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Analysis of Optical Flow Constraints 
Alberto Del Bimbo, Member, IEEE, Paolo Nesi, Member, IEEE, and Jorge L. C. Sanz, Senior Memher, IEEE 

Abstract-Different constraint equations have been proposed 
in the literature for the derivation of optical flow. Despite of the 
large number of papers dealing with computational techniques 
to estimate optical flow, only a few authors have investigated 
conditions under which these constraints exactly model the ve­
locity field, that is, the perspective projection on the image pIane 
or the true 3-D velocity. In this paper, these conditions are 
analyzed under different hypotheses, and the departures of the 
constraint equations in modeling the velocity field are derived 
for different motion conditions. Experiments are also presented 
giving measures of these departures and of the induced errors in 
the estimation or the velocity field. 

I. INTRODUCTION 

GRADIENT-BASED techniques for the estimation of 
the projection of the 3-D motion on the image pIane 

[1]-[6], as opposed to spatio-temporal filtering [7]-[ lO] and 
correspondence-based approaches [II], [12], are concemed 
with the observation of brightness changes in the image piane, 
The ftow field of these changes is commonIy referred to as 
"optical ftow" or "image ftow" [I], [13], [14], Optical ftow 
was originally defined as the solution of a constraint equation, 
which is commonly referred to as the optical ftow constraint 
(OFC), and derived under the assumption that image brightness 
is stationary in every point of the image [I]. A modified 
constraint equation, which is similar to OFC but incIudes the 
divergence of the optical ftow, was later proposed in [15]-[ 17], 
This was defined assuming the conservation of the density of 
image features, provided that their size remains constant in 
time. However, as argued in [13], the feature density cannot 
be substituted to the image brightness for a proper anaIysis, A 
version of this constraint (modeling image brightness changes 
instead of feature density changes) was proposed in [6] and 
referred to as the extended optical ftow constraint (EOFC). 

Generally speaking, optical ftow fieId as modeled by OFC 
or EOFC and differs from the perspective projection of the 3-D 
motion on the image piane, which is commonly referred 10 as 
"velocity fieId," "motion field," or "displacement rate field," 
Since thc velocity field is a purely geometric concept and the 
optical ftow concept is based on the observation of the changes 
in the image brightness, in many cases, the optical ftow only 
represents an approximation of the velocity field [17], [13 J. 

Two sources of approximation exist. The first is connected 
to the techniques used for solving the constraint equations, 
Since the constraint equations define an ill-posed mode!, 
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additional constraints are needed to estimate the optical ftow 
field. Therefore, depending on the additional constraints and 
computational techniques used, many different optical ftows 
can be computed that exhibit different behaviors in different 
conditions, e.g., [1]-[5], [18], The second source of approxi­
mation depends on the extent 10 which the constraint equation 
actually models the velocity field. Conditions under which the 
velocity field is exactly modeled by OFC were analyzed in 
[19] and [14] under orthographic and perspective projection, 
whereas effects due to the absence of calibration of the 
optical system were expounded in [13 J. Considerations about 
the opportunity of using the modified constraint were briefty 
exposed in [16], [17]. and [13). Experimental comparisons 
between estimations of the optical ftow based on OFC and 
EOFC were reported in [20] and [21] by using multipoint 
computational techniques. A comparative evaluation between 
OFC and EOFC was also reported in [22]. However, the 
experiments reported in that paper were not supported by any 
analytical demonstration, and results presented contrast with 
the definitions of OFC and EOFC due to the coarse errors 
produced by the computation of parti al derivatives of the 
image brightness, 

In this paper, analytical expressions of the departures of 
OFC and EOFC constraint equations in modeling the velocity 
field under different conditions are derived, Effects of these 
departures on the estimation of the velocity field are also 
evaluated. The analysis is carried out for both cases of isotropic 
and uniform illumioation, coosidering effects of calibratioo 
and noncalibratioo of the optical system. COl1cIusions derived 
analytically are experimenta!ly validated with synthetic test 
image sequences, 

The paper is organized as fo!lows. In Section II, a short 
review of basic concepts is reported, In Section III, the 
conditions for the applicability of OFC and EOFC equations 
for modeling the velocity field are analyzed. Analytical expres­
sions of the departures of the OFC and EOFC in modeling the 
velocity field in most relevant cases of motion are derived and 
discussed in Section IV, Experimental evidence of these results 
is finally presented io Section V, Conc!usions are drawn in 
Section VI. 

II. BASIC NOTIONS 

A. The Velocity Field 

The velocity field is defined as the perspective projection 
on the image piane of the real 3-D object velocity [23]. 
Given a point P in the 3-D space identified by the vector 
p = (X, Y, zf. its perspective projection on the image pIane 
with focallength Z = l is p = (:J.:.y,l)t. where .r,y,l, are 
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Fig. I. Reference systerns of coordinates and the velocity field vectors 
defined as the projection on the irnage piane of the tTUe 3-D velocity. 

taken with reference to the system of coordinates centered in 
o' (see Fig. I). Therefore, the following relationship holds: 

l 
p= -p Z . (I) 

The projection of the 3-D motion on the image piane, which 
is commonly referred to as "velocity field," is obtained by 
taking derivatives on (I) 

(2) 

where Z is the Z-axis unit vector. The 3-D motion of the 
generic point P can be modeled as comprised of translational 
and rotational velocity components 

(3) 

where W = (Wl, W 2 , Wl)t and n = (fl 1 , rh, fl;J)t are 
the components of the instantaneous translation and rotation, 
respectively. Substituting (l) and (3) in (2), two scalar equa­
tions are obtained which express relationships between the 
components Pl, P2 of velocity field i> and the 3-D motion 
components of point P 

