Elaborati, stage e tesi al DISIT (NEW 2022)

L'obiettivo di questa pagina è fornire le informazioni che possono essere utili ai candidati in fase di scelta dell'Elaborato, Stage e/o Tesi per la Laurea in Ingegneria (area dell'informazione: Informatica, Elettronica e Telecomunicazioni) oppure di Informatica di Scienze, triennale e/o Specialistica/Magistrale e/o Master in modo che, stimolati da questi argomenti, possano sentirsi maggiormente motivati ed interessati ad un eventuale colloquio per discutere del/della loro Stage/Tesi presso il Laboratorio DISIT. Agli elaborati e tesi è possibile congiungere lo Stage o il Laboratorio con i relativi crediti. 

CORSI / TESI per:
-- triennale: Sistemi Distribuiti
-- magistrali varie: Security and Privacy
-- magistrali varie: Big Data Architecture

-- master: Big data and Artificial Intelligence (master MABIDA)
-- master: BIM management

TUTTI I SEGUENTI ELABORATI E TESI POSSONO ESSERE SVILUPPATI DA REMOTO SENZA ACCESSO FISICO AL LABORATORIO. MA ACCEDENDO A STRUMENTI ON LINE FORNITI DAL DISIT LAB STESSO.

doc per chiudere tesi, elaborati, etc. https://www.disit.org/5986

ARGOMENTI PER ELABORATI 2022-23 CODIFICATI (DURATA 4 SETTIMANE):

L'esame consiste nello svolgimento di un elaborato CODIFICATO da concordare con il docente, da questa lista o meno a vostra scelta, durata 4 settimane. Gli elaborati possono essere:

  • (Tipo A) con sviluppo di software, soluzioni, moduli o test sperimentali su soluzioni SW open source, come descritto in seguito.
  • (Tipo B) con sviluppo algorithmi di Data analytics: Python, Rstudio, Tensor, ML, Deep Learning, BERT, AI/XAI, etc.
  • (Tipo C) con sviluppo di moduli e processi IOT/Node-RED/javaScript di data warehouse. 

Lo studente può chiedere la sostituzione dell'elaborato e/o del tutor di laboratorio tramite email al docente. Nei nuovi elaborati assegnati, l'elaborato puo' essere o meno completato con successo raggiungendo o meno gli obiettivi proposti. Lo Studente può decidere di interrompere l'elaborato in ogni momento chiedendo la valutazione e consegnando la relazione breve di alcune pagine. Il voto viene stimato sulla base del lavoro svolto su base qualitativa e quantitativa, in modo comparativo sull'anno in corso.  Agli elaborati e tesi è possibile congiungere lo Stage o il Laboratorio con i relativi crediti.

Gli elaborati riportati di seguito sono esempi concreti (ma potrebbero essere già stati assegnati), sono disponibili e vengono assegnati a scelta dello studente in ordine di richiesta, l'acquisizione dell'elaborato implica che lo studente intende iniziare entro breve tempo a lavorarci. Si sconsiglia fortemente di acquisire l'elaborato tenendo bloccato l'argomento per mesi prima di iniziare visto che certi argomenti in ambito ICT invecchiano velocemente:

