than the EOFC
in all motion conditions in accordance with results derived in
Section II.

In Tables IV and V, mean errors in estimating the velocity
field by using OFC and EOFC are presented for both cases
of calibrated and noncalibrated optical systems. Mean errors
are evaluated according to 77, = 1/M Zf\[ % where
M defines the area covered by the projection of the sphere
disregarding boundaries, and £ is the departure of the OFC
or EOFC in modeling the velocity field. Although VE has
a nonuniform distribution on the image plane, it can be
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TABLE I
DEPARTURES OF OFC AND EOFC IN MODELING THE
VELOCITY FIELD (MEAN VALUES AND VARIANCES)
(IsOTROPIC [LLUMINATION, CALIBRATED OPTICAL SYSTEM)

isotropic illumination - calibrated optical system
Motion Eoge | Leoge || Var(€ope) | Var(Eeose)
Translational (W, = 0) 0.092 | 0.002 0.008 0.009
Rotational around Z-axis 0.044 | 0.044 0.004 0.004
Parallel to the image plane 0.034 | 0.034 0.002 0.002
Expansion 0.024 | 3.012 0.001 0.054
Rotational around X-and Y-axes || 0.056 | 0.320 0.029 0.122
TABLE 1V

ERRORS IN THE ESTIMATION OF VELOCITY FIELD BY MEANS OF
THE OFC anD EOFC (MEAN VALUES AND VARIANCES)
(ISOTROPIC ILLUMINATION, NONCALIBRATED OPTICAL SYSTEM)

isotropic illumination - non-calibrated optical system
Motion Togos | Meofer || Vor(ase ) | Var(neose )
Translational (W3 = 0) 0.0781 ] 0.0781 0.0082 0.0082
Rotational around Z-axis 0.0055 | 0.0055 0.0001 0.0001
Parallel to the image plane 0.0401 | 0.0401 0.0023 0.0023
Expansion 0.0677 | 0.4844 0.1525 0.6418
Rotational around X- and Y-axes || 0.0697 | 0.0179 0.0087 0.0005
TABLE V

ERRORS IN THE ESTIMATION OF VELOCITY FIELD BY MEANS OF
THE OFC anD EOFC (MEAN VALUES AND VARIANCES)
(ISOTROPIC ILLUMINATION, CALIBRATED OPTICAL SYSTEM)

isolropic illumination - calibrated optical system
Motion floger | Beoger | V8r(Nage)) | Var(neose, )
Translational (W = 0) 0.0120 [ 001230 || 0.0001 0.0001
Rotational around Z-axis 0.0055 | 0.0055 | 0.0001 0.0001
Parallel to the image plane 0.0044 [ 0.0044 |~ 0.0001 0.0001
Expansion 0.0033 [ 0.5278 [ 0.0001 0.3757
Rotational around X - and ¥ -axes || 0.0070 | 0.0528 | 0.0001 0.0082

TABLE VI
DEPARTURES OF OFC AND EOFC IN MODELING THE
VELOCITY FIELD (MEAN VALUES AND VARIANCES)
(UNIFORM JLLUMINATION, NONCALIBRATED OPTICAL SYSTEM)

uniform illumination - non-calibrated optical system
Motion Eofe | Eeope | Var(&ope) * Var{Eeop)

[ Translational (W; = 0) 0349 (0349 0043 | 0043
Rotational around Z-axis 0.028 [0.028 [ 0.001 0.001
Parallel to the image plane 0.176 [0.176 | 0.009 0.000 |
Expansion 0.301 [ 2.158 | 0.017 0.414

[ Rotational around X- and Y-axes || 0.165 | 0.073 | 0,011 0.006

noted that the relationships between the departures are also
conserved for the estimation errors of the velocity field.
Therefore, in the case of a calibrated optical system, the OFC
is a better model than the EOFC for estimating the velocity
field (see Table V).

B. Uniform Light Source

In Table VI, the mean values of the departures of the
OFC and EOFC are reported when the optical system is
noncalibrated. In addition, in this case, results agree with
conclusions as derived in Sections HI and IV.

Comparing Tables II and VI, it can be noted that the
departures estimated in the case of a uniform illumination are
always smaller that those estimated in the case of an isotropic
illumination. This is due to that fact that under a uniform
illumination, the image irradiance is reduced by a factor that
depends on the scalar product N, (P) - N, which is always
less than 1. This reduction reflects on the departure values
since these directly depend on the image irradiance.