. lWl 
Pl=Y 

. lW2 
P2=y 

B. The lmage Brightness 

(4) 

(5) 

The image brightness can be considered as the measure of 
the irradiance of the scene on the image piane. According to 
the geometric relationships shown in Fig. 2 and the above 
notation, its expression under perspective projection is 

E(:r:(t), U(t), t) = 

7r (D)2 (p. Zf 
L(p(p. t), N,(P), Ne(P))- -/ 2 . ... 4 (p. P) (6) 

where L(p(p, t), Ns(P), N,.(P)) is the radiance of the scene; 
p(p, t) is the albedo that describes the spatial variations of 
the painted surface texture of the scene under observation; t is 
the time; Ne(P) is the unit vector that identifies the direction 
of light source; Ns(P) is the unit vector normal to the scene 
surface; D is the diameter of the lens; and the last term is the 
fourth power of the angle n between the vector P and the Z 
axis [241. 
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Fig. 2. Geornetry of the optical systern. 

As pointed out by Horn in [25], the radiance can be regarded 
as the product 

L(p(p, t), Ns(P), Ne(P)) = p(p, tl R(Ns(P), Ne(P)) 

(7) 

of the albedo p(p, t) and the reflectance R(Ns(P), Ne(P)), 
which takes into account the variations of radi ance due to 
changes in the surface orientation with respect to the direction 
of the light source illumination. Both these terms are functions 
of the 3-D spatial coordinates of P. 

The optical system can be calibrated considering its geom­
etry [25]. In this case, the irradi ance can be considered to be 
equal to the radi ance 

E(:l:(t), U(t), t) = L(p(p. t), Ns(P), Ne(P)). (8) 

From the point of view of dimensionality, the radiance LO 
is the power per unit area per unit solid angle emitted by the 
scene surface in a given direction, and the image brightness E 
is the ratio between the power received by an image element 
and the element size. Therefore, the image brightness is not a 
point property but an energy density commonly expressed in 
watts per meter squared 126]. 

III. OPTICAL FLOW CONSTRAINT EQUATIONS 

In this section, the two different constraints proposed in the 
literature to derive the optical flow are analyzed, considering 
conditions under which these exactly model the velocity field. 

A. The Optical Flow Constraint 

Originally, the optical flow has been defined as the solution 
of a constraint equation: the optical flow constraint (OFC) 
Il]. It has been derived under the assumption that the image 
brightness in each image point is stationary with respect to t 
(i.e., dE / dt = O) 

dE ()E d;r ()E dy ()E 
-=--+--+-=0. 
dt ();r: dt ()y dt iN 

(9) 

This equation can also be rewritten as 

(lO) 

where the abbreviation for parti al derivati ves of the image 
brightness has been introduced, and Vl, V2 correspond to 
(l:r / dt, dy / dt and represent the components of the local 
l'elocity vector v (i.e., the optical flow) along the :1: and 1/ 

directions, respectively. According to the notation introduced, 
(9) can be rewritten as 

V E(p, t) . v + Et(p, f) = O. (II) 
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The OFC equation alone does not provide enough con­
straints to determine the optical fiow components (it is an 
ill-posed problem [l], [27], [18]). In fact, it can be directly 
used only to estimate the optical fiow component parallel to 
the image brightness gradient V'E(p, t) [14] 

Et V'E 
v 1. = -IIV' EIIIIV' Eli 

(12) 

where E = E(p, t), and II~~II is the unit vector identifying 
the direction of V' E if V' E i- O, and dE / dt = O. The 
indeterminacy in estimating the optical fiow can be considered 
an instance of the well-known problem oJ aperture [1]. 

l) Considerations About the OFC: The relationships be­
tween the optical fiow as modeled by the OFC and the velocity 
field were analyzed and discussed by several authors. 

Schunck pointed out simplifications about scene surfaces 
and illumination that justify the OFC equation from the physics 
point of view but without giving any analytical evidence. 
Specifically, under orthographic projection, in [1], [15], [28], 
he required that i) the perceived change in image irradi ance at 
each point in the image piane is entirely due to translational 
motion, and ii) the image must be smooth except at a finite 
number of boundary discontinuities. 

It was later c1arified that the applicability of the OFC is 
ensured if the changes in image irradiance in each point of the 
image are only due to the motion of image pattern and not to 
the changes in pattern due to refiectance etfects (i.e., deforma­
tions due to changes in direction of the illumination source and 
changes in direction of the normal of the surface) [19], [17]. 
Such a condition is satisfied by "the image oJ a translating, 
diffuse object with distant light sources" [29L where "diffuse" 
should be synonymous with Lambertian surfaces (e.g., the 
surfaces irradiate the received radiation in outward directions), 
and "distant light sources" should be an approximation of 
uniform iIlumination (the direction of illumination is the same 
in ali points, which can be approximated by having a point­
source of light very far from the scene). 

A more formai analysis was developed by Verri and Poggio 
in [14]. They found that under perspective projection, if the 
object motion is translational (with a calibrated optical sys­
tem, uniform illumination, and scene objects with Lambertian 
surfaces), then the component of velocity field parallel to the 
V' E is equal to the optical fiow as derived from the OFe. 
They also analyzed the case of nonuniform illumination with 
translational and rotational motion, observing that in these 
cases, the velocity field is not equal to optical ftow. 