  • Tipo A: installazione, integrazione, e/o sviluppo di moduli e componenti software distribuiti, o di visual analytic:
    • uso di Container con Kubernetes
    • sviluppo di esempi di visual analytics, business intelligence tools: javascript programming, user interface, node-red
    • estensione dell'Heatmap manager a trattare traiettorie e shapes, GeoServer, PHP, API
    • uso di Blockchain Hyperledge Fabric per certificazione di IoT Devices e messaggi, smart contract
    • modellazione, analisi e rappresentazione di servizi di trasporto pubblico
    • indicizzazione Open Search (AWS) di dati complessi e accesso multifaceted
    • integrazione di metodi di autenticazione, keyrock, keycloak
    • Deploy semplice di soluzioni come il Dashboard Builder, ed Node-RED+Snap4City-LIB su AWS
    • modellazione di NGSI-V2/LD rispetto alle Smart City API, SSM2ORION
    • estensione di widget time compare a MyKPI ed altri dati: PHP, JavaScript, etc.
    • modelli e strumenti di what-if analysis per lo studio dell'evoluzione del trasporto pubblico
    • scaling of Node-RED on cloud: verticale ed orizzontale
    • inserimento soluzione per Cut/Past di widget nel Dashboard Builder, con possibilità di export/import in JSON neutro.
    • connessione di dashboard a sistemi di supporto alle decisioni come SmartDS.
    • 3D metaverso in integrazione con NGSI LD
    • uso di Oculus per navigazione nella città, VR, AR
    • studio di NIFI draco
    • standby
      • studio di simulatori Open Source per lo studio di movimentazioni logistiche di materiali in città anche con uso di Droni, e guida autonoma
      • sviluppo di un sistema di serious game per vehicle sharing (bike and car), con lock-unlock, booking, tracking, etc. 
      • Studio di IOT Agent FIWARE, IDAS
      • sviluppo di strumento di simulazione e calcolo della domanda vs offerta di mobilità con diversi tipi di matrici origine destinazione
    • esempi di elaborati/tesi in corso o completati:
      • estensione di widget EventTable a tabelle su istanze di eventi, e device di ogni tipo, PHP, JavaScript, HTML5, Bootstrap
      • mobile app android per Node-RED come IOT Edge, IOT Application on mobile
      • aggiunta di regole di accesso e modifica dati IOT, GDPR compliant
      • creazione di widget per dashboard generici sfruttando librerie come D3: chord, sankey di vario tipo oppure generico
      • Content management systems, CMS, file manager, GDRP Compliant, file come metadati IOT
      • test  Kafka con 1.000.000 di topics o piu', confronto con altri brokers
      • uso di Kubernetes per la gestione di container, allocazione, distribuzione e scaling orizzontale
      • strumenti di gestione delle API per accounting and billing di servizi, IOT e Smart City
      • modellazione di smart data model FIWARE, automazione ingestion dei modelli e mapping su IoT Data Model Snap4City
      • rappresentazione grafica e digital twin ontologica di soluzioni industry 4.0
      • applicazioni per la gestione di eventi di emergenza o notifica dei cittadini, CAPS, collezionamento di notifiche, gestione dell'evoluzione di stato tramite IOT brokers, rappresentazione in dashboard, e realizzazione widget event driven, rulli e tables.
      • studio di soluzioni per wearable  devices IOT in vari ambiti: gioelleria, gadget, etc.
      • studio di soluzioni blockchain in ambito IoT smart city, IoT Industriale
      • modellazione linked open data, RDF store, query semantiche per la verifica di grafi che descrivono applicazioni software. Verifiche di proprietà di: completezza, consistenza, uso, coesione, struttura, etc.
      • studio di soluzioni open source per accounting API WILMA, integrazione con modelli di autenticazione SSO e Open ID Connect
      • studio delle soluzioni transmodel standard (acquisizione dati e protocolli per la mobilità ed i trasporti, moto usato in europa) e loro integrazione con soluzioni open per la gestione dei dati di traffico
      • uso/sperimentazione di soluzioni OLAP data cube per what-if analysis sulla base di dati presenti/accessibili in noSQL database, rappresentazioni del data cube.
      • generazione di billing, sulla base del comportamento utente
      • studio di soluzioni per la gestione dati e connessioni nelle smart ambulance
      • impatto del modello NGSI-LD sulla knowledge base, expert system
      • gestore dei processi di Wizard per dashboard builder