Table VII shows the departures of the OFC and EOFC in
modeling the velocity field estimated in the same conditions
as Table VI, except that in this case, the camera has been

T ————
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TABLE VII
DepPaRTURES OF OFC aNp EOFC IN MODELING THE
VELOCITY FIELD (MEAN VALUES AND VARIANCES)
(UNIFORM ILLUMINATION, CALIBRATED OPTICAL SYSTEM)

. uniform idlumination - calibraled optical system
Motion Eoge | Leage || Var(€ype) | Voar(€eope)
Translational (Ws = 0) 0.045 [ 0.045 | 0.003 0,003
Rotational around Z-axis 0.035 | 0.035 | 0.002 0.002
| Parallel to the image plane 0.028 | 0.028 | 0.001 0.001
[ Rxpansion 0016 [2.662 | 0.001 | 0.167
[ Rotational around X -and Y-axes || 0.176 { 0.447 || 0.0i9 | 0.080
TABLE VIII

ERRORS IN THE ESTIMATION OF VELOCITY FIELD BY MEANS OF
THE OFC AND EOFC (MEAN VALUES AND VARIANCES)
(UNIFORM ILLUMINATION, NONCALIBRATED OPTICAL SYSTEM)

[ uniform dllumination - non-calibrated optical system

Motion Uogea | Beoes || Variose,) | Var(neose,) |
“Translational (Ws = 0) 0.0769 [ 0.0769 | 0.0095 0.0095
Rotational around Z-axis 0.0055 { 6.0055 || 0.0001 0.0001
Paralle] to the image planc 0.0412 [ 0.0412 | 0.0041 0.0041
Expansion 0.0659 ] 0.4570 | 0.0073 0.1929

| Rotational around X- and V-axes || 0.0371 | 0.0185 | 0.0034 0.0012

TABLE IX

ERRORS IN THE ESTIMATION OF VELOCITY FIELD BY MEANS OF
THE OFC aND EOFC (MEAN VALUES AND VARIANCES)
(UNIFORM ILLUMINATION, CALIBRATED OPTICAL SYSTEM)

T uniform illumination - calibrated optical system

Motion Toser | Reojer || Vor(nose, ) | Var(eose, )
Translational (W = 0) 0.0124 ] 00124 ]| 0.0002 0.0002
“Rotational around Z-axis G.0055 | 0.0055 || 0.0001 0.0001

[ Parallel to the image plane 0.0045 | 0.0045 || 0.0001 0.0001
1 Expansion 0.0032 ] 0.5393 [ 0.0001 0.5452
Rotational around X - and V-axes | 0.0451 | 0.0880 | _ 0.0035 0.0167

calibrated. In addition, in this case, the OFC model performs
better than the EOFC in all motion conditions.

In Tables VIII and IX, errors in estimating the velocity field
by using OFC and EOFC are presented for both calibrated and
noncalibrated optical systems. The considerations derived in
the case of isotropic illumination for the relationships between
the estimation errors of velocity field still hold in this case.
Therefore, in these conditions as well, the OFC is a better
model than the EOFC for estimating the velocity field

VI. CONCLUSION

Conditions have been analyzed under which different optical
flow constraint equations model the velocity field. Analytical
expressions of departures of distinct constraints in modeling
the velocity field have been derived for different motion
conditions under different types of illumination for both cases
of calibration and noncalibration of the optical system. Exper-
imental evidence has been reported, showing the mean errors
induced by these departures in the estimation of the velocity
field. Results show that in the presence of noncalibrated
optical systems, the EOFC is a better model than the OFC
for estimating the velocity field for rotational motion around
the X- and Y-axes and for expansion motion in the outer
parts of the image, as opposed to OFC. This is due to the fact
that the EOFC compensates, to some extent, the absence of
calibration in the optical system. In the presence of a calibrated
optical system, the OFC model is preferable to the EOFC
to estimate the velocity field for all motion conditions. The
same conclusions apply to both cases of isotropic and uniform
illuminations.
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APPENDIX A

In this appendix, the total derivative of the image brightness
is evaluated under the assumptions of an isotropic light source,
Lambertian surfaces, and locally rigid patterns. In these con-
ditions, the image irradiance has the form reported in (15).

Therefore, its total derivative is
dE _dp(p.t) 7 (D Q(P-Z)‘1
dt —  dt 4\l ) (P-P)?
d{=(D\(P-Z)
t — — -
oo 4(1)(P-Py
dE _dp(p.t) 7 (D\* (P - 2)?
dt —  dt 4\l ) (P-P)?
7 ( D\ dB
FADAN i it
o} (F) 5
where
/AT
po (P2
(P-P)?
and
B _ (P-2)'(P.Z PP

- C(P-P2\ zZ PP

Since the patterns in the scene are supposed to be locally rigid

(i.e., ‘l”(i‘: ) — ()), the obtained expression for dE /dt is equal
to (17).

APPENDIX B

In this appendix, the total derivative of the image brightness
is evaluated under the assumptions of uniform light source,
Lambertian surfaces, and locally rigid patterns. In these con-
ditions, the image irradiance has the form reported in (22).
Therefore, its total derivative is

dE dp(p,f) w (P - Z)4
ar T ar (NP N I( ) (P-P)?
+ p(p.t)(N, (P Npg( )
"y JN,
(P NN |,

Taking into account the results obtained in Appendix A, since

dpfg ) — (0, the expression for dE/dt is
dt VA PP p(p.t a\7
(P-z)
('f,T)g(Nf Q x N,(P)).
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