In [13], Nagel demonstrated that under perspective projec­
tion with isotropic constant illumination, Lambertian surfaces, 
and a noncalibrated opticai system, if the displacement field 
(i.e., the velocity field) is substituted in the OFC equation, 
then dE / dt i- O. This shows that the OFC does not exactly 
model the velocity field. The term that makes dE / dt i- O takes 
into account geometric and radiometric effects mainly due to 
noncalihration of the optical system. 

A common assumption for ensuring the applicability of 
the OFC is that the moving object must be covered by a 
significative pattern. Otherwise, since, in that case, E" and Ey 
are equal to zero, the optical flow cannot be estimated [1], [19], 
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TABLE l 
SUMMARY OF THE MOTloN CONDITIONS THAT GUARANTEE THE EQUALITY 

BETWEEN THE OPTICAL FLOW (AS DEFINED BY THE OFC) AND THE 

VELOCITY FIELO (i.e., v J.. = P -,-) UNDER CONDITIONS OF LAMBERTIAN 

SURFACES, LOCALLY RIGIO PATTERN. ANO CONSTANT ILLUMINATION 

pro't;dion UnifoNrI illumination Il 
orthograp ic onl:y translational 
perspedive without calibra.ti 
perspective with calibration 

otational around Z-a.xis ::"n=on'i'-e ~~ 
alt l~ "translational 

[25]. Ex and Ey could be different from zero in the presence 
of perspective projection and/or nonisotropic light sources. In 
fact, in these situations, changes in image brightness can be 
due only to refiectance effects instead of object motion. 

These results are resumed and completed in the rest of this 
section for isotropic and uniform illuminations and calibrated 
and noncalibrated optical systems, It is assumed that the radi­
ance is independent of surface orientation-i.e., that objects 
ha ve Lambertian surfaces. Conclusions are summarized in 
Table L 

2) lsotropic Light Source: a) In the case of perspective 
projection, if the optical system is calihrated, then the image 
brightness takes the form 

E(p, t) = L(p(p, t)) = p(p, t) 

and the total derivative of the image brightness E = E(p, t) 
with respect to t is expressed by 

dE )' (' di = V' p(p, t . P + Pt p, t). (13) 

If the patterns on the moving objects in the scene are supposed 
to be locally rigid (i,e., dp(p, t)/dt = O), (13) modeling the 
velocity field assumes the form 

V'p(p, t) . Il + Pt(p, I.) = O (14) 

which is structurally equal to the OFe. 
Therefore, in the case of isotropic light source, the OFC is 

an appropriate model for the velocity field without imposing 
any restrictions on object motion, 

b) In the case of perspective projection, if the optical system 
is noncalibrated, then (6) is rewritten as 

7T(D)2(P.i;)-< 
E(p, t) = p(p. f)"4 T (p. P)2' (15) 

In these conditions, the OFC does not model the velocity 
field, In fact, the total derivative of the irradiance with respect 
to t (see Appendix A) assumes the form 

dE , 7T(D)2(P.i;)4 
di=(V'p(p,t)'P+f!t(P,t))"4 T. (p.P)2 

(
P.i; P'P) 

+ 4E ----z- - P . P . (16) 

The first term on the right side vanishes if the pattern on the 
moving objects in the scene is supposed to be locally rigid, 
In this case, (16) becomes 

dE = 4E (p . i; _ P , p) 
dt Z p. P 

(17) 
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which is the same expression as the one obtained by Nagel in 
[13] following a different derivation. It should be noted that 
typically, P, Z, and P are not available, and thus, (17) cannot 
be used for estimating the velocity field. The right side of (17) 
is only due to the noncalibration of the optical system and 
takes into account the perspective projection geometry as well 
as radiometric aspects. 

By using (3), (17) can be rewritten as 

dE = 4E (w . Z + n x p . Z _ p . w _ p . n x p) . 
ili Z Z p.p p.p 

(18) 

The third term on the right side is due to the cosine of the 
angle between the vector P and the vector of the instantaneous 
translational motion W (see Fig. 1). If these two vectors form 
a right angle, this term wiII be zero, and (18) will reduce to 
a simpler expression. 

Simplifying and expanding the motion components (3), the 
following expression for dE / dt is obtained 

dE = E(W3 yn1 _ xn2 _ WuY + W2Y + W1Z) 
dt 4 Z + Z Z X 2 + y2 + Z2 . 

(\9) 

From this expression, it can be seen that in the absence of 
calibration, the OFe can be used properly to model the velocity 
field due to rotational motions around the Z-axis (n3 =f. O). 
In fact, in this case being Wl = O, W2 = 0,W3 = O, nl = O, 
and nl = O, the result is dE / dt = O. 

Equation (19) can al so be approximated by the OFe equa­
tion when the following occur: 

i) The optical system has a very small aperture, and the 
moving objects in the scene are very far from the center 
of the reference coordinate system. In this case, the effect 
due to the lack of calibration can be neglected, and the 
right side of (19) reduces to zero. 

ii) X and Y are dose to zero (the points of the moving objects 
are dose to the Z -axis). In this case, the fourth term in 
(19) reduces to -WI/Z, and thus, the right side of (19) 
equals zero. 

c) If the system is under orthographic projection and the 
moving object has a superimposed locally rigid pattern, then 
(14) also holds. Therefore, under these conditions , the velocity 
field is equal to the optical flow as derived from the OFe. 