      • studio di modelli e soluzioni per IOT brokering e IOT Directory
      • strumenti di monitoraggio standard per il controllo di container, e modelli di anomaly detection
      • studio e applicazione di strumenti per la generazione di report in ambito IOT e smart
      • integrazione sensori Libelium e IBE Arquino (Arduino) su piattaforma Node-RED e Snap4City, NGSI e/o MQTT TLS
      • Contributo su strumento visuale per la programmazione di IOT Applications, node.js, node-red
      • Studio e sviluppo di widget per le Dashboard di Control Room smart city, JavaScript, Angular, .. : chord diagram, flow diagram, typical time trend, etc. 
      • ampliamento modello gestione viste 3D su dashboard di controllo del territorio e delle città
      • analisi di strutture dati complesse distribuite per la ricostruzione delle relazioni di connessione: dashboard, IOT App, WebSocket, IOT broker, Storage, API, etc. --> finalizzata alla generazione di viste di controllo e sintesi
      • Sviluppo di un modulo di integrazione fra SmartCity API e IOT Orion Broker, per query storiche e georeferenziate e sottoscrizione dati PUSH in relazione alla connessione diretta con Dashboard di Controllo
      • Studio e sviluppo di soluzioni per la gestione di apparati industriali con tecnologia IOT: OPC-UA, MobBus, etc. modellazione entità del mondo reale Digital Twin
      • sviluppo di un bot telegram per integrazione con https://assistant.disit.org/snap4cityAssistant/ e con smart city API di snap4city
      • strumenti per l'editing di GTFS su base GIS o servicemap
      • Studio e sviluppo di nodi Node-RED per la domotica: sviluppo di microservizi, nodi NODEJS per node-RED partendo da librerie open source.
      • Studio e sviluppo di widget per sinottici per smart city, industria 4.0, con tecnologie: WebSocket, SVG, etc.
      • valutazione della sicurezza dei sistemi IOT
      • etc. 
  • TIpo B: studio e sviluppo di algoritmi di data analytic, machine learning su big data con tecniche varie (TensorFlow, Keras, MapReduce, simulatori), ambiti: anergia, ambiente, industria, mobilità e trasporti, comportamento utente, etc. Algoritmi che possono essere per predizioni, classificazione, riconoscimenti di pattern, anomaly detection, etc.:
    • analisi di serie di flussi di programmazione visuale node.js per determinare pattern e modelli, produrre suggerimenti, machine learning simbolico
    • analisi di video da termocamere per la ricostruzione di traiettorie di persone
    • analisi di consistenza dati, relazioni, processi di applicazioni iot smart
    • modelli predittivi deep learning, time series, da dati di parcheggio, AI and XAI
    • studio di modelli di simulazione per la gestione della domanda offerta tramite ML/AI, XAI
    • modelli predittivi e di stima di vari componenti GHG in base ai dati del traffico 
    • studio e stima di KPI su reti di trasporto persone su TPL, modelli OSM (open street map), KM4CITY
    • analisi dati di flussi e conteggi persone, per la soddisfazione del cliente
    • standby chiedere che siamo in attesa di dati:
      • modelli di autoconsumo e gestione dei dati di consumo in agglomerati che possono avere storage, veicoli elettrici, PV, etc.
      • studio della causalità fra eventi di traffico, e RSS, traffic flow, condizioni meteo
      • analisi dati da flotte di veicoli elettrici
      • analisi di dati wi-fi per le predizioni di presenze, relazione con eventi e dati di altro tipo
      • soluzioni e modelli predittivi per la manutenzione di flotte di trasporto
      • soluzioni per la gestione e la riduzione di consumi energetici in edifici, distretti e città
    • esempi di elaborati/tesi in corso o completati:
      • modellazione flussi di turbine, soluzione di equazione di flusso tramite ML/AI, modelli adattivi di controllo
      • reputation and appreciation of services via NLP, Bert su dati di Twitter multilingua
      • creazione di un virtual assistant che fornisca risposte sulla base di pagine di documentazione tramite tecniche BERT (Bidirectional Encoder Representations from Transformers)
      • studio di testi con tecniche Bert per la valutazione  della propensione alla mediazione, XAI
      • ottimizzazione percorsi per la raccolta rifiuti
      • modelli predittivi per dati relativi alla raccolta di rifiuti
      • studio di algoritmi di valutazione di indicatori di qualità per congestione e traffico