3) Uniform Light Soun'e: a) In the case of perspective pro­
jection. if the optical system is calihrated, then the image 
brightness assumes the form (8) with the radiance expressed 
by (7) and the reflectance equal to N s (P) . N e, and hence 

E(p, t) = L(p(p, t), N,(P), Ne) = p(p, t)Ns(P)·Ne. (20) 

Taking the total derivative of the above expression, we have 

dE . 
-1 = (Ns(P) . Nc)('V p(p, t) . p + Pt(p, t» 
rt 

+ p(p, t)(Ne . n x N,(P». (21) 

If the motion is only translational, and the patterns on the 
moving objects in the scene are supposed to be 10caJly rigid 
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(i.e., dp;::,t) = O), the terms on the right side of (21) are both 
equa 1 to zero, and thus, dE / dt = O. Since (21) is structurally 
equal to the OFe, this demonstrates that the OFe can be used 
properly for modeling the velocity field also under perspective 
projection, provided that the optical system is calibrated. In 
addition to what is stated in [14], it is al so requested that the 
patterns in the scene are locally rigido 

b) In the case of perspective projection. ifthe optical system 
is noncalibrated, then the image brightness assumes the form 

(22) 

and its total derivative is (see Appendix B) 

dE (P.Z P.P) 7r(D)2(P'Z)4 
di = 4E -Z - p .p +p(p,t)4" T (P .P)2 

(Ne' n x Ns(P). (23) 

The structure of (23) differs from (17) only by the presence 
of the last term. The term Ne . n x Ns(P) of (23) vanishes 
when the following hold: 

i) The motion is translational (i.e., n = O). 

ii) The unit vector normal to the scene surface Ns(P) is 
parallel to n or N e . 

iii) n is parallel to the direction of light source Ne' 
Under any of these conditions, (17) and (23) are structurally 

equa!. Therefore, there do not exist any motion conditions in 
which dE / dt (in the form of (23» is equal to zero. In this case, 
the optical flow is always different from the velocity field. 

c) If the system is under orthographic projection and the 
moving object has a superimposed locally rigid pattern, then 
the OFe properly models the velocity fieId, as pointed out in 
[1] and [15]. 

B. The Extended Optical Flow Constraint 

As noted by Schunck, the OFe is very similar to the 
continuity equation of fluid dynamics that derives from the 
law of conservation of the mass for incompressible fluids 
[30]. Based on this fact and observing that the premises on 
which OFe holds are very restrictive to be met in practice, 
in [15], Schunck proposed a modified optical flow constraint 
equation. From the structural point of view, this constraint 
equation was similar to the OFe except that it was derived 
for image feature densit)" N and inc\uded an additional term 
containing the divergence of the optical flow 

8N 
'V. (Nd) +75t = O (24) 

where 

'V. (Nd) =d·'VN+N'V·d. (25) 

Equation (24) defines an alternative "optical flow," d, which in 
generaI is different from the one obtained by the OFe equation. 
Equation (24) can be rewritten as 

Nxd l + N y d2 + Ndlx + Nd2y + N t = O (26) 

where (dI, d2 ) are the optical flow components of d on the 
image piane. 
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Schunck, in [15J-[17J, affirmed that this modified constraint 
equation would be a better model than the OFC in the presence 
of perspective projection especially for rotational motions 
if the light source is isotropic and the scene surfaces are 
Lambertian. A formaI derivation for the modified constraint 
equation was presented by Schunck in [16) and r 171. This 
derivation was based on the conservation of the density of 
the image hrightnessfeatures N, assuming that the size of the 
features remains constant with respect to time (no deformation 
due to motion and/or reftectance exists). He noticed that the 
modified constraint equation can be applied to the image 
brightness E instead of N only when the illumination is 
isotropic. In fact, in this condition, the image brightness 
behaves like a density, and the OFC cannot be used. 

Arguments supporting this theory were developed by Nagel 
in [13], who argued that features are themselves entities 
derived from spatial variations of image brightness and cannot 
be substituted for a proper analysis of image brightness. The 
image brightness is the limit for the vanishing of the ratio 
between the power received by an image pIane eIement and 
the size of this element [241, [25J (i.e., it is an energy density 
usually expressed in Watts per meter squared). Based on these 
considerations, in [6], a new constraint equation, called the 
extended optical ftow constraint (EOFC), was introduced 

bxdl + Ey,z2 + Edl.r + Ed2y + Et = O (27) 

where di and d2 are the components of the optical ftow vector 
cl. From the point of view of the constraint structure, the EOFC 
(27) differs from the OFC (IO) onIy by the term involving the 
divergence of the optical ftow fieId vector (E'7 . cl) and differs 
from (26) because the EOFC models the changes in image 
brightness E, instead of image feature density N. 

OFC and EOFC have been compared by using the same 
computationa! techniques in [20J and [211. Performances with 
respect to other seIected OFC-based computational techniques 
were also reported. EOFC has proved 10 be superior to the OFC 
in certain motion conditions in the absence of ca!ibration. 

IV. MODELING VELOCITY FIELD BY OFC AND EOFC 

The optical ftow fields derived from (II) and (27) do not 
mode! exactly the velocity field except in special conditions 
as discussed in the previous sections. Generally speaking, 
substituting l'> for v in (l l) and (27), we have 

'7 E . l'> + Et = [ofe, 

'7 E . l'> + E'7 . l'> + Et = [eofe 

(28) 

(29) 

where [ok and ["ofe are the departures of the OFC and EOFC 
equations in modeling the velocity fieId, respectively, and 
depend on p, P and E. By taking the difference between (28) 
and (IO) and between (29) and (27), the following expressions 
are obtained: 

'7 E . (l'> - v) = [ore, (30) 

'7E· (p - cl) + E'7· (l'> - cl) = [pofe (31) 
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For the OFC, developing the scalar product of (30), the error 
in estimating the velocity field is given 

, [ofe 
T/ofe = II(p - v)11 = Il'7 Eli cos((f) (32) 

where (f is the angle between '7 E and the diffcrence between 
the correct velocity field and the estimated optical flow. From 
the above equation, it can be noted that 7/o fe vanishes with [u!(' 

or if '7 E is very large, Since 7/o fc depends on the angle (f, only 
the component of "/ok, which is parallel to the '7 E, can be 
directly estimated (for cos((f) = 1, if Il'7 Eli -:f O) 

[ofe V E 
'/ok1- = Il'7EIIII'7EII' 

(33) 

Therefore, if the value of the departure from the model [ofe 

is known, then the error T/ofe 1- can be estimated. It shouId be 
noted that T/ofe 1- equal 10 zero (with '7 E -:f O and cos( O) -:f O) 
does not guarantee that the velocity field l'> and the optical 
ftow v are equal but onIy that their components parallel to 
'7 E are (e.g., P1- = V 1-). 

For the EOFC, (31) is a partial differential equation de­
scribing an iIl-posed problem that cannot be solved directly 
in order to obtain the field (l'> - cl). An approximation of the 
error in the estimation of the optical flow along the direction 
of '7 E can be obtained by following the same derivation as 
above. Thus 

(34) 

where the term ETi~~~d) has been neglected with respect to 
~ 
IlvEII' 

For the sake of simplicity, in the following, we will refer to 
the conditions "/ofc1- = O or r/eof<1- = O when the optical ftow 
is said to be equal to the velocity field. 

In the rest of this section, analytical expressions for the 
departures of the OFC and EOFC in modeling the velocity 
field ([ofe and [eofc) in the presence of ditferent motion 
conditions are derived and discussed for the two cases of 
isotropic and uniform light sources. The derivations are based 
on the assumptions of Lambertian surfaces and noncalibrated 
optical system. 

A. Isotropic Light Source 

If the scene patterns are locally rigid, then expression (19) 
is the exact analytical formulation of dE/di. Let l'> = (pI,-h) 
be a velocity field vector for the image sequence; then, the 
following two exprcssions 

[ofc = E,rl)l + EyJ!z + Et 

_ (W3 yn1 _ xn;? _ WIX + W2Y + W3 Z) 
- 4E Z + Z Z X 2 + }"2 + Z2 

(35) 

from which errors in estimating the velocity fieId can be and 
derived for the cases of OFC and EOFC as a function of 
the departures. (36) 
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define a measure of the departure of the OFC and the EOFC 
equations. respectively. when these are used to estimate the 
velocity field (1)1,1'2), 

By using (4) and (5). the following relationship holds: 

. . . ,WJ. yn1 .. dh v· P = filI + fi'2y = -2-Z - .)/- + 3-,-. (37) 

and the analytical expression of the departure "':pok can be 
directly derived from (36). (37), and (35) 

[ _ 1"(, ~Fl nl1 _ xn2 
('Ofc - J 2 Z + Z Z 

_' H\X + W 2 Y + WJZ) 
4 X2 + y2 + Z2 . (38) 

Therefore, the following conclusions can be derived regarding 
the departures of OFC and EOFC in modeling the velocity 
field. 

I) Rotation Around the Z -Axis: In the case of pure rotation 
around the Z-axis (i.e., vF1 = O, ~V2 = O, ~V:3 = O, ~~1 = 
O. O2 = O) the term on the right side of (19) is null. Therefore, 
the departures of the OFC and EOFC in modeling the velocity 
field are both equal to zero 

2) Translatiof) Paratlel to the Image Piane: In the case of 
translational motion parallcl to the image piane (i.e., W:3 = O, 
nl = O, S2 2 = O), the departures of the OFC (35) and EOFC 
(38) in modeling the velocity field are both equal to 

(39) 

In the case in which Wu \ and W2 Y are equal in module but 
ditferent in sign. both [ofc and [",,!c vanish. 

3) E.\pansiof) or Contraction: In the case of pure expansion 
or contraction (i.e .. Wl = O, W2 = O, nl = o. ~h = O). the 
departures of the OFC (35) and EOFC (38) in modeling the 
velocity field are. respectively 

due lo the optical system geometry since Z is always greater 
than zero. The above expressions can be rewritten as 

where ti = Z2/(X 2 + y2 + Z2), and hence, the following 
relationships hold: 

I[ok I > IE"ole I 
IEofc I = IE"ole I 
I[o!c I < I Ep,d , I 

if () < ii < 3/4. 

if ii = :1/4. 
if :3/4 < /i :::; 1. 
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Considering the perspective projection law (I), the expression 
(J = Z2/(X 2 + y2 + Z2) defines the surface of a sphere in 
the 3-D space, which projects on the image pIane the circle 

For /J = :3/4, we have the circle :1;2 + y2 = ~. Hence, to 
estimate the velocity field, the OFC is a better model than the 
EOFC for the points that are cIose to the center of the image, 
whereas for the points that are farther than 11.j3 from the 
center, the EOFC is a more accurate model 

if ):1'2 +1/'2 > _1_ then · v'J 
'f'~) ? l h I :1;- + IJ- = M t en 

· y:3 

'j'~') l h l :J: + '1;- < M t en 
· y:3 

It should be noted that the limit on the image piane depends 
only on the optical system geometry. 