      • calcolo di matrici OD dal traffico con approccio statistico
      • valutazione del comportamento di flussi di persone su base PAX Counter.
      • modelli predittivi e di stima del CO2 in base ai dati del traffico
      • soluzioni e modelli predittivi per la manutenzione di impianti industriali
      • produzione di raccomandazioni (dati e processi) sulla base del comportamento utente (in ref sui dati, aree, etc. e delle pagine di sviluppo)
      • modelli di anomaly detection sulla base del comportamento di container
      • soluzioni e modelli predittivi per lo studio di eventi di movimenti del terreno potenziali basandosi su dati di pluviometri
      • stima di traiettorie tipiche sulla base di dati provenienti dalle App, uso o meno di routing
      • confronto modelli di traffico: SUMO vs Km4City/Snap4City per il calcolo della distribuzione del traffico in città
      • correlazione fra air quality (benzene, Co2, etc.) e traffico tramite calcolo heatmape alerting(traffico, qualità, popolazione, etc.)
      • modelli e strumenti per la gestione dei typical trend.
      • correlazione fra air quality (PM2.5, PM5, PM10) e lavori edilizi, eventi di traffico, alerting (traffico, qualità, eventi/posizione scavi,…)
      • Routing con vincoli: sottoponti, passerelle, passaggi stretti, barriere dinamiche (punti e shape)
      • predizioni: pollinazione, inquinamento, attraversamento treni, etc.
      • parallelizzazione in tensor flow di algoritmi di ricostruzione e predizione dati ambientali, modelli differenziali
  • Tipo C: Studio e sviluppo di processi in IOT App in Node-RED/javascript per data warehouse o per inserimento di logica intelligente, si veda Snap4City per Elaborati IOT App (la pagina non contiene gli open data specifici per lo svolgimento dell'elaborato); La piattaforma di sviluppo è node-red con microservices/nodi presenti.
    • gestione di processi di caricamento dati, anomaly detection, log, gestione allarmi
    • processi di caricamento e trasformazione dati:
      • ricerca di data set interessanti in ambito mobilità, ambiente, energia
      • analisi dei modelli dati, sviluppo di data model o sfruttamento di data model standard
      • caricamento dati in piattaforma
      • uso dei dati per analisi statistica descrittiva: in Rstudio o Python
      • realizzazione di dashboard per riportare i dati e l'analisi descrittiva tramite IoT App, dashboard builder 
    • generazione di Javascript da programming language visuale per neofiti e giovanissimi: in https://scratch.mit.edu/
      • scratch for Snap4City..... per esempio... come fare ? possibile ??
    • stand by
      • creazione di una IOT Application che possa simulare il comportamento di un plastico lego (o sua rappresentazione in 3D) di una città con parcheggi, luci, panchine, cassonetti, camion nettezza, autobus, semafori, flussi, acqua e livelli, scale mobili, ascensori, metropolitana, etc. in modo da simulare i problemi di smart parking, smart biking, traffic routing, people flow, etc. 
    • esempi di elaborati in corso o completati:
      • processo di caricamento dati di flussi persone in Grecia.
      • sviluppo di nodi Node-RED in node.js per la visualizzazione di grafici OD, chord circolari e paralleli
      • sviluppo di IOT App che possano andare a sostituire processi ETL per acquisizione dati IOT di vario tipo (1-2 dati per ogni elaborato):
        • parcheggi
        • sensori del traffico
        • sensori inquinamento
        • previsioni meteo e loro widget grafici
        • acquisizione dati GTFS, fatto in Chouchette.
      • processi IOT per ingestion dati da servizi di raccolta rifiuti o pulizia strade, che tracciano ogni azione del camion in coordinate gps
      • protocolli per la comunicazione con condizionatori, e centrali elettriche
      • dato uno o piu' sorgenti dati real time o statici produrre un processo di acquisizione e regolarizzazione dati.
      • sviluppo di nodi NODE-RED in node.js per la gestione di telecamere intelligenti
      • valutazione di nodi JS per Node-red per l'ambito domotica
      • sviluppo di soluzione Snap4Home con connessione 5G: Alexa, Hue, TP-Link, display, temperatura, umidità, controllo vocale, etc.
      • studio di un modello di conversione fra processi ETL e processi IOT App per data warehuse di dati statici e real time