4) Rotation Around X-ami Y -Axes: In the case of com­
posite rotation around X - and Y -axes (i.e .. Wl = O, Wz = 0, 
W:3 = O), the following expressions l'or the departures of the 
OFC and EOFC in modeling the velocity field are obtained: 

which lead to the following relationship showing that the 
EOFC provides a better estimalion than the OFC according 
to a multiplicative factor equal to 4 

Remarks: According to the above discussion, il can be 
observed that the departure of the EOFC in modeling the 
velocity field is in mosl cases less or equal lo the departure 
of the OFe. In particular, the EOFC is veritìed to be a more 
appropriate model in the presence of motion along the Z­
axis (where ):,:2 + y2 > ~) and rotations around the )(­

and Y -axes. Moreover, lo some extent. the above relationships 
demonstrate that Ihe EOFC mode I compensates the effects that 
are due to the noncalibration 01' the oplica) system. 

B. Un(form Light SOl/ree 

If the condition of "isotropic Iight source" is substituted with 
the condition of "uniform light source," the total derivative of 
the image brightness assumes the form exprcssed by (23). The 
structure of (23) differs from (17) only by the presence of the 
last term. Since this term is present in both forO' and Eporc , the 
relationships between the departures of the OFC and EOFC 
models are equal to those presented for the case of isotropic 
Iight source. 

V. EXPERIMENTAL RESULTS 

Relationships between the departures of the OFe and EOFC 
in modeling the velocity field have been tested by using image 
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(a) (b) 

Fig. 3. Synthetic sphere under (a) i,otropic and (b) uniform illumination 
(50.0 x 50.0 units). 

sequences generated in a controlled environment. The syn­
thetic sequences have been created considering the perspective 
projection, the camera geometry. the reftectance characteris­
tics, and the conditions of illumination. A high resolution on 
pixel gray values (32 bits) has been used to approximate a 
continuous image brightness mode I and thus reduce the errors 
introduced in the computing of partial derivatives. It was 
experimentally found that computational errors by using X bits 
of resolution are larger than those originated by the departures 
of the OFC and EOFC in modeling the velocity field. 

The test sequences consist in the projection of a continu­
ously pattemed sphere on a discrete image piane of 12X x 
128 pixels corresponding to 50.0 x 50.0 spatial units (see 
Fig. 3). The sphere is moved in the 3-D space according to 
different motion conditions. In the reported experiments, the 
focal length l is equal lo 50 units, the dimension of the lens D 
is equal lo 75 units. the radius Il of the sphere is equal lo 40 
units. and the sphcre is placed at the first time instant (t = O), 

in P = (O, O, 1(0). According lo lhe perspective projection, 
the sphere appears on the image piane as a circle with a radius 
of 20 units (lX/Z = .:>0·40/100). Thc albedo of the sphere 
consists in a plaid pattem with a period equal to 25/(27rR) 
and an amplitude equal to 22 gray level units around the basic 
value of 90 unit. The surface of the sphere is Lambertian. 

The estimates of the departures of the OFC and EOFC 
models are presented for the cases of isotropic and uniform 
light sources. For the cases of uniform light source, N" IS 

taken equal to (O. O, I). Types of motions analyzed are as 
follows: 

translational motion parallel to the image piane: W = 

(0.4. -0.4, O) and n = O 

• rotational motion around the Z-axis-i.e., parallel to the 
image plane-W = o and n = (O, O, 0.(3) 

• rotolranslational motion parallel to the image piane: W = 

(0.2. -0.2, O) and n = (O, O, 0.(15) 
• expansion motion (translational along the Z-axis): W = 

(o, n. 1.1) and n = o 
• rotational motion in the 3-D space: W = (O, O, O) and 

n = (0.005. -0.005, O). 

The departures of the OFC and EOFC models have been 
estimated by using the following discrete equations: f 
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TABLE Il 
DEPARlllRES 01' OFe AND EOFC IN MODELIN(; TIIE 

VELOCITY FIELD (MEAN VAUJES A 'ID VARIAN('ES) 

(lSOTROPIC ILLLMINA:nol\. NONCALIBRATED OPTICAL SYSTEM) 

isulropu' illuminatiun - non-calibrated optical systt'lI! .~ 

I ~fotion 
rami ational (11,'3 -;;;; O) 

Rotational arollnd Z-axj" 
ParaJlel to the imagt' piane 

F:xpansion 
kotational around X· and Y -axe.~ 

Ilr(Eo c)T\,~ 

.401 0.401 0.062 f 0.062 ~ 

.03.\ 0.03.0 0,002 0,002 

.202 0,202 0.014 - (J.j)j"4 

336 2.288 0,026 1-- 0,2663 

354,_ ~ 0.0.\0 I.o:Oo7 

fofe (:r, .IJ, t.) = 8 J • (:1:, y.!.)/j1 (:r, .IJ. t) 

+ Ey(:r:.y, t)/)2(:I:,.IJ. I.) + El (:1:. :ti, I.), 

[<eofe(:r, y, t) = E.,,(;r, !l. t)l)l(:1:, y, l) 

+ EJr. y. t)/)2(:r, .tJ.I) 

+ E(.l:. y. t)J)lJ'(:r:, y, t) 

+ E(.L.tI, tllJ2y(:r:,.tI, t) + Et(:r:. y. I.) 

where partial derivalives of the image brightness are computed 
by using centrai differences (e.g .. E.rer, y. t.) = (E(:r + 
l, y, t) - E(:r: - 1. y.l))/2). The components of velocity field 
and their derivati ves are estimated by means of (4) and (5) 
on the basis of the 3-D motion components, which are known 
from the generation of the test scquences. 

A. Isotropic Light Source 

In Table II, the mean values of the departures of the OFC 
and EOFC in modeling the velocity field are reported in the 
case of Lambertian surfaces with a noncalibrated optical sys­
temo Mean values 01' the departurcs are estimated disregarding 
the boundaries of the sphere where wide errors are present due 
to discontinuities (i.e .. [ = 1/1\F'E.;u IÉI. where lv! defines 
the area of projection of the sphere without boundaries). 
Results obtained in the first three motion conditions agree with 
the conclusions derived in Section IV. 

In the case of pure expansion, results also agree with 
the considerations derived in Section IV. In this case, the 
departures of the OFC and EOFC models depend on the 
distance from the focus 01' expansion. In this test sequence, 
the focus of expansion was set in the center of the coordinate 
system (the center of the image piane) and '/ V} = 28.X 
units was used (the sphere appears on the image as a circle 
with a radius 01' 20 units). Tests have been carried out for 
different values of focal length l. Results for l = IO (i.e., 
l/V} = 5.78) are reported in Fig. 4 as a function of the 
distance from the center of the image. In Ihis case, the 
EOFC produces better results then the OFC only in those 
points farther than l/ \1'3. The dotted area marks regions where 
discontinuities are present, and therefore, traces in this area do 
not represent the phenomena under discussion. In Fig. 5, gray­
level maps of OFC and EOFC departures l'or expansion motion 
are presented, where darker points represent higher values of 
departures. 

By observing Table Il, it can be noted that in the case of pure 
rotation around the X - and Y -axes (i.e .. n1 i O and ~12 i O), 
the EOFC is better than OFC for modeling the velocity field 
(the ratio of 1/4 can be observed). In addition, in this case, the 
OFC and EOFC departures are presented as gray-Ievel maps 
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Fig. 4. Behavior 01' the departures 01' the OFC and EOFC in modeling the 
velocity field as a function of the distance from the image center (pure 
expansion motion with l = lO units. isotropic illumination. noncalibrated 
optical systcm). 

(a) (b) 

Fig. 5. Maps of the departures of (a) OFe and (b) EOFC in modeling the 
velocity field (pure expansion motion with l = 50 units. isotropic illumination. 
noncalibrated optical system). 

(a) (b) 

Fig. 6. Maps of the departures of (a) OFC and (b) EOFC in modeling 
the velocity fìeld (pure rotational motion around X - and l' -axes. isotropic 
illumination. noncalibrated optical system). 

(see Fig. 6), By observing these maps, it can be noted that the 
distribution of the departures in the 2-D piane is in accordance 
with the expressions of the departures as derived in Section IV. 

Table III shows the departures of the OFC and EOFC in 
modeling the velocity field in the case of a calibrated optical 
system estimated in the same conditions of Table II. It can 
be noted that the OFC model performs better than the EOFC 
in ali motion conditions in accordance with results derived in 
Section III. 

In Tables IV and V, mean errors in estimating the velocity 
field by using OFC and EOFC are presented for both cases 
of calibrated and noncalibrated optical systems, Mean errors 

are evaluated according toi/l. = l/l'v! I::;~[ ,,~111' where 
]\;[ defines the area covered by the projection of the sphere 
disregarding boundaries, and f is the departure of the OFC 
or EOFC in modeling the velocity field. Although v E has 
a nonuniform distribution on the image piane, it can be 

TABLE III 
DEPARTLRES OF OFC ANO EOFC IN MOOEU:--G THl' 
VELOCITY FIELO (MEAN V ALUES ANO V ARIANCES) 

(ISOTROPIC ILLlI\1IN,>'TION. CALiBRATEO OPTICAL SYSTEM) 

Motion 

Translational (W:'1 = O) 
Rotational around Z-axis 
Paratlel to the image piane 

Expansion 
Rolational around X ~and Y -axes 

TABLE IV 

Var [~O ,l 
0.009 
0.001 
0.002 

0.054 
0.122 

ERRORS IN THE ESTIMATION OF VELOCITY FIELO BY MEANS OF 
THE OFC ANO EOFC (MEAN VALliES AND VARIANCES) 

(IS0TROPIC ILLUMI'JATION. NONCALiBRATEO OPTICAL SYSn,M) 

L 
Mation Tar('IM ç 

Translational (W3 = O) 0.0082 
Rotatioual around Z-axis 0.0001 
Parallel to the image pIane 0.0023 

~an~ion 
~tional around x" and Y ·axes 

0.6418 
0.0005 

TABLE V 
ERRORS IN THE ESTIMATION OF VELOCITY FIELD BY MEANS OF 

THE OFC ANO EOFC (MEAN VALUES ANO VARIANCES) 
(ISOTROPIC ILLlJ\1INATION. CAI.IIlRATEO OPTICAL SYSTEM) 

Var( 

0,0001 
0,0001 

0.3757 
0,0082 

TABLE VI 
DEPARTURES OF OFC ANO EOFC IN MOOELING THE 
VELOCITY FIELD (MEAN V ALLIES ANO V ARIANCES) 

(Ui'IFORM ILLlIMINATION. NONCALIBRATEO OPTICAL SYSTEM) 

Unlforrn. illummation -

Var(teo (') 

0.043 
0.001 
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noted that the relationships between the departures are also 
conserved for the estimation errors of the velocity field. 
Therefore, in the case of a calibrated optical system, the OFC 
is a better model than the EOFC for estimating the velocity 
field (see Table V). 

B. Uniform Light Source 

In Table VI, the mean values of the departures of the 
OFC and EOFC are reported when the optical system is 
noncalibrated. In addition, in this case, results agree with 
conclusions as derived in Sections III and IV. 