 

ARGOMENTI DI TESI 2021-2022 PER TRIENNALE O MAGISTRALE: INFORMATICA, ELETTRONICA E TELECOMUNICAZIONI, PER ESEMPIO.

Per alcune Tesi svolte in passato al DISIT segui questo link.
Le Tesi/Stage fanno riferimento sia al vecchio che al nuovo ordinamento, e nel caso del nuovo ordinamento, sia alla Laurea triennale sia Magistrale/Specialistica; per Ingegneri Informatici, Telecomunicazionisti ed Elettronici, e anche per Laureandi in Informatica. Inoltre vi sono anche svariate tesi di dottorato.
Su svariati argomenti, e' possibile partire con un elaborato e continuare sullo stesso argomento nello stage e Tesi. 
Agli elaborati e tesi è possibile collegare lo Stage o il Laboratorio con i relativi crediti. Possibili argomenti possono essere inerenti allo studio, sviluppo, sperimentazione di soluzioni (anche estensioni di elaborati riportati nella lista sopra) per:
  • le tesi spesso vengono date estendendo i temi di elaborati di tipo A, B o C, o per fusione degli  stessi, pertanto si guardi gli argomenti direttamente nella liste precedenti.
  • soluzioni per collezionare eventi e notifiche da parte dei cittadini e degli operatori, evoluzione dello stato, standard CAPS
  • studio e sviluppo di algoritmi di data analytics, machine learning su big data: keras, tensor flow
  • studio di modelli di integrazione con vari simulatori
  • studio di simulatori Open Source per lo studio di movimentazioni logistiche di materiali in città anche con uso di Droni, e guida autonoma
  • sistema esperto per la ricostruzione del grafo di uso dei dati in soluzioni big data geografiche, IOT distribuito; L'ontologia è stata definita va fatta un'implementazione del sistema esperto e va fatta la verifica e validazione delle risposte alle domande di inferenza: problemi di manutenzione, guasti ed implicazioni, identificazione delle sorgenti dei problemi, etc.
  • simulazione di domanda offerta di mobilità
  • sistemi esperti per la valutazione della sicurezza cyber in ambito Industria 4.0 e Smart City, per sistemi distribuiti; 
  • sistemi di question and answering evoluti, assistenza ad help desk, sistemi esperti, elaborazioni in linguaggio naturale, query in linguaggio naturale;
  • Studio e sviluppo di soluzioni Blockchain in ambito IOT/IOE
  • in corso o completate:
    • Smart Data Model di FIWARE e sua integrazione nei processi di acquisizione dati
    • modelli predittivi per la manutenzione in ambito industriale, IOT
    • modellazione soluzioni What-IF, routing condizionato, interfacce di simulazione evolute
    • raccolta e analisi di dati provenienti da letti instrumentati per l'analisi e la terapia del sonno, per atleti e astronauti;
    • sistemi esperti per la valutazione real-time della qualità del dato in soluzioni big data;
    • applicazioni IOT App con integrazione ModBUS
    • ....


Ogni tesista viene seguito in tutte le fasi da uno o più esperti/ricercatori della materia e dispone delle risorse del laboratorio DISIT e del data center DISIT. 
si NOTI  che Tutti gli elaborati e tesi possono svolgersi ONLINE senza problemi o riduzione della loro validità direttamente via rete. Vi viene dato accesso alla piattaforma di sviluppo e/o vi vengono fornite macchine virtuali o container per poter creare il vostro ambiente.
 
Si informa inoltre del Bando Aperto per Borse di Dottorato: Sono disponibili borse di dottorato triennali in vari ambiti, e di borse di Dottorato in Apprendistato con importanti aziende del settore ICT. Se interessati contattate il Prof. Paolo Nesi.
 

Stage e Tesi vs Progetti di Ricerca

Svariate Tesi rientrano in modo parziale in progetti progetti di ricerca e sviluppo a carattere nazionale ed internazionale in corso di sviluppo al DISIT e/o con partner di ricerca e industriali si veda la pagina relativa ai progetti. Fra questi: ALMAFLUIDA, AMPERE, SmartBed, SODA, Snap4City (Https://www.snap4city.org ), MOSAIC (regionale con ALSTOM), WEEE Life della commissione europea (con regione e camera di commercio), TRAFAIR (CEF della Commissione Europea, con Univ Modena), Feedback (regionale con VAR), Join (regionale), WEEE (LIFE della EC), REPLICATE H2020 (smart city, con comune di Firenze, TIM, ENEL, Thales, etc.), RESOLUTE H2020 (ec, resilience),  Sii-Mobility (SmartCity nazionale MIUR), COLLABORA (Smart city nazionale MIUR), RAISSS (bando unico, gestione delle stazioni ferroviarie), TRACE-IT (bando unico segnalamento e metodi formali), ICARO (bando unico, cloud e smart cloud), SACVAR (regionale, analisis delle competenze, crawling regionale, matchmaking), OSIM (natural language processing, comprensione delle competenze), ECLAPMobile MedicineAXMEDISMobile EmergencyIMAESTROVARIAZIONIWEDELMUSICMPEG-SMR, TAC++, IMUTUS, QUACK, OMR, TOTS, VISICON, OPTAMS, SAMOPROS, MUSICNETWORK, etc.
In alcuni casi viene riconosciuto un rimborso spese in base al tipo di lavoro ed al progetto in cui la tesi si inserisce. In alcuni casi le attività sono svolte in collaborazione con l'industria, non si delega all'industria la definizione della tesi. E' possibile svolgere il periodo di Stage/Tirocinio/Laboratorio presso il DISIT ed accorpare il periodo di Tesi e di Stage/Tirocinio/Laboratorio con lo stesso argomento. Si veda per dettagli la pagina dei progetti.
 

Competenze necessarie per la Tesi

Non sono richieste particolari conoscenze per l'acquisizione e lo svolgimento delle/dei suddette/i Tesi/Elaborati. Laureandi in Ingegneria Informatica, o Elettronica, o delle Telecomunicationi o Automatica, come anche Laureandi in Informatica, sono tutti in grado di acquisire tali Tesi e di arrivare alla loro conclusione con successo in tempi previsti dal manifesto degli studi, dipendentemente dal tipo di Tesi e dal tempo che il candidato intende dedicarci: esami in sospeso, eventuale lavoro, Laurea Triennale o Magistrale, stage, etc.
Nella durata è incluso il tempo per l'apprendimento delle basi necessarie incluse le tecnologie che saranno utilizzate. Per le Tesi del nuovo ordinamento si prevede una durata di circa 2-3 mesi. Ogni Tesista viene seguito da 1-2 persone che hanno un'approfondita competenza nel settore e nelle tecnologie specifiche e che lo affiancano in ogni momento, sono a sua disposizione.
Alla tesi si puo' connettere anche il laboratorio e/o lo stage.

 

Tecnologie per elaborati, stage e tesi

I Tesisti/Elaborandi lavorano tipicamente utilizzando tecnologie innovative e svolgono la loro attività dove preferiscono, per esempio presso lo stesso Lab DISIT o Lab INEA-lab o altrove. In ogni caso, viene fornito accesso continuato al Lab DISIT dalle 8:15 alle 20:00 (tutti i giorni) dove possono trovare chi gli assiste (ricercatori, dottorandi, assegnisti di ricerca) nelle loro attività e li puo' aiutare ad affrontare qualsiasi tipo di problematica durante la loro formazione.
si NOTI  che Tutti gli elaborati e tesi possono svolgersi ONLINE senza problemi o riduzione della loro validità direttamente via rete. Vi viene dato accesso alla piattaforma di sviluppo e/o vi vengono fornite macchine virtuali o container per poter creare il vostro ambiente.
Il candidato puo' lavorare da solo o in gruppo, comunque avrà la possibilità di apprendere metodi, metodiche e tecniche per l'analisi e la progettazione di sistemi complessi e distribuiti in base al suo argomento di azione:

  • ambienti data analytics, machine learning: Python, R Studio, Tensor Flow, Keras (GV100, Titan XP), Java, Map Reduce, etc.
  • tecniche di programmazione: Java, Javascript, Python, PHP, GO, C++, JSP, Node-RED, Node.JS, Jquery, Angular, etc.
  • embedded programming su schede: Raspberry Pi, Arduino, Android, ESP32, .. 
  • IOT protocols se necessario: NGSI, LoraWAN, OneM2M, ModBUS, OPC, COAP, MQTT, AMQP, WS, HTTPS/HTTP, etc.
  • data warehouse: Node-RED, NIFI, Kafka, etc.
  • mobile programming: Apache Cordova multi piattaforma (Android, iOS)
  • lavorare con tecnologie specifiche dipendentemente dalla Tesi/Elaborato Scelta.


Le piattaforme di lavoro sono principalmente LINUX, Windows Server, android, etc. In molti casi, agli studenti vengono forniti degli ambienti completi in macchine virtuali, container in locale o in cloud. Al loro interno sistemi completi già installati. Questo permette di ridurre notevolmente i tempi di realizzazione della tesi/elaborato perche' vengono abbattuti i tempi di installazione e set up, i tempi di apprendimento delle problematiche di gestione di sistema. Allo stesso tempo, lo studente ha la possibilità di cimentarsi con un problema reale potendo, se lo desidera, approfondire le problematiche dell'intero sistema, e capire come si lavora in un contesto reale lavorativo anche in collaborazione con altri.
 

Tesi e accesso al Laboratorio DISIT

Il Laboratorio DISIT si trova al secondo piano della Facoltà/Scuola di Ingegneria, Via S. Marta 3, lungo il corridoio dell'ala est/destra.
 

Consegna Elaborato

a conclusione di tesi ed elaborati va prodotto uno ZIP/RAR, su USB o CD/DVD attenendosi ai contenuti descritti a questo link: http://www.disit.org/5986
 

RICEVIMENTO PER TESI ED ELABORATI IN VIA PREFERENZIALE

Il Prof. P. Nesi riceve tutti i Venerdi dalle ore 11:30 alle ore 13:00, presso il suo ufficio in Via S. Marta, 3, Dipartimento di Ingegneria dell'Informazione (ex DSI), secondo piano ala est (ala destra entrando dal cancello).
Per ricevimento on line contattarmi direttamente su Skype. Cercatemi su Skype usando il mio indirizzo di email: paolo.nesi@unifi.it
Il Laboratorio DISIT e' la porta difronte all'ufficio. E' sufficiente inviare una email a paolo.nesi@unifi.it oppure al ricercatore o ai ricercatori DISIT con i quali vi interessa lavorare.

OLD:
 

DISIT Lab: Orientamento in Itinere, triennali e magistrali (vecchio)

n relazione alla giornata di orientamento del 29 ottobre, ciascun gruppo/laboratorio interessato a partecipare dovrebbe preparare una presentazione di una ventina di minuti che sviluppi i seguenti punti: - ARGOMENTI DI RICERCA (da 3 a 5 slides): breve panoramica degli argomenti di ricerca attivi presso il laboratorio/gruppo - COLLABORAZIONI CON IMPRESE/UNIVERSITA' STRANIERE (1 slide): su quali argomenti di ricerca sono attive collaborazioni con gruppi di ricerca stranieri o aziende (sia italiane che straniere) - TESI TRIENNALE (2 o 3 slides): esempi di argomenti di tesi e panoramica delle conoscenze/competenze acquisite in una tesi triennale - CdL MAGISTRALE (1 o 2 slide per insegnamento): Relazione tra attività di ricerca del lab/gruppo e gli insegnamenti della magistrale. Panoramica delle maggiori competenze/conoscenze acquisite negli insegnamenti magistrali in relazione alla ricerca svolta nel lab/gruppo