Comparing Tables II and VI, it can be noted that the 
departures estimated in the case of a uniform illumination are 
always smaller that those estimated in the case of an isotropic 
illumination. This is due to that fact that under a uniform 
illumination, the image irradiance is reduced by a factor that 
depends on the scalar product N .. (P) . Ne' which is always 
less than I, This reduction reftects on the departure values 
since these directly depend on the image irradiance, 

Table VII shows the departures of the OFC and EOFC in 
modeling the velocity field estimated in the same conditions 
as Table VI, except that in this case, the camera has been 



TABLE VII 
DEPARTURES OF OFC A~D EOFC IN MODELING THE 
VELOCITY FIELD (MEAN VALt:ES A'ID VARIANCES) 

(UNIFORM ILLUMINATION, CALIBRATED OPTICAL SYSTEM) 

or 
" 

Vo.r 

Tratlslational (W] ;:;;: O) .045 0.04·5 0.003 0.003 
Rpj,ational around Z-axis 035 0.035 0.002 0.002 

I Parallel to the image piane .028 0.028 0.001 0.001 

2.662 0.001 0.167 
0.447 0.1119 0.080 

-----------------

TABLE VIII 
ERRORS IN l'HE ESTIMAl'lON OF VELOCIl'Y FIELD HY MEA'IS OF 

TlIE OFe A'ID EOFC (MEA'I V ALUES A'ID VARIANCES) 
(U:'>IIFORM ILLU\1I'1ATION, NONCALlHRATED OPTICAL SYSTEM) 

[ _ ___ ~mination - non-calibmted optical sy.'ltem 

~n '1QcJ.. ij~()c.i 
Translational (~'F3 = O) ._--1!-;0c;o.0~7;6;...9 1-'0;.:::.0~76:::-9-1f--~~-+~;::::':'------I 
RoWl~~~- 0.0055 0.0055 
Parallf'J to the irnage pIane 0.0412 0.0412 

H;:~~~n,~~axe, ~.~~~~ ~.~~~~ 

TABLE IX 
ERR()RS IN l'HE ESTIMATIO~ or VELOCll'Y FIELD BY MEANS OF 

l'ilE OFC AND EOFC (MEAN VALUES AND VARIANCES) 
(UNIFORM ILLUMINATlOt\, CALIBRATED OPTICAL SYSl'EM) 

Far(rJeo c ) 

0.0002 

calibrated. In addition, in this case, the OFC model performs 
better than the EOFC in ali motion conditions. 

In Tables VIII and IX, errors in estimating the velocity tìeId 
by using OFC and EOFC are presented for both calibrated and 
noncalibrated optical systems, The considerations derived in 
the case or isotropic illumination for the relationships between 
the estimation errors of velocity field stili hold in this case. 
Therefore, in these conditions as well, the OFC is a better 
model than the EOFC for estimating the velocity field 

VI. CONCLUSION 

Conditions have been analyzed under which different optical 
flow constraint equations model the velocity field. Analytical 
expressions of departures of distinct constraints in modeling 
the velocity field have been derived for different motion 
conditions under different types of illumination for both cases 
of calibration and noncalibration of the optical system. Exper­
imental evidence has been reported, showing the mean errors 
induced by these departures in the estimation of the velocity 
field. Results show that in the presence of noncalibrated 
optical systems, the EOFC is a better model than the OFC 
for estimating the velocity field for rotational motion around 
the X - and Y -axcs and for expansion motion in the outer 
parts of the image, as opposed to OFe. This is due to the fact 
that the EOFC compensates, to some extent, the absence of 
calibration in the optical system. In the presence of a calibrated 
optical system, the OFC model is preferable to the EOFC 
to estimate the velocity field for ali motion conditions. The 
same condusions apply to both cases of isotropic and uniform 
illuminations. 
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ApPENDIX A 

In this appendix, the total derivative of the image brightness 
is evaluated under the assumptions of an isotropic light source, 
Lambertian surfaces, and locally rigid patterns. In these con­
ditions, the image irradiance has the form reported in (\5). 
Therefore, its total derivative is 

2 A 

dE _ dp(p. t) 7r (D) (p. Z)" 
di - -rl-,-"4 T (p. P)2 

d (7r (D) 2 (p. Z),,) 
+ p(p, t) di "4 T (P . P)2 . 

2 ' 
dE = dp(p, t) ~ (!2) (p. Z)! 
dt dt 4 l (P . P)2 

7r(D)2dB +p(p,t)- - -
4 l dt 

where 

and 

Since the patterns in the scene are supposed to be locally rigid 
(i.e., dp~it,t) = O), the obtained expression for dE / dt is equal 
to (\7). 

ApPENDIX B 

In this appendix, the total derivative 01' the image brightness 
is evaluated under the assumptions 01' uniform light source, 
Lambertian surfaces, and locally rigid patterns. In these con­
ditions, the image irradi ance has the form reported in (22). 
Therefore, its total derivative is 

2 A 

dE = dp(p, t) N ,(P). N )~ (!2) (p. Z) .. 
di di ( '. c 4 l (P . P)2 

2 
7r (D) dB + p(p,t)(Ns(P)· N,.) "4 T di 

J( )~. (!2)2 (p. Z) .. d(N,(P) . Ne) 
+ ( p, i 4 l (P . P)2 di . (40) 

Taking into account the results obtained in Appendix A, since 
dp;ft,t) = D, the expression l'or dE / dt is 

(

• A • ) 2 dE P . Z P . P 7r D 
-=4E ----- +P(P,t)-(-) 
dt Z p. P 4 l 

(p. Z) .. 
(p. P)2 (Ne' n x Ns(P)). 